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Abstract 

The linear programming problem is shown to be equivalent to a game in which 
primal players minimize the augmented Lagrangian function for the primal problem and 
dual players maximize the augmented Lagrangian function for the dual problem. Based 
on that,  a parallel solution method is developed in which process3rs carry out under- 
relaxed Jacobi steps for the players. Strong convergence of the method is proved and the 
ratio of linear convergence estimated. Computational results are highly encouraging. 

Keywords: Linear Programming, Augmented Lagrangians, Parallel Computing, Nash 
Equilibrium. 



1. Introduction 

The main objective of this paper is to develop a parallel procedure for solving the 
standard linear programming problem (see [5]) 

min cTx 
Ax = b, 
x 2 0, 

where x E Rn is the vector of decision variables, c f Rn,  b f Rm and A is an m x n 
matrix. As usual, we define the Lagrangian 

L(x, n )  = cTx + nT(b - Ax) 

and the dual problem 
max bT n 

It is well-known that if (1.1) has a solution then (1.2) has a solutinn too, and that any 
pair (i, +) of such solutions is a saddle point of the Lagrangian: 

max L ( i ,  n )  = L ( i ,  +) = min L(x, +). 
x E R m  x 2 0  

There were many attempts to solve linear programs by a saddle point seeking procedure 
for L(x, n )  (see, e.g. [I.]). The simplest algorithm of this class may have the form 

They are generally considered as inefficient, mainly because of the need to use very 
small stepsizes for primal and dual updates: r k  + 0, CEO r k  = cm. 

A substantial improvement can be made by replacing L(x, n )  with the augmented 
Lagrangian: 

1 
Ap(x, n )  = cTx + nT(b - Ax) + -pllb - Axl2,  

2 
where p is a positive penalty parameter. One of the main advantages of the augmented 
Lagrangian is the possibility of solving (1.1) and (1.2) by the following method of 
multipliers: 

nk+l = nk + p(b -  AX^), k = 1,2,  ... , 
(1.4) 

where 
A ( x ~ ,  nk)  = minA(x, nk)  

220 

It is well known (see, e.g., [ l l ,  21) that the method of multipliers stops after finitely 
many iterations at an optimal solution of (1.2). Any solution of (1.5) is then an optimal 
solution of (1.1.) (see also [3, 61). 

In [8] a Jacobi-type method, based on our earlier works [7] and. [13], was developed 
for the problem of minimizing the augmented Lagrangian in (1.5). The fundamental 



advantage of the approach of [8] is that stepsizes in the iterative procedure need not 
converge to  zero; in fact, they can be quite large and their safe values can be estimated 
by analyzing the sparsity pattern of the matrix A. Promising numerical results reported 
in [8] indicate that the new approach has the potential to solve very large problems. 
However, it is still a two-level method with the upper level responsible for updating 
the multipliers and the lower level solving subproblems (1.5) via Jacobi iterations. 

In the next two sections we shall develop a new one-level method based on a more 
general idea: primal and dual steps which will be carried out in parallel for two different 
augmented Lagrangian functions defined for the primal and the dual problcrns. The 
original problem will be replaced by a game and a parallel method will be introduced 
for finding an equilibrium of this game (see [3] for an overview of parallel methods for 
variational inequalities). 

2. The game 

Let us define a non-cooperative game with two players: P and D. The objective of P 
is to minimize in the variables x E Rn,  x 2 0, the augmented Lagrangian function for 
the primal problem (1.1): 

1 
min [ Ap(x, R )  = cTx + r T ( b  - Ax) + - pJ l b  - Ax)12 . 
120 2 I 

The objective of D is to  maximize in the variables R E Rm and v E Rn ,  v 2 0, the 
augmented Lagrangian function for the dual problem (1.2): 

T T T 1 T max [ A ~ ( X , ~ , V ) = ~ T + X ( C - A T - V ) - - ~ ~ I C - A ~ - ~ ~ ~ ~ ] .  (2.2) 
P ,  1~>0  2 

Let us note that we introduced slack variables v 2 0 into the constraints of the dual 
problem to convert them into equations. 

The following result is fundamental for our approach. 

