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Abstract 

A general decomposition framework for large convex optimization problems based 
on augmented Lagrangians is described. The approach is then applied to multistage 
stochastic programming problems in two different ways: by decomposing the problem 
into scenarios or decomposing it into nodes corresponding to stages. In both cases the 
method has favorable convergence properties and a structure which makes it convenient 
for parallel computing environments. 

Keywords: Stochastic Programming, Decomposition, Augmented Lagrangian, Jacobi 
Method, Parallel Computation. 



1 Introduction 

Multistage stochastic optimization problems belong to the most difficult problems of 
mathematical programming. Their size grows very quickly with the number of stages 
and with the number of events (scenarios) incorporated into the model. Although 
problems of this type occur frequently in applications (like, e.g., investment planning 
problems, control of water systems or energy systems), it was a generally held opinion 
that they are too difficult to be solved in their full formulation. However, recent 
advances in the theory of stochastic programming and in the computing technology 
make it possible to develop new methods for solving multistage stochastic programs 
of remarkable sizes. The purpose of this paper is to describe such an approach which 
has already proved successful in some applications and appears to have a potential to 
solve a broad class of problems. 

After a brief description of the class of problems under consideration in section 2, 
we present the general decomposition framework in section 3. The method is applica- 
ble to general convex problems with many subproblems and many linking constraints. 
Our approach is based on augmented Lagrangians and has its roots in the pioneering 
work [21.]. Following [20] we show that properties of the method heavily depend on 
sparsity of the linking constraints. Next, in section 4, we apply the general frame- 
work to multistage stochastic programming problems formulated in a scenario form. 
The subproblems correspond to scenarios and nonanticipativity constraints are treated 
as linking constraints. In section 5 we apply the general framework to multistage 
problems decomposed into particular stages of the decision-making process. Then the 
equations of dynamics, which relate to the variables from different stages, are treated 
as linking constraints in the decomposition approach. In both cases we show that the 
augmented Lagrangian decomposition method has favorable properties with a broad 
range of parameters guaranteeing convergence and good rate of convergence estimates. 

2 Multistage stochastic programming models 

In a multistage optimization problem decisions are to be made in stages t = 1,2,. . . , T 
and the decision vector is a collection of subvectors corresponding to successive stages, 

Decisions in successive time stages have to satisfy two groups of relations. The first 
group describes the set of feasible actions for each t: 

where X(t)  R"'. , t = 1,2,. . . , T. The second group describes the dynamics of the 
system and relates decisions from different time stages. In the simplest linear model 
they may read: 



Here D(t) and H(t) ,  t = 1,.  . . , T are sequences of mb x m, matrices, b(t), t = 1,.  . . , T, 
is a sequence of vectors in Rm* and x(0) is fixed. Obviously, the dimensions need not 
be the same for different t; we just use one m, and one mb for simplicity. 

Finally, there is a cost function c : RmzT + R 

that needs to be minimized. 
In stochastic programming, the data X(t) ,  D(t), H(t )  and b(t) are random objects 

defined on some underlying probability space (0, B, P). We shall call each sequence 

corresponding to an elementary event w E R a scenario. 
Realizations of the random data associated with time stage t become known at t ,  so 

it is reasonable to make the decision x(t) dependent on the information that is already 
available. Consequently, x is a random vector itself, and (2.1.) and (2.2) are relations 
between random variables that are assumed to hold with probability 1. 

However, x cannot be an arbitrary random vector; the dependence of x(t) on w 
may result only from the observations carried out up to time t.  This is called non- 
anticipativity: for each t decisions x,(t) must be equal for all scenarios w that have 
common past and present. Formally, this can be stated as the condition of measurabil- 
ity of x(t) with respect to the a-subfield B(t) 2 B, generated by {s(l.), s(2), . . . , s(t)).  

Moreover, the cost (2.3) is a random variable itself and we need to replace it by a 
scalar-valued function. It is a common practice to use an expected value of the cost as 
the objective, although other choices are possible, too, as, e.g., mean-variance models. 
Since we are going to work with a general convex c, using its expectation does not seem 
very restrictive, because we still retain the flexibility of nonlinear utility functions. 

The problem can be now stated as follows: 

min E [cl(x,(l)) + ~2(5,(2)) + . . + C T ( X W ( ~ ) ) ]  (2.4) 

subject to the constraints 

with x(0) = xo fixed. The non-anticipativity constraint can be formulated as follows: 
for all w,[ E R and any t E (1,. . . ,TI  

~ ( t )  = q ( t )  if s,(T) = s((T) for T = I , .  . . , t .  (2.7) 

In other words, decisions corresponding to scenarios which are indistinguishable up to 
time t should be equal. 

