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Abstract 

The problem considered here is that of managing and 
controlling the industrial system to achieve efficient 
performance. Emphasis is placed on structuring the deci- 
sion making and control functions, taking into account 
the fact that the production process runs continuously 
with no starting or end point, and undergoes major changes 
in product specifications, quality requirements, equip- 
ment characteristics, resource availability, and the 
like. Since all these changes are time functions, the 
time factor plays a very important role in decision 
making and control and in functional structuring. 

It is shown that the functional structure is a multi- 
level hierarchical mode with horizontal and vertical 
decomposition planes. The vertical planes represent tem- 
poral decomposition, reflecting the subordination of 
decision making and control for each time duration or 
time horizon. The horizontal planes form layers related 
to each time horizon and consist of the set of decomposed 
subproblems to be solved in coordinated mode. 

The philosophy of this functional hierarchical 
structure is discussed and some motivation for time hori- 
zon estimation is given. 

Introduction 

Performance of the production system depends on a variety 
of factors, including product specifications and the technology 
used for product manufacture, the nature of available resources 
and environmental constraints, allocation of resources, schedul- 
ing of operating sequences, etc. We distinguish two phases of 
system evolution with respect to information processing and 
decision making functions. 

a) Design phase: Here decisions are made concerning production 
process performance for the time horizon considered. This phase 
is called production planning and scheduling, and relates to the 
preparation of the production process by means of a model reflec- 
ting plant capability and boundary conditions imposed by links 



with the environment. The functions of this phase are estima- 
tion of the requirements for fulfilling the given assignment of 
goods to be manufactured during the time interval considered. 
For a given plant capability, the required actions for assign- 
ment fulfillment can be considered as the control actions dis- 
tributed over the time interval (or horizon) in order to obtain 
the optimal trajectory of production process performance for 
satisfying the given objectives. 

b) Operating phase: Here the control actions defined in the 
design phase are implemented. Disturbances not predicted by 
the design phase which influence production process performance 
cause deviations from the estimated optimal trajectory; to 
reduce this influence additional control actions are generated. 

Model Creation 

Models of a real process can reflect only the "main" vari- 
ables that greatly influence process performance; but other 
variables, not considered by the model, cause variation of the 
model parameters. These parameters usually are estimated by 
statistical methods during investigation of the process. Since 
the production process is influenced by the environment, whose 
behaviour is of a random nature, all the main variables are 
random functions of time x(t); y(t); z(t) ..., and the production 
process performance simulated by the model is also a random 
function: 

It is obvious that the more variables are included in the model, 
the less will be the deviation of the simulated process from 
the real one. But increasing the number of variables is imprac- 
tical because of the great increase in model complexity. 

The model used in practice thus has a limited number of 
variables, and the relation among them is of deterministic nature. 
The deviation of the simulated process from the real process is 
considered as the influence of the "disturbances" affecting the 
real process. These disturbances are random time functions of 
different frequency spectra. 

In order to show the influence of the disturbance frequency 
spectra on process evaluation, depending on the time considered, 
let us investigate machine tool performance. Over a short period 
of time, this performance can be considered as quasi-stationary; 
over a longer interval, we must regard it as non-stationary, due 
to the influence of tool wear (Figure 1). We can again consider 
it as quasi-stationary, due to periodic readjustment of the tool, 
if the time of process observation is greatly increased. Eval- 
uating performance for a year or even longer, the process will 
show itself to be non-stationary, again due to wear of the 
machine tool itself. 
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F igu re  1 .  P roces s  e v a l u a t i o n  f o r  d i f f e r e n t  t i m e  i n t e r v a l s .  
( P  = e v a l u a t i o n  index ,  P = averaged v a l u e  of P I .  
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Knowledge of t h e  t i m e  behaviour  of t h e  d i s t u r b a n c e s  h e l p s  
i n  c r e a t i n g  models f o r  p roces s  performance e v a l u a t i o n  f o r  d i f -  
f e r e n t  t i m e  ho r i zons .  These models pe rmi t  an  e s t i m a t e  of p r i o r  
c o n t r o l  a c t i o n s  t o  be  t aken ,  i n  a  sequence corresponding t o  t h e  
d i f f e r e n t  t i m e  i n t e r v a l s ,  i n  o r d e r  t o  o b t a i n  op t imal  p roces s  
performance.  The p roduc t i on  p roces s ,  having no s t a r t i n g  o r  end 
s t a t e ,  can be cons ide red  a  s t a t i o n a r y  p roces s  over  a  long t i m e  
hor izon ;  t h i s  means t h a t  many v a r i a b l e s  being averaged du r ing  
t h i s  t i m e  i n t e r v a l  have z e r o  " e x p e c t a t i o n "  and need n o t  be  
cons ide red  a s  model v a r i a b l e s .  