Theorem 1. A point i is an optimal solution of (1.1) and a point 4 is an optimal 
solution of (1.2) if and only i f  i, 4 and 6 = c - ~~4 constitute the Nnsh equilibrium 
of the game (2.1)-(2.2)) i.e., 

A p ( i ,  4 )  = min Ap(x, 41, 
x>o (2.3) 

A D ( i ,  4 ,  6) = max AD(i ,  R ,  v) .  
s, v20 

Proof. Assume that i is a solution of (1.1) and 4 solves (1.2). Then b - A? = 0, 
c - AT+ - ii = 0 and iiTi = 0. This yields (2.3): 



and (2.4): 

1 
AD(?, T , V )  = c T i  + aT(b - A i )  - v T i  - -pllc - A ~ T  - v1I2 

2 
5 c T i  = irTb = AD(i,ir,G). 

Let us now assume (2.3) and (2.4) and prove optimality of i and ir for (1.1) and (1.2). 
Define 

$ = b - A i  

It  is necessary and sufficient for (2.3) that 

VzAp(f,  ir) = i + G - p ~ T $  2 0, 

From (2.4) we obtain: 
V,AD(i, ir, G) = ij + pAi  = 0, 

VvAD( i ,  ir, G) = -i + p i  5 0, 

GTv,hD(i ,  +,G) = GT (-2 + p i )  = 0. 

By (2.8), (2.5) and (2.6), 

Using (2.7) and (2.9) in the last inequality we get 

Thus G T i  = [ $ [ I  = [(il( = 0. The  proof is complete. 
Based on this result, we shall now decompose the game (2.1)-(2.2) into a game 

with 2n + m elementary players: primal players P j ,  j = 1 , .  . . , n,  and dual players 
D;,  i = 1 , .  . . , m  + n. Their objectives are partial optimizations in (2.1) and (2.2), 
respectively. The  objective of the player P j ,  j = 1 , .  . . , n,  is to  solve the problem 

min Ap(x, T). 
ZJ 2 0  

Players D;, i = 1, .  . . , m ,  solve the problems 

maxAD(x, T, v). 
TI 

Finally, players j = 1,. . . ,n,  aim a t  solving 

maxAD(z,  a, v); 
VJ 2 0  

The following theorem results immediately from Theorem 1. 



Theorem 2. A point i is an optimal solution of (1.1) and a point ? is an optimal 
solution of (1.2) if and only if i, ? and .it = c - AT? constitute the Nash equilibrium 
of the game (2.10)-(2.12). 

Proof. Nash equilibria of the game (2.1)-(2.2) and the game (2.10)-(2.12) are identical, 
because the functions A p  and AD are continuously differentiable and the feasible sets 
in (2.1) and (2.2) are Cartesian products of feasible sets for single coordinates. The 
result follows then from Theorem 1. 

In the next section we shall use this result to develop a parallel method for solving the 
problems (1.1)-(1.2) in which individual tasks (processors) will play the role of agents 
Pj and D; in our game. 

3. The method 
Let us now describe in detail a decomposition method for solving the problems (1.1) 
and (1.2). It is, in fact, an under-relaxed Jacobi algorithm for solving the game (2.10)- 
(2.12). In the description below we use Aj to denote the j - th  column of A,  j = 1 , .  . . , n, 
and A' to denote the i-th row of A, i = 1 , .  . . ,m .  

Initialization. Choose a. starting point so 2 0, T O  E Rm and v0 2 0 and a parameter 
7 E (0,2). Set k = 0. 

Stopping Test. Determine the primal infeasibility 

the dual infeasibility 
k T k  k 

Z = c - A  IT - v  

and the error function 

If Ek = 0 then stop. 

Prediction. Make the multiplier method updates 

Stepsize Calculation. Define the sets 

Nk = {j:  v: > o or 5: < 01, 
B~ = {j : xi > o or cj - ~ T i i ~  < 01 .  



Calculate 

and the stepsize 

P r i m a l  Opt imizat ion .  For j = 1, .  . . , n find the unconstrained solution of (2.10), 
make a step of length towards it and project onto the feasible set: 

D u a l  Opt imizat ion .  For i = 1, .  . . , m find the solution of (2.1 1 )  and ma.ke a step of 
length towards it: 

For j = 1 , .  . . , n find the unconstrained solution of (2.12) and make a step of 
length r k  towards it: 

+ 
Increase k by one and go to the Stopping Test. 

It is a matter of elementary calculations to show that the formulae used in the Primal 
Optimization step and in the Dual Optimization Step correspond to problems (2.10), 
(2.11) and (2.12). 

An impor tad  p;dperty of the method describecl heL< is that 1s highly paralleliz- 
able. Each step of the method contains a number of column or row operations that can 
be carried out simultaneously. It is also worth mentioning that the optimization steps 
are made in directions of the gradients of the usual Lagrangian L ( x ,  n ) ,  but calculated 
a t  the predicted point (i, i i ) ,  analogously to the idea of the extragradient method of 

PI. 

