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Endogenized Technological Learning 
in an Energy Systems Model 

Sabine Messner* 

1 Introduction 

Energy modeling has, over the last decades, developed into an important tool for energy 
policy analysis. Beginning in the early seventies, when the so-called first oil price shock 

brought energy to the focus of attention, development of energy models was initiated with 

two major goals: 

find ways of reducing the dependence on costly imported oil, and 

evaluate the effect on the economy of various energy policies. 

Two classes of models have emerged from this background: technology-oriented opti- 

mization and simulation models (now generally labeled bottom-up models) serving the 

first goal and economy-oriented models with emphasis on energy as a subsector of the 
overall economy (the top-down models in the present literature). A well-known early 

representative in the class of optimization models was BESOM, the Brookhaven Energy 
Systems Optimization Model [I]. Based on this model, MARKAL [2], an energy systems 
model with applications in many countries, has been developed. MARKAL is used by 

the International Energy Agency in the connex of the Energy Technology Systems Anal- 
ysis Programme (ETSAP [3]) for energy technology-related analyses on the country level. 

Other representatives of the class of energy systems models are EFOM [4], the model 
employed by the European Union, and MESSAGE [5], the energy optimization model 

developed at IIASA on the basis of the Hafele-Manne [6] model. 

For the second type of analysis, macro-economic models like general equilibrium models 

or neoclassical growth models were constructed to specially account for energy as a factor 
input or sector of the economy. In the US, such models were soon used for concerted 

analyses in the framework of the Energy Modeling Forum (EMF [7]). A famous proponent 
of the second model type and participant in the EMF is ETA-MACRO [811. 

'Environmentally Compatible Energy Strategies Project a t  the International Institute for Applied 
Systems Analysis, A-2361 Laxenburg, Austria; e-mail:messner@iiasa.ac.at 

'An analysis of the models currently involved in the EMF can be found in 191. 
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Further investigations went in the direction of linking bottom-up, technology-oriented 

models with topdown models depicting the overall economy. Early examples are the 
link of the Hudson-Jorgenson Model, which is a very disaggregated econometric model 

of the US economy with BESOM [lo] and a model developed for Austria linking an 
economy model based on dynamic input-output tables with vintage capital structure 
and the energy systems model MESSAGE [ll]. Presently most applications of such a 
hard-linking procedure of the two model categories are based on MARKALIMACRO, 
linking the energy systems model MARKAL and the economy module of ETA-MACRO 

[12]. Wilson and Swisher [13] give a short introduction and critique of the top-down 
and bottom-up model types and the process of linking them, while Wene [14] evaluates 

different approaches for the linking procedure. 

In the late eighties the application of energy-related models moved towards a new topic: 

global warming. Since the majority of man-made emissions of greenhouse gases is related 
to the use of energy2, energy-related models are useful to analyze the problem and evaluate 

mitigation strategies. However, the long residence time of C 0 2  in the atmosphere of 50 
to 150 years [16] and the slow dynamics encountered in the historic structural changes of 

the energy system on a global scale, that suggests at least five decades for the penetration 
of new energy carriers [17], call for prolonged time horizons of model analyses, while 
conventional, energy policy oriented model analysis focussed on time frames of 20 to 50 

years, depending on the scope of the analysis3. 

Prolonging the time horizon up to 2100, as done in most energy-related analyses of global 
change issues, brings new problems in model fornlulation and application that have to be 
addressed. One of these issues relates to the availability of depletable resources, where 
estimates are based on current technology and knowledge. However, by 2100 cerfaillly 
more oil and gas fields will be discovered and new technologies will be available to increase 

the share of oil and gas recoverable from the known reserves. The historical record of the 
reserve to production ratio of oil, which holds an a-~erage of 30 years since 1900 [2:1] 

while a.t the same time production increased tremendously, supports this view. Another 
prominent example is the increase in reserves as published by USGS between the years 

1987 [22] and 1991 [23]. Over this period, estimates of ultimate world resources of crude 

oil increased by 25% from 1744 to 2171 billion barrels. The majority of this increase was 
due to a reevaluation of middle east occurrences, which were 250 billion barrels or more 
than one third higher in the 1991 evaluation compared to 1987. 