Th i s  f a c t  can  be i n t e r p r e t e d  i n  t h e  fo l lowing  way: d i s -  
t u rbances ,  be ing  p e r i o d i c  f u n c t i o n s  of  h igh  f requency i n  r e l a t i o n  
t o  t h e  long t i m e  ho r i zon ,  need n o t  be inc luded  i n  t h e  model. 



Thus, for a long time horizon the model may have a small 
number of variables without loss of the required precision in 
process performance evaluation. But for shorter time horizons 
the frequency of the disturbances may be relatively low and 
their influence, averaged over the shorter interval, cannot be 
considered as equal to zero. 

In some cases the time behaviour of the disturbances can 
be defined by considering physical phenomena (e.g. tool wear), 
but in more general cases, the process relations are very 
obscure and statistical methods should be used. 

Let us presume that we have the simplified model of the 
process; the question is for which time horizon (Tm) this model 

is sufficient. A computational technique, similar to that used 
in statistics for confidence interval T estimation, can be 
applied to the definition of the time horizon: 

where xm (t) = f {xl (t), x2(t), ... xn(t)) is the process Per- 

formance evaluated by the model; x (t) = g {x (t) , y (t) , z (t) , . . . ) 
is the real process performance evaluation; T is the time period 
considered by the model; y(t), z(t), ... are variables not con- 
sidered by the model and influencing the process performance as 
disturbances. With this technique, computation of the integral 
is performed through the time of process observation until the 
value of e equals the estimated value A 2 0. The current time, r. 
when the computation is stopped, is the value Tm that we are 
searching for. 

Increasing the number of variables reflected by the model, 
we may find the new time horizon T ml < Tm which satisfies the condition: 

where x is the new process model with the increased number of ml 
variables, thus reflecting the process more precisely. 

The time behaviour of different variables can be established 
by means of correlation analysis. Thus by calculating the 
correlation function of the influence of a given variable on the 
process performance measured during the experiment, we may find the 
time ( T ) ,  which corresponds to the attenuation of this function. 



Therefore, this technique can be used for creation of the simp- 
lified model for the increased time horizon. The model with a 
longer time horizon is created not only by excluding the vari- 
ables that do not influence process performance, but also by 
aggregating the remaining variables. 

Let us consider reheating furnace control. The model which 
is used for metal heating optimization takes into account the 
variations of furnace temperature during the heating cycle. But 
the model used for scheduling furnace operations does not include 
furnace temperature as an explicit variable, since the tempera- 
ture variations averaged over several heating cycles should have 
effectively zero expectation. For this latter model, one of the 
variables will be heating cycle time, which is a function of the 
heating condition; the fluctuation of the heating cycle time is 
caused by variations of the mass and thermal properties of the 
metal charged in the furnace, which, averaged over a long period 
of time, may be considered as having zero expectation. Thus, 
for a period of a month or more, the heating cycle time may be 
considered as a standard with respect to monthly planning of 
furnace operation. 

Hierarchical Structure of Models 

The models are used to define future performance of the 
process as close as possible to the optimal. The optimal 
process performance in terms of control theory is represented 
by the optimal trajectory: the track of the process state in 
multidimensional space. 

Since the model for the longer time horizon is less detailed 
and its parameters are more averaged than those for shorter time 
horizons, the optimal trajectory found by the former is also of 
averaged mode. Since the model corresponds to the shorter time 
horizon, the optimal trajectory found by it has a shorter dura- 
tion and represents a more detailed segment of the trajectory 
found for the larger mode. 

Since the models for shorter time horizons and with a 
larger number of variables are more complicated, there may be 
some difficulty in the estimation of optimal trajectory segments 
and control actions. To overcome this difficulty the decom- 
position technique can be used: for a shorter time horizon, 
instead of one multivariable model, the set of decomposed models 
can be used, each having fewer variables. 

Thus, as can be seen from the above, the structure of models 
used for control of the continuously running production process 
is of pyramidal form (Figure 2). On top of this pyramid is 
located a model of more averaged type, having fewer variables 
and less detail, and by means of this model an averaged optimal 
trajectory for a long time interval is found. 