4. Convergence 

The kth iteration of the algorithm introduced in the previous section can be compactly 
described as 

k+l - k  T k  
=; k k k .  - + ~ V ~ , A D ( X  ,n  ,V ), z = 1 ,..., m,  

PllA II (4.2) 



where 
= { I  i f j  t Bk 

0 otherwise, 

gk = { l  i f j t N k  
v~ 0 otherwise. 

Theorem 3. Assume that (1.1) has a solution. Then the method generates a sequence 
k k W  

{(xk, a , v convergent to a point (2, ri ,  i.j such that i is an optimal solution of 

( l . l ) ,  7i is an optimal solution of (1.2) and 6 = c - AT%. 

Proof. Let (x*, a*, v*) be an equilibrium of the game. Let S, and S, be diagonal matri- 
ces with diagonal elements ( 1  Aj 1 1 2 ,  j = 1, . . . , n, and llA'((2, i = 1, . . . , m, respectively, 
and let us denote IJa11; = ( a ,  Sa) .  We define 

We also define 0: and 0: as diagonal matrices with the diagonal entries 8:, and 8:,, 
respectively. 

Since the scaling matrices are diagonal, the projection on the set {x : x 2 0) is 
nonexpansive in the norm 1 1  . I l s s .  Thus 

27k = llxk - x*lliz - - ( @ ~ V , A ~ ( X ~ ,  ak), zk  - x*) 
P 

In a similar way, 

27k k k  
+ - a *  = llak - a*lliff + --(vTAD(xk, a , v ), rk - a*) 

C' 

27k k k  (lvk+' - v * ( ( ~  llvk - I J * ( ~ ~  + -(o:v,A~(x~, a , v ), vk - v*) 
P 

Let us estimate the terms that stand a t  r k  in (4.5)-(4.7). Since (V,,Ap(xk, ak),x: - 
xj)  5 0 for j @ B k ,  

(@:v,Ap(xk, a'), xk - x*) > (vxAp(xk,  ak),  z k  - x*). 

In a similar way, we obtain 

k , k  k k  ( @ ; V v A ~ ( x k ,  a , v ), U' - v*) 5 ( v , A ~ ( x ~ ,  a , u ), v k  - v*).  



Using the last two inequalities, after lengthy but straightforward transformations, we 
can estimate the expression at -2Tk/p in (4.5)-(4.7) as follows: 

k k  (@:v,Ap(xk, rk), xk - x*) - (V,AD(xk, a , v ), ak - a*) 
k k  - ( @ : v ~ A ~ ( x ~ ,  ak,  vk), vk - v*) L (5 , V  ) + P I I Y k ( 1 2  + p ) ) ~ k ( ( 2  = E ~ .  

The terms at T:/~' sum up to 

Combining (4.5)-(4.7) with the last two equations we obtain 

By the stepsize rule (3.4), 

Thus, the sequence {Wk) is non-increasing and 

El lim - = 0. 
k-03 Dk 

Since Urk is bounded, the sequence {(xk, a k ,  vk)) is bounded and has an accumulation 
point (5, ?, 6). By (4.9) and the boundedness of {Dk),  limk,, Ek = 0. Thus, 

i.e., i is an optimal solution of (1. I ) ,  ? is an optimal solution of (1.2) and 6 = c - AT?. 
By Theorem 2 we can use ( i ,  ?, 6) instead of (x*,a*,  v*) in (4.4). Then from (4.8) we 
see that the distance to ( i ,  ?, 6) is non-increasing. Consequently, ( i ,  ?, 6) is the only 

k k  accumulation point of the sequence {(xk, a , v )). The proof is complete. 

5. Rate of Convergence 

We shall now analyze asymptotic properties of our method under the follov:i~~g assump- 
tion. 

Strict Complementarity Condition. Problems (1.1) and (1.2) have unique solu- 
tions i and .ir such tha.t for 6 = c - AT? one has G j  > 0 if  i, = U and 
ij > 0 if 6j = 0. 

As usual, we introduce the set of non-basic variables n/ = {j : ij = 01, the set 
of basic variables B = { j  : ij > 0) and the basis matrix B = (Aj),,,. By the Strict 
Compleinentarity Condition the basis B is square and non-singular. 

At first we show that the basis is identified in a finite number of iterations. 