We shall assume throughout this paper that the sets X,(t), t = 1,. . . , T, w E R 
are convex and closed and the functions ct, t = 1,.  . . , T, are convex, which makes 
(2.4)-(2.6) a convex optimization problem. But even then the problem is too difficult 



Figure 1: Scenario tree. 

to be successfully solved for general distributions of the random data. Therefore in 
applications we confine ourselves with some approximate distributions comprising only 
finitely many scenarios. In other words, we assume that 0 is a finite set: 

Under such an assumption, with the set of scenarios s,(t), t = 1,. . . , T, w E 0 ,  we 
can associate a tree 7 = { N ,  A), where N is a set of nodes and A is a set of arcs of 7. 
The set of nodes N is divided into subsets (levels) Nt,  t = 1,. . . , T; the nodes n E Nt 
at level t correspond to different subscenarios {sn(l),  . . . , sn(t)).  At level 1 there is 
only one node n = 1 (the data for stage 1 are known). At level 2 there are as many 
nodes as different realizations of s(2) that can occur; at level 3 the nodes correspond to 
different pairs {s(2), s(3)), etc. The number of nodes at level T is equal to the number 
of scenarios S. The arcs join nodes from neighboring levels in such a way that a node 
n at level t corresponding to subscenario sn = {sn(l),  . . . , sn(t)) is connected with all 
nodes m at level t + 1 whose subscenarios sm = {sm(l), . . . , sm(t + 1)) equal sn up to 
time t. An example of such a tree for an 8-scenario problem is shown in Fig. 1. 

Problems with finitely many scenarios are more amenable for computer solutions, 
but many difficulties still remain. 

First of all, one has to note the remarkable size of the problem. If the scenarios 
introduced to the model are to reflect uncertainties that occur at successive time stages, 
then the number S of scenarios grows exponentially with the increase of the time 
horizon T.  Even for relatively small T the dimension of (2.4)-(2.7) may be so large 
that the whole problem will become intractable by direct solvers. 

However, (2.4)-(2.7) has a very special structure which creates a number of possi- 
bilities for developing special solution methods. 

Existing computational methods for multistage stochastic programming problems 
can be divided into two main groups. First, there are versions of general-purpose 
algorithms in which special features of stochastic problems are used to improve data 
structures and solution strategies [lC, 81. Secondly, we have a number of special decom- 
position methods which exploit the structure of the problem to split it into manageable 
pieces and coordinate their solution [23]. One can distinguish two classes: primal de- 
composition methods that work with subproblems which are assigned to time stages 



[4, 7, 17, 18, 221 and dual methods, in which subproblems correspond to scenarios 
[ l l ,  19, 161. 

In this paper we shall use the general theory of augmented Lagrangian decompo- 
sition of [20] to develop and analyze two new decomposition methods for multistage 
stochastic programs. The first one is a dual method proposed for linear multistage 
stochastic programs in [ll] and further developed in [12]. We shall show how to deal 
with convex objectives and we shall present some results on its convergence and rate 
of convergence. The second approach is a primal method based on the concept of node 
decomposition. Again, we shall use the general theory developed in [20] to obtain con- 
vergence and rate of convergence results for the method. Alternative decomposition 
approaches based on augmented Lagrangians are discussed in [3, 6, 191. 

3 General decomposition framework 

The purpose of this section is to briefly describe the general augmented Lagrangian 
decomposition method for partially separable convex problems. The approach will then 
be used in later sections to develop specific methods for multistage stochastic problems. 

Let XI ,  X2,. . . , XL be non-empty closed convex subsets of Rnl, Rn2,. . . , RnL, re- 
spectively, and let f; : Rni + R, i = 1,2,. . . , L be convex functions. Next, let A; be 
matrices of dimension m x n;, i = 1,2,. . . , L and let b E Rm. We consider the convex 
programming problem: 

min 2 f;(x;) 

x; EX;,  i =  1,2 ,..., L. 