The next lower layer of the structure has the set of decom- 
posed, more detailed submodels, by means of which a segment of 





a previously found trajectory is defined more precisely for a 
duration corresponding to the time horizon considered. The 
following lower layers of the structure have models of still 
more detailed mode, such that more submodels are located in 
this layer. 

The base of the pyramid is composed of a set of models for 
real-time horizons, and thus reflects current process conditions 
with the highest possible accuracy (depending on the number of 
process variables available for measurement). 

Each of the layers with submodels is of two levels, since 
the control actions created by separate submodels must be coor- 
dinated. 

The pyramidal model structure described is of a temporal 
multilayer hierarchy mode, since each layer includes models of 
different time horizons and the lower layers are subordinated 
to the upper. This subordination means that the set of control 
actions generated by the upper layer can be considered as the 
assignment to be fulfilled by the lower layer. 

Decision Making and Control in the Multilayer Type System 

To design the decision making and control systems for a 
production process, the conceptual framework should be created. 
In describing this framework let us consider a production pro- 
cess to be controlled as a plant which can be defined in deter- 
ministic form as: 

where y, m, z, s, w denote vectors of output variables, control- 
led inputs, disturbances, state variables and external inputs 
as the objectives of the process performance. 

During the design phase the real process does not yet exist 
and therefore disturbances are equal to zero (z = 0). The 
control is found by maximizing the function 

The result of maximization implies a relationship of the form 



In other words, controls to be applied to the real process after 
it starts are defined by the model reflecting plant input-output 
relation g (m,y, s) , the constraints h(m,y,w) and the external 
input vector w*, which is the plant assignment. 

Insofar as the models are different for different time 
horizons, let g,(*) describe the model of the highest layer of 

the hierarchical structure and mld be the control or decision 

making function found by the model to which external inputs 
w* have been applied: 

where 

In general w* can be a vector function of time (for instance, 
assignment for different manufacturing of goods with different 
delivery time) ; SO also mid, which represents decision making 
or control actions distributed along the given time horizon. 

In accordance with the subordination of the layers, vector 

ml d can be considered as the external assignment w* for the 

next-lower-layer model. 

As for the first layer, we may find for the second-layer 
model 

and for the i-th layer 

where 



As has been mentioned above, the complexity of the shorter 
time horizon models, in spite of the shorter time considered, 
can make the problem of control estimation formidable, requiring 
the use of decomposition techniques based on a multilevel ap- 
proach. In the multilevel hierarchy the subsystem problems are 
solved at the first step. But these solutions have no meaning 
unless the model interaction constraints are simultaneously 
satisfied. This is the coordination problem that is solved at 
the second step by the iterative procedure. There are a variety 
of coordination schemes that have been proposed: price adjust- 
ment coordination, primal coordination, penalty function, etc. 

Figure 3 illustrates the top part of the pyramidal struc- 
ture involving the top layer which we denote as layer No. 1, and 
two lower levels, Nos. 2 and 3, having time horizons TI, T2 and 

T3 respectively. Let us presume that the top model is a simple 

one and that, to solve the control problem by means of this 
model, the decomposition technique need not be used. Being of 
simplified nature this model operates in multidimensional space, 
which has more dimensions than the vector w of external inputs 
(the assignment for the whole plant for the time horizon TI). 

The difference of dimensions results in some of the components 
of the vector w not being reflected by the decision vector mld, 

which re resents the aggregated assignment for layer No. 2, z whose mo els are much more detailed and thus may be of higher 
dimension. In order that the assignment w2 of higher dimension 

conform with the decision vector mid, this vector is decomposed 
1 2 which form the more into the set of sub-vectors mld ,m2d3,m3d, 

detailed assignments 2 

for the second layer. The number of sub-vectors and their com- 
ponents are defined by the scope and structure of the second- 
layer models. The decision made by the first layer is of such 
a mode that components of the sub-vectors mld,m2d,m3d are coor- 

dinated, i.e. the assignments for layer No. 2 take account of 
the capabilities of the plant's divisions for a time duration 
T2 < TI. 

The problem solution for a time duration T < T2 is coordi- 

by the controller CR2, considering all the constraints related 

to the time interval T < T2. This coordination is performed 
3 through the model ' s interconnection variables qi, qz and q2. 
2 2 Decisions made by means of each of the models (gi, hi) , (g ,h2) , 
2 