A second issue is technological performance. For a time frame of 30 years it is possible 
to view technological change as incremental and improvement rates as exogenously given 
(e.g., using the AEEI, an autonomous reduction in energy intensity over time, as in some 

models of the Energy Modeling Forum [24]). In the bottom-up energy-related analyses 
performed at IIASA beginning in the early eighties, technology was viewed as dynamic: 

'According t o  IPCC [15] 77% of the CO? emissions in the eighties were related t o  the use of energy 
and cement production, while CO' is responsible for 60% of the man-made greenhouse effect [16]; 

3Most national energy plans based on model analysis had a time frame of 20 t o  30 years (see [18] as 
an  example), while major global analyses had an  extended time horizon. An example of a comprehensive 
analysis from the early eighties tha t  also included model analyses can be found in [19], a recent study of 
this type is described in [20]. 
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characteristics of technologies were seen as dynamic over time, performance improves at 

certain, predefined rates.4 

However, with time horizons approaching a century or more, this model externalization 

raises problems. Externally defined technology performance does not reflect actual model 
outcomes. The performance of a system will improve over time, independent if the system 

is employed or not. Finally, exogenizing technology in energy models implies that when 
the learning process is finished and the system has turned into a mature technology, it 

can be employed without previous investment in the learning process. 

This paper presents an approach to internalize the process of technological learning in 

technology-related energy models by introducing technology cost as a function of cumu- 
lative acquired knowledge. This learning process reflects "learning by doing" (see Arrow 

[28] and Rosenberg [29]): The parameters of a technology improve as function of accumu- 
lated knowledge or cumulative output (or installed capacities). "Learning by doing" and 
the resulting learning or experience curves are among the best empirically corroborated 

phenomena in industry (Argote and Epple [30]). 

2 Background 

In the context of IIASA's work on global change, a set of models has been developed for 
the scenario-based analysis of energy strategies. This model set includes, among others, 
a framework to generate energy scenarios (the scenario generator [31]) and two energy 

models: a top-down energy-economy model, l lR5 ,  and a bottom-up model, MESSAGE 

I11 [5]. In the overall modeling process, MESSAGE and 11R are linked using a so-called 
softlinking process, where human interfaces, based on a formal decision framework, guide 

the process of scenario development for the three models, and finally decide on convergence 
criteria6. Figure 1 puts these models and th:. linking procedure into the overall perspective 

of integrated assessment modeling at IIASA. 

MESSAGE 111, the bottom-up energy systems model, is a dynamic linear programming 

model of the energy system on the technology level. Depending on the degree of disaggre- 
gation, different processes or technologies for producing a commodity can be evaluated. 

The integrated analysis of the overall energy system performed at IIASA includes the 
introduction of new energy carriers, like methanol or hydrogen. For this purpose, MES- 

SAGE requires the description of the technologies involved, like hydrogen production 
with various competing technologies, and utilization of hydrogen for different end-uses, 
like aviation or industrial processes. Technology descriptions consist of the technical pa- 

rameters (efficiency, plant life), the economic parameters (investment, O+M costs), and 
environmental effects related to the use of the technology (e.g., SO2 or C 0 2  emissions). 