The augmented Lagrangian for this problem is defined as: 

L L 1 L 

A(x, a) = C fi(xi) + (a, b - C Aixi) + - p  
i=l i=l 2 

with some penalty parameter p > 0. As usual, we define the dual functional 

g(a) = inf A(x, a )  
xEX 

with X = X1 x X2 x . x XL, and the dual problem: 

max g(a) . 
aERm 

There are many theoretical and computational advantages of the augmented Lagrangian 
approach over the ordinary Lagrangian (with p = 0). For the duality to hold, it is suf- 
ficient that the following condition is satisfied. 



Constraint Qualification Condition. At least one of the following conditions holds: 

(i) at some feasible point x0 

ri {d : 3a > 0 such that xO + a d  E X) n {d : Ad = 0) # 0; 

(ii) X is a polyhedral set. 

The fundamental duality result can be formulated as follows (see, e.g., [13, 141). 

Proposition 3.1 Assume that (3.1)-(3.3) has an optimal solution and the Constraint 
Qualification Condition is satisfied. Then (3.5) has an optimal solution and 

(a) for every optimal solution 3 of (3.1)-(3.3) and every optimal solution 7i of (3.5) 

(b) for every optimal solution 7i of (3.5) a point 3 is a solution of (3.1)-(3.3) if and 
only if 

A(?, 7i) = min A(x, 7i). 
x E X  

(3.6) 

An important advantage over the usual Lagrangian duality is that (3.6) is suffi- 
cient for primal recovery when the dual solution is known. The major computational 
advantage is the possibility of solving the dual problem by the following algorithm. 

Method of Multipliers 

Step 1. For fixed multipliers nk find a solution z k  of the problem 

min A(x, nk).  
xEX 

Step 2. If Axk = b then stop (optimal solution found); otherwise set 

increase k by 1 and go to Step 1. 

The following two propositions summarize the fundamental properties of the method 
of multipliers (see [2, 151). 

Proposition 3.2 Let the Constraint Qualification Condition be satisfied. Then the 
sequence {.nk) generated by the method of multipliers is convergent to a solution 7i of 
(3.5). 

Proposition 3.3 Assume that f ; ,  i = 1,2,. . . , L are convex polyhedral functions, 
X i ,  i = 1,2, . . . , L are convex polyhedral sets and (3.1)-(3.3) has a solution. Then 
the method of multipliers is convergent in finitely many iterations. 



The simplicity of iteration (3.8) makes the method of multipliers especially at- 
tractive for problems with many linking constraints (3.2), where column generation 
techniques stemming from [5] fail. However, a serious disadvantage is that (3.4) is 
not separable, so problem (3.7) cannot be split into independent subproblems for 
x;, i = l , 2  ,..., L. 

To overcome this difficulty we introduce for i = 1,2,. . . , L the functions 

where i E Rn is an additional parameter, n = ~ f = ~  n,. The main idea of our approach 
is to replace problem (3.7) with L problems 

min h;(x; , i , rk) ,  i = 1,2 ,..., L, 
~i €Xi 

(3.10) 

and to iteratively update the parameter 5 by making steps towards the solutions of 
(3.10). It is not difficult to see that (3.10) is equivalent to minimizing (3.4) with respect 
to x; while keeping xj, j # i, frozen at i j .  However, we are not going to use (3.10) in 
a sequential fashion, but we shall rather solve it for each i in parallel and then update 
5. This approach is called a nonlinear Jacobi algorithm. 

We are now ready to describe the method in detail. It should be noted that it is 
a sub-algorithm for carrying out Step 1 of the method of multipliers in a decomposed 
fashion. In what follows T E (0 , l )  is a parameter of the method. 

Jacobi Method 

Step 0. Set i k y O  = xk-' and r = 0. 

Step 1. For i = 1,2, . . . , L solve (3.10) getting points 2:'. 

k Step 2. If AjxiYr = Ajif", i = 1,2,. . . , L, then stop; otherwise set for i = 1,2,. . . , L 

increase r by 1 and go to Step 1. 

Let us now pass to conditions under which the Jacobi method generates sequences 
r OO {xk* Ir=, and { i k ~ r ) ~ o  whose accumulation points are solutions of (3.7). They involve 

the measure of sparsity of the linking constraints (3.2) defined as follows. For every 
matrix A;, let Aj; denote its j th  row and let 

i.e., V(i, j) is the set of other blocks linked with block i via row j. We can now define 
the maximum number of neighbors as 

N = max lV(i, j)l. ' 13 (3.12) 

In other words, N is the maximum number of blocks linked by any single constraint, 
decremented by one. The theorems to follow show that convergence properties of the 
Jacobi method depend heavily on the number of neighbors N. 