Lemma 1. Assume that the Strict Complementarity Condition holds. Then, for any 
7 E (1,2), there is ko such that for all k 3 ko we have x! = 0 for all j  E N and v: = 0 
for all j  E B.  

Proof. Let us define the sets 

M = { j  E N : x: > 0 for infinitely ma,ny k}, 

P = { j  E B : v: > 0 for infinitely many k}. 

We shall prove that they are empty. Suppose the opposite, namely, that a t  least one 
of them is non-empty. By Theorem 1 and strict complementarity, 

lim V , , A ~ ( X ~ ,  sk) = G j  > 0 for j E N 
k-oo (5.1) 

and 
k k k  lim Vv,AD(x , s  , v  ) = -i 

k-oo , < O for j  E B. (5.2) 

By (5.1) and (4.1), for all sufficiently large k, 

Similarly, (5.2) and (4.3) imply that for all sufficiently large k 

Let us denote XM = (xj)jsM and, in a similar way, xp_ V M ,  up. From (4.1) and (4.3) 
we obtain: 

Let us multiply both sides of (5.3) by v h ,  both sides of (5.4) by a.; and a.dd the results. 
Since the left sides are non-negative, we obtain 

k k  where in the last inequality we used (3.4) and the estimate (x , v ) < Ek. By Theorem 
1 and (5.1)-(5.2), 

k k k k  
lim [(vM,s;Lv~MAP(x , s k ) )  - ( X ; , V ~ ~ A D ( X ~ , T  , v  ))I = (GM,S;;GM) + 11ipl12 

k-oo 

= lim Dk > 0, 
k-co 



because in calculating limk,, Dk directions with nonzero limits occur only for xh and 
v$. Thus, with 1 < -y < 2, the right side of (5.5) becomes negative for large k: a 
contradiction. The proof is complete. 

Remark. Simple counter examples can be constructed to show that the assumption 
-y > 1 cannot be dropped. 

We shall now introduce some measures of sparsity of the matrix A. Let Mi denot$e t,he 
number of nonzeros in the i th row of A, i = 1, . . . , m. We define for each column Aj 
of A, j = 1, . . . , n, the average row count 

Analogously, let M j  be the number of nonzeros in the j th  column of A and let 

denote the average column count associated with row i,  i = 1 , .  . . , m. Finally, let 

max Nj, max 
l < j < n  1<aLm 

Let us note that there is a simple upper bound on N: the maximum number of nonzeros 
in a row or column of A. 

Next, let us define 

1, rnin ( J ~ ~ l l ' ,  min I I A ' ~ ~ ~ )  , 
l < ~ < n  l < i < m  

and 

We can estimate the limit properties of t,he stepsizes 71, as follows. 

Theorem 4. Assume that the Strict Complementarity Condition holds. Then, for any 
7 E (1,2),  there exists ko such that for all k 2 ko 

where 

Proof. We shall estimate the ratio in (3.4) for a fixed (but sufficiently large) k. By 
Lemma 1, 



if k is large enough. Let us estimate Dk (for brevity, we omit the subscripts and 
superscripts k). For large k, by Lemma 1, we have 

where B is the basis matrix. The right hand side of (5.7) can be estimated by Lemma 
A (see the Appendix): 

because the row counts of the matrix mutiplied by ( y ,  za, z ~ j  in (5.7) are bounded by 
N + 1 and its squared column norms by rcrnaX max(1, p2). Consequently, 

which proves our assertion. 

We are now ready to  estimate the rate of convergence of the method. 

T h e o r e m  5. Assume that the Strict Complementarity Condition. holds. Then, for any 
y E (1:2), the method is convergent at a linear rate, i.e. there i s  q(p) E (0. i )  such 
that, for all suficiently large k, one has 

where Uik is defined by (4.4). Moreover, 

lim sup q(p) < 1. 
P - 0 3  

Proof .  Let us rewrite inequality (4.8) as follows 

By Theorem 4, for all sufficiently large k, 

Let us estimate from below Ek/p. By lemma 1, for all sufficiently large k, 



Since the basis matrix B is non-singular, t.here is a number p > 0, independent of p, 
such that 

E i / p  L pM7k.  (5.10) 

Substituting (5.9) and (5.10) into (5.8) we obtain 

which proves the first assertion. By passing to the limit with p --+ oo in (5.6) we obtain 
the second assertion. 

6. Computational Illustration 
An experimental computer code called Nash has been developed by means of revising 
our earlier Jacobi code for the multiplier method 181. The procedure of section 3 was 
generalized in a straightforward manner to account explicitly for simple bounds on 
primal variables. 