4Early model applications using this approach are described in [25], [26] and [27]. 
511R is based on Global 2100, the  model developed by Manne and Richels for long-term energy- 

economy analyses [32]. 
'This process has been evaluated and also compared t o  other ways of model linkage by Wene [14]. 
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RAINS Scenario Assumptions 
Regional Air Polltftion - Demographic ?rejections Basic Linked System of 
Impacts Model Economic Development National Agricultural Models 

Global to RAINS Regions 
+ SCENARIO GENERATOR 

Economic Growth 
Energy Carriers by Economic and Energy Technological Change , 

Development Model 

T 

MESSAGE Ill COMMON DATA BASES 
Energy, Economy, 

11 R 
Energy Systems Technology + Macroeconomic 
Engineering Model Energy Model 

Soft - Linking \d 
Evaluation of Scenarios 

CARBON CYCLE MODEL Inter-Model Coherence 

Emissions to Insights Bottom-up Standardized General 

Concentrations Circulation Models Runs 

Figure 1: Integrated assessment at IIASA: models and linkages 

Additional inforn~ation concerns resource quantities, end-use demands (from the scenario 
generator) and technical, economic and socio-political constraints. Such additional con- 

straints include maximum utilization rates for renewable sources of energy, constraints 

on the market penetration of new technologies, or policy-oriented limits, like limiting the 

sha.re of nuclear energy accepted in the electricity generation system. Generally, most 
parameters used in MESSAGE are scenario-dependent . 

For the most recent application of MESSAGE, the long-term energy scenarios presented 
at the 16~'' congress of the World Energy Couilcil in Tokyo in October 1995, three families 

of scenarios were developed. For each of these families or Cases all generic descriptors of 
the energy system, like GDP, resource availability, technological change, availability and 

acceptability of renewable sources of energy, and public attitude towards the environment 
are varied in a consistent manner. The Cases are characterized as follows: 

a CASE A: High Growth 
The future economy and energy system is characterized by high rates of economic 
growth and fast technological progress. 

a CASE B: Middle Course 
A "pragmatic" scenario with moderate growth expectations and lower technological 

dynamics. 

a CASE C: Ecologically Driven 

The most challenging case with optimistic assumptions about economy and tech- 
nology and, compared to CASE A,  strong emphasis on environmental issues and 

international equity. 
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The scenarios are fully described in [20], while [33] gives a short overview of the study. 

In terms of describing the scenarios with the energy systrms model MESSAGE, assump- 

tions concerning technological change had to be concerted with the scenario definition. 
Figure 2 displays the kind of model employed: over time, assumedly with increasing 
knowledge and cumulative application and construction of the technology, costs are re- 
duced and performance parameters, like the conversion efficiency, improve (Source: [2Cl]). 
The technology data bank of MESSAGE includes time series with improving performance 
and decreasing costs for all important technologies, especially new systems like PV elec- 

tricity generation or all technologies related to hydrogen production and use. The rates 
of change vary over the three cases, in line with the assumptions concerning economic 

growth and technology dynamics. 

Ethanol/methanol \ 
from biomass \ 

USA (1945 = 100) - 
L Wind power plant A 

0 T- - 
.. . -. - -. - - 0 

1950 1975 2000 2025 2050 

Figure 2: Examples of historical and a,ssumed future technology cost improvements 

The modeling process described has a severe shortcoming: the model can decide (and 
actually decides also) to use a technology later in time, i.e., when the costs are already 
improved, it thus can avoid investments in the learning phase of the technology. Tech- 
nology improvements and learning in this case come as a "free good". The result will be 

rather late adoption of new technologies, deciding for their use only at the time when the 
technology parameters already characterize a mature, cheap technology with high market 
share and acceptance. In energy optimization models, a common way to combat these 
problems is by limiting growth rates over time, simulating a market penetration process. 

The technology dynamics should however be conceived differently. Diffusion proceeds 
gradual (and not instantaneous on a large scale) by progressively exploiting niche mar- 
kets. These together with continued R&D provide for "learning by doing" (in the man- 
ufacturing of technologies, equipment, etc.) and "learning by using" by accumulation of 

experience of using technologies (in turn an important source of information flow for the 
improvements in design characteristics and economics of new technologies). Thus learning 
is contingent on actual implementations and experimentation with new technologies, and 
the more implementation and experimentation takes place, the higher the resulting learn- 



S. Messner Technological Learning in MESSAGE 

ing and improvements of technologies. Thus, future technology improvements become 
endogenized, i.e. a function of a particular development (investment) strategy chosen. 
A frequcrtly used representation of this learning process is to c .::bress the learning (e.g. 

cost reductions) as a function of cumulative installations (sales, or installed capacities on 
new equipment). Figure 3 displayes similar information as Figure 2, but with cumulative 
investment (or knowledge) on the horizontal axis. 