Theorem 3.1 Assume that the assumptions of Proposition 3.1 are satisfied and the 
sets X;, i = 1,2, .  . . , L are bounded. If in the Jacobi method the under-relaxation coef- 
ficient satisfies the inequalities 

where N is given b y  (3.12), then: 

(a) for all i = 1,2,. . . , L lim,, A;(x!" - it!") = 0; 

(b) each accumulation point of the sequence { x ~ * ' ) ~ ~  is a solution of (3.7). 

To estimate the speed of convergence, we need the following assumption on the 
growth rate of the augmented Lagrangian function ( ~ ( n )  denotes the set of solutions 
of (3.7)). 

Quadratic Growth Condition. There exist 7 > 0 and 6 > 0 such that for every 
x E X with d i s t ( x , ~ ( n ) )  < 6 we have 

It is clear that this condition is satisfied by linear and quadratic problems (3.1)-(3.3). 
We can now formulate our main result on the speed of convergence. 

Theorem 3.2 Let the assumptions of Theorem 1 and the Quadratic Growth Condition 
be satisfied. Then, for all r = 0,1,2,. . . the following inequality holds 

with 

and 

a = max IIA;ll. 
l<a<L 

Theorems 1 and 2 have been proved in [20]. We can also find there further re- 
finements of these results for the case when the subproblems (3.10) are not solved 
till optimality, but with dynamically determined stopping criteria. In [9] the general 
approach is specialized to linear programming with even broader stepsize range than 
(3.13) with tighter estimates of the speed of convergence. 



Figure 2: Sequences of decisions and nonanticipativity. 

4 Scenario decomposition 

We shall now apply the general framework of the previous section to problem (2.4)-(2.7) 
with the following assignments: 

subproblems correspond to scenarios i = 1,. . . , S with decision vectors 

relations (2.5) and (2.6) are used to describe the sets Xi in (3.3): 

non-anticipativity constraints are treated as linking constraints (3.2). 

We shall now develop a formulation of non-anticipativity constraints which is conve- 
nient for our decomposition approach. Let us define the last common stage of scenarios 
w and ( by 

tmax((, W )  = max{t : ~ ( ( 8 )  = s,(8), 8 = 1, . . . , t ) . 
We shall now order scenarios in fl by assigning to them numbers i = 1, .  . . , S in such 
a way that for every i scenario i + 1 has the largest last common stage with i among 
all scenarios j > i: 

tm"(i, i + I) = max(tm"(i, j )  : j > i).  

Scenarios in Fig. 2 for the tree of Fig. 1 are ordered in this way. 
It is easy to observe that with such an ordering, the bundles of scenarios which are 

indistinguishable up to some time t form connected subsets of (1 ,. . . ,S). In Fig. 2, 
they are joined by horizontal dotted lines. 

Next, for every scenario i and every time period t ,  we define the sibling of i at t as 

if tmax(i,i+ 1) > t ,  
u(i,t) = 

min{j : tmx(i, j) 2 t )  otherwise. 



Table 1 :  Siblings of scenarios. 

Time 

stage 

2  

3  

4  

Let us note that a scenario may have different siblings at different time stages. For the 
example of Fig. 1  and Fig. 2 ,  siblings of scenarios are shown in Table 1 .  

For every t ,  the mapping v ( i , t )  defines a permutation of R, which maps bundles 
of indistinguishable scenarios onto themselves. It is easy to observe that v ( i ,  t )  # i ,  
if the bundle of scenario i  at stage t  contains more than one member. The inverse 
permutation will be denoted by v - ' ( i ,  t ) .  

Using the mapping v ( i ,  t )  we can describe the non-anticipativity condition by the 
constraints: 

x i ( t )  = ~ , ( ; , ~ ) ( t )  for all ( i ,  t )  such that i  # v ( i ,  t ) .  (4 .2 )  
There is still some redundancy in this set (we can removeone equation for each bundle), 
but we shall keep all equations (4 .2 )  for convenience. 

Thus, the whole problem has the following structure: 

Scenario 

subject to (4 .1 )  and (4 .2 ) .  This corresponds exactly to the general model (3 .1 ) - (3 .3 ) .  
The augmented Lagrangian function for (4 .1)- (4 .3)  has the form 

1 2  

We introduce scaling factors pi to the Lagrangian and penalty terms to simplify the 
resulting subproblems and multiplier iterations. Subproblems (3 .10)  take on the form: 

3  4  

1 2 3 4 5 6 7 8 1  

5  

2 3 4 1 6 7 8 5  

1 3 2 4 6 7 5 8  

1 2 3 4 5 6 7 8  

6  7  8  



In other words, the augmented Lagrangian is minimized with respect to the variables 
associated with scenario i assuming that other variables are temporarily fixed at their 
values Pj for all j # i. This is done in parallel for each scenario. 