To begin the first iteration, we set all primal variables equal to zero and project 
onto the bounds. Similarly, we set all dual multipliers to zero initially. The iterations 
end when the error term (3.3) relative to the absolute value of the objective function 
value is smaller than a prespecified optimality tolerance 4, and when primal and dual 
infeasibilities are reasonably small (we used 4 = An iteration in Nash consists 
of a dual phase and a primal phase. It should be stressed that both phases can be run 
in parallel. Furthermore, all primal variables can be processed in parallel and the dual 
phase can be carried out simultaneously for all rows. 

For illustration, Nash was tested on some problems from the Netlib library [lo]. The 
set consists of the six largest problems used in oar earlier study [8]. Table 1 shows the 
names and dimensions of these problems. The serial run times t ,  on a HP9000/720 for 
the simplex code Cplex 2.1 [4] are reported as reference times to be used for efficiency 
comparisons. For Nash, simulation runs were performed on the same computer to 
obtain estimates of the CPU work w. Assumiug one processor for each column a.nd 
row, we obtain a lower bound for the parallel run time 

This formula assumes that all processors are loaded with equal tasks, so that the 
execution time is the same for all. Alternatively, we might have defined the parallel 
run time based on the worst cases (the longest run times of primal and dual phases). 
However, the worst case results from an uneven distribution of nonzeros in rows and 
columns and the largest tasks can be further parallelized, for instance, by splitting 
dense columns or rows. 

The siinplex method does n.ot suit parallel computation the way Nash does. There- 
fore for Cplex, we use the serial run  time in the comparisons, and define the potential 



speedup of Nash against C p l e x  as the serial run time of the latter, divided by the 
estimated parallel run time t, of Nash. Obviously, there is some gain from parallel 
computation for the simplex methods as well. Besides, communication time is omitted 
for Nash. Therefore, our speed-ups should be regarded as rather optimistic. 

Iteration counts, work (CPU seconds), estimated parallel run times t, (seconds), 
potential speed-ups (t,/t,) against Cplex  and the stepsize at the end are reported in 
Table 2. 

As mea.sures for precision, for each row i and column j, relative primal errors e$ 
and relative dual errors e b  are defined as follows: 

where y ;  and z j  refer to primal and dual infeasibilities, respectively. Table 3 shows 
relative errors in the objective function (eF), average relative primal a.nd dual errors 
e p  and and maxima.1 relative primal and dual errors l p  and tD. 

It is worth pointing out that in all cases there is a potential of speedup of orders 
of magnitude with respect to a sequential method and that the final accuracy is quite 
high. The results also show that our theoretical estimates concerning limit values of 
stepsizes are satisfied with a broad margin. As a whole, the new approach appears to 
be very promising. 



Table 1: Problem statistics. Time is the reference time in seconds obtained by Cplex. 

Problem 

stocfor3 
80bau3b 
stocfor2 
degen3 
sctap3 
pilot 

Rows Columns Nonzeros Time 

16675 15695 74004 1023.2 
2263 9799 29063 93.6 
2158 2031 9492 14.9 
1504 1818 26230 113.3 
1481 2480 10734 5.2 
1442 3652 43220 432.5 

Table 2: Performance of the met,hod. 

Problem 

stocfor3 
80bau3b 
stocfor2 
degen3 
sctap3 
pilot 

Problem 

1t)erations Work Parallel Potential Final 
Time Speedup Stepsize 

4745 2955 0.091 11200 0.2 
21064 3809 0.316 296 0.1 

3408 274 0.066 227 0.4 
9748 920 0.278 408 0.3 
2672 207 0.052 99 0.3 

21022 2459 0.482 897 0.1 

stoc.for3 
80bau3b 
stocfor2 
degen3 
sctap3 
pilot 

Table 3: Accura.cy of the ~ol.clt,ion. 

13 
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Appendix 

Lemma A (Kallio, Ruszczyriski and Salo, 1993) Let A be an. m. x n n).atrix and let 

where Mi is the n.?intber of nonzeros in the i t h  row of A. Then for t:tlfr.y d E Rn 

Proof. Expansion into single entries yields 

where V ( i ,  j )  is the set of such s that a;ja;, # 0. Applying Schware inequality to the 
right side of the above equation and noting that s E V(i, j )  if and only if j  E V(i, s) 
we get 

where in the last relation we used the fact that V(i, j) has Mi elements. The required 
result follows ;low from the definition of the Nj's. 