1 R&D and technical Commercialization 1 
demonstration phase o phase a 

100 1000 

10 100 1000 10000 100000 
Cumulative MW installed 

Figure 3: Technology learning: improvement in the costs of per unit of output versus 
cumulative output. 

Generally, linear programming models like MESSAGE cannot represent such relations, 

l~ecause they are non-convex. The most important feature of non-convexity is, that feasi- 
ble solutions to a problem exist with no direct connection from one of these solutions to 
the other. For the r-Ic_lel of technological learning this implies, that in the linear model 
the mature technology parameters are available without investing in the learning process, 
i.e. there is a direct connection from zero installations to the parameters of the mature 

technology. 

For linear programming models, the standard methodology to cope with non-convex re- 
lationships is mixed integer programming (MIP). Non-convex relations are, like all non- 
linearities, described by step-wise linearization. Additionally, integer variables are used to 

enforce the sequence in the curve, in our case the relation between total size of the market 
and technology cost. Cheap technologies are only possible when the market is large, for 
smaller markets (or cumulative installations) higher prices have to be paid. A pure linear 
programming model could use the cheap technologies irrespective of the actual market 
size. 
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3 Modeling technological learning 

For first experiments with the endogenized process of technological learning, investment 
costs were chosen as dependent variable. Process models like MESSAGE require tech- 
nology costs as specific values, e.g. per kW. In the model formulation these costs are 
multiplied with the annual new installations and consequently yield the overall cost. By 
using dynamic (time-variable) investment costs, technological learning is reflected in a 

static way. The resulting investment strategies do not influence specific investments. 
Investment costs of one technology are then commonly expressed as 

in the objective function where 
dt discount factor for period t 
1; annual investment in period t 
At number of years in period t 
it specific investment cost in period t 
T number of periods in the model. 

Endogenizing technological learning in a technology-oriented model requires representing 
the process of change in technology parameters during the learning process. The measure 
used for cumulative knowledge acquired in the learning process is cumulative installed 
capacity. Dynamized specific investment costs as part of the objective can be expressed 
as 

with 

where the specific investment cost it is a function of cumulative investment Ct. 

In terms of a mixed integer formulation this relationship is best expressed using Special 
Ordered Sets (SOS sets) of type 2. They are characterized by the following: 

a SOS-2 set consists of at least two variables, and 

only two adjacent variables in one set can take non-zero values. 

For a more comprehensive explanation, see e.g. [34]. By their characterization SOS-sets 
are very well suited to interpolate non-convex relationships. The corresponding formula- 
tion of the cost curve of technological learning using a SOS-2 formulation is: 



S. Messner Technological Learning in MESSAGE 

1. Interpolate cumulative investments, i.e. determine in which part of the learning 

curve the te,.hnology is: 
N t 

2. Determine the investments to be paid in the period, cumulating all investments over 
time and using the specific investment costs in accordance with the cost curve: 

3. Force the sum of the SOS-variables to be equal to one for correct interpolation: 

4. The objective function includes the investment variables, discounted as usually ap- 
plied in MESSAGE with a discount rate of 5% per year: 

where the following variables and parameters are used: 
Snt are variables of the SOS-2 set for period t 
I ,  are the additional investments in the technology in period t 
cn represents the interpolation points for capacity 
in represents the interpolation points for average costs 

This formulation is added to  the standard formulation of MESSAGE, as it is described 
in [5], and solved with a commercial MIP package, CPLEX [35]. 