Jacobi Method 

Step 0. Set .rr = .rrk, itk*' = xk-I and T = 1. 

Step 1. For i = 1,.  . . , S solve (4.5) with P = Pk*' obtaining new points sf". 

Step 2. If xf9'(t) = Pf9'(t) for all (i, t )  such that i # v(i, t),  then stop; otherwise set 

increase T by 1 and go to Step 1. 

Let us note that in order carry out Step 1 for scenario i, we need to know data 
from scenarios u(i, t )  and Y-'(i, t ) ,  t = 1, . . . , T - 1. In addition to that, the multiplier 
iteration (3.8) has the form 

So, at scenario i we can update both .rr;(t) and .rr,-~(;,,)(t) (or directly their difference 
occuring in (4.5)) using the already available data x;(t), ~ , ( ; , ~ ) ( t )  and 2,-I (;,t)(t). The 
fact that each multiplier is updated by two subproblems does not matter, because they 
use the same data. Consequently, both levels of the method: the multiplier update 
and the Jacobi iteration, can be carried out in a distributed fashion. All these features 
make our approach especially convenient for parallel computing environments. 

Let us now pass to convergence conditions and to the speed of convergence. We 
immediately see that each constraint (4.2) links variables from only two scenarios. 
Therefore, the number of neighbors in (3.12) equals 

By Theorem 3.1, apart from the Constraint Qualification Condition, it is sufficient for 
convergence that the under-relaxation coefficient in (4.6) satisfies the inequalities 

This is a very mild requirement. 
Assuming additionally the Quadratic Growth Condition, from Theorem 3.2, we 

obtain the guaranteed ratio of convergence: 

The number 4 in the denominator follows from the observation that the constraint 
matrix of (4.2) has submatrices A; which, after removing empty rows and columns, 



can be permuted to the form 

Thus llA;ll 5 SO a2 < 2  in (3.15). The best estimate of the ratio (4.7) can be 
obtained for T = i: 

For polyhedral cost functions ct and polyhedral sets X ; ( t ) ,  t  = 1 , .  . . , T ,  i = 1 , .  . . , S, 
we can additionally observe that (locally) 7 = @ - I p  with some @ > 0 independent of 
p. Then the ratio becomes independent of the penalty parameter p:  

The above results constitute a promising theoretical fundament for an efficient practical 
met hod for convex multistage stochastic problems. The computational results of [12] 
and [:I.] provide practical evidence for that. 

5 Node decomposition 

We shall now apply the general framework of section 3  to problem (2 .4)-(2.7)  with the 
following assumptions: 

explicit non-anticipativity constraints are removed from the problem by decreas- 
ing the number of decision variables; 

equations of dynamics (2 .5)  are treated as linking constraints. 

Let us start by removing explicit non-anticipativity constraints. To achieve that we 
shall use the scenario tree 7 = { N ,  A), as described in section 2  and illustrated in Fig. 
1. We denote by a ( n )  the ancestor of node n ,  i.e. the node at the previous level with 
which n  is connected and by S ( n )  the set of successors of n ,  S ( n )  = { m  : n  = a ( m ) ) .  

A node n  at level t  of the tree corresponds to the bundle f l ,  of scenarios which are 
indistinguishable up to time t .  By the non-anticipativity condition (2 .7) ,  all decisions 
x, ( t ) ,  w E f l , ,  must be equal. We denote their value by x,. 



Next, for each node n E N, we define probability pn as follows: for each terminal 
node n E JZ/T we set pn = pw, where w E R is the event that corresponds to leaf n. For 
other nodes we define pn = CmEs(n) p,. 

Finally, with a slight abuse of notation, for a node n corresponding to event w at 
stage t we define: 

Using this notation we can rewrite (2.4)-(2.7) as follows: 

where xa(l) = x(0). This corresponds again to the general format (3.1)-(3.3). 
The augmented Lagrangian for (5.1)-(5.3) has the form: 

Again, the introduction of scaling factors pn simplifies subproblems (3.10) 

min [An(xn, 5, *) = ~ ( x n )  - (H,T*n + C pmln~z*m, xn) 
xnEXn 

m€s(n)  

where p,ln = &/pn is the probability of getting to node m from node n. 

Jacobi Method 

Step 0. Set .~r  = rk, i i i k q r  = zk-1 and r = 1. 

Step 1. For n E N solve (5.5) with 5 = 5k*r obtaining new points x?. 

Step 2. If Dnxa(,) + Hnxn = bn for all n E N then stop; otherwise set for n E N 

increase r by 1 and go to Step 1. 



Let us observe that in order carry out Step 1 for node n we need to know data 
from the predecessor node a(n) and from successors m E S(n).  In addition to that, 
the multiplier iteration (3.8) has the form 

So, at node n we can update T, and all T,, m E S(n) ,  using the already available data 
xn(t), xa(,) and x,, m E S(n).  Again, the fact that each multiplier is updated by two 
subproblems does not matter, because they use the same data. Consequently, both 
levels of the method: the multiplier update and the Jacobi iteration, can be carried 
out in a distributed fashion with communication along the branches of the scenario 
tree. This is very convenient for parallel computing environments. 

Let us now pass to convergence conditions and to the speed of convergence. We 
immediately see that each constraint (5.2) links variables from only two nodes, so the 
number of neighbors in (3.12) equals 

By Theorem 3.1, similar to scenario decomposition, it is sufficient for convergence that 
the under-relaxation coefficient in (5.6) satisfies the inequalities 

and the Constraint Qualification Condition holds. Assuming additionally the Quadratic 
Growth Condition, from Theorem 3.2 we obtain the guaranteed ratio of convergence: 

with cr defined as in (3.16). Let us estimate a. Assume that S(n)  = {ml, m2, . . . , ml). 
The submatrix An of the constraint matrix of (5.2), after removing empty rows, has 

Thus 

the form - 

Therefore it is sufficient to use in (5.7) 

An = 

Hn 

Dm, 

Dm, 



The best estimate of the ratio (4.7) can be obtained for T = +: 

Again, for polyhedral cost functions Q and polyhedral sets Xi(t),  t = 1, .  . . , T, i = 
1, .  . . , S, we can additionally observe that (locally) .y = P-lp with some P > 0 inde- 
pendent of p. Then the ratio becomes independent of the penalty parameter p: 

6 Conclusions 

The general decomposition framework based on augmented Lagrangians has a number 
of features which make it particularly promising for large scale problems: 

the dual updates are simple, so the method can be applied to problems with 
many linking constraints; 

convergence properties of the method improve with the sparsity of the linking 
constraints. 

These general properties become especially important for multistage stochastic pro- 
gramming problems, where large dimension and special structure create a potential for 
decomposition approaches. 

Two ways of applying the general framework to multistage stochastic programming 
problems have been described: 

scenario decomposition with non-anticipativity treated as a linking constraint; 

node decomposition where the equations of dynamics are linking constraints. 

In both cases the resulting problem formulations have many subproblems and very 
many linking constraints. The constraints, however, are very sparse. Owing to that, 
in both cases, the method turns out to be particularly simple and robust, with a broad 
stepsize range guaranteeing convergence and good speed of convergence estimates. It is 
worth stressing that in both cases parameters of the method are determined by general 
structural properties of the problems, not by numerical values of the data. 

The scenario decomposition method has larger subproblems, which correspond to 
whole scenarios, and it has to deal with many variables which are just copies of each 
other. This, however, makes the method very general and flexible. Any causal form of 
a scenario subproblem is allowed, also with time delays. The objective and constraints 
need not be separable in time. A practical advantage of the scenario decomposition 
method is that it allows for an easy introduction of uncertainties into existing de- 
terministic models. One does not have to build a new model, it is sufficient to run 
in parallel copies of an existing model with different scenario data and to coordinate 
non-anticipativi ty of decisions. 



The node decomposition method is far more specialized. It has much smaller sub- 
problems, but more of them. The structure of the equations of dynamics is exploited 
explicitly. The method appears to be better suited for very large problems with many 
time stages, where scenario subproblems are too large. It requires, however, more 
modeling effort than the scenario decomposition approach: the node subproblems have 
to be formulated in the most convenient way. For problems with time delays, new 
variables may be introduced to keep the number of neighbors equal to 1. 

Finally, it has to be stressed that in both cases the structural properties of the 
problem are reflected in the communication pattern of the method, which is convenient 
for distributed computing environments. 
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