4 Application and Results 

The three families of scenarios as described in section 2 have, among others, different 
descriptions of technology dynamics over time. Cases A and C have dynamic expectations 

of potential technology improvements, while Case B presents a more conventional view 
of the future, i.e. more static investment costs. Table 1 presents the specific investment 

costs for new electricity generation technologies which could provide a significant share of 

electricity by the year 2050. It includes the costs for 1990, i.e. estimates of present costs 
for new installations, and the cost in 2050 for Cases A and B. These cost estimates were 

based on the data collected in C02DB, the IIASA COz mitigation technologies inventory 
[36]. A statistical analysis of these underlying data is performed in [37]. 

Table 1 shows that in the Middle Course Case (B) the potential for improvements for 
advanced coal and new nuclear technologies was assumed to  be in the range of lo%, 

gas combined cycles improve by nearly 20%, while the cost reduction potentials for the 
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Table 1 : Investment costs of selected technologies, US$(9O)/kW 

Technology 1990 2050 

CaseB CaseA 

Coal Adv 1650 1500 1350 

GasCC 730 600 400 
NewNuclear 2600 2300 1800 

Wind 1400 900 600 
SolarTH 2900 1600 1200 
SolarPV 5100 2000 1000 

renewable techilologies are highest with 35% for wind, 45% for solar thermal and 60% for 
PV electricity generation. In case of more dynamic technological change, the potentials 
for improvements lie between 18% for advanced coal-based electricity generation and 80% 

for solar PV. The cost ranking of the technologies is changed by these cost reductions. In 
Case A even the ranking among the solar technologies is reversed: expectations are for 

PV cells to become more economical than solar thermal electricity generation. 

The three Cases were modeled on the basis of eleven world regions. For each of these 
regions energy conversion is modeled from primary energy extraction and imports up to 

final utilization in the end-use sectors. The regional energy models are interlinked by 
global energy trade, the whole system is solved simultaneously. This world energy model 

has in the order of 35000 variables and 50000 constraints, depending on the Case, that 

determines the number of new technologies available in the system. 

For additional investigations and development of new illethodological approaches a small 

version of the world model was developed. This small version, which consists of only 
one region depicting t ;~l .  world as a whole, and which presently does not include end- 

use technologies, but rather includes delllands for types of final energy carriers (gaseous, 
licluid, solid, electricity and district heat) is used for first experiments with the approach 
to internalize technological learning in MESSAGE 111. Model size is approximately one 

tenth of the full model with 2700 columns and 3400 rows. 

Technological learning in terms of reduction of investment costs as a function of cumula- 
tive installations is included into this model for the technologies listed in Table 1. The 
learning process starts at present costs and can, by accumulating experience, reach the 
level assumed for Case A. This means that for solar PV a reduction by a factor of 5 can 
be reached, while the reduction potential for gas combined cycles is approximately 45%, 

from 730 US$/kW to 400 US$/kW. 

The comparative analysis is based on a "static" case, where the investment costs of the 

new tecllnologies are assumed to remain at the 1990 level over the whole time horizon. 
Figure 4 shows the energy mix used for electricity generation in the static case for the 

years 1990, 2020 and 2050. In this case the mix of electricity generation, which includes 
38% coal, 14% gas, 17% nuclear and 30% other sources (predominantly hydro-power) in 
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1990, encounters a major shift towards nuclear energy. By 2050, 55% of all electricity is 
generated from nuclear energy. The second-largest share of 33% is accomplished by coal- 

based systems, with standard coal-fired power plants increasing their production from 

presently 515 GWyr to 911 GWyr and advanced coal-based systems supplying additional 

641 GWyr by 2050. Gas-based electricity generation in steam turbines (184 GWyr in 
1990) is virtually phased out by 2050, while gas-fired combined cycles provide 444 GWyr 
or 10% of all electricity (a lower share than in 1990). Wind generators start to be employed - 
at a larger scale only after 2030, when fossil energy sources become more expensive (the 

shadow price of oil reaches 38$/boe in 2030). Solar thermal systems are first used in 2050, 
but their contribution is below 1%. PV's do not become competitive a t  the energy prices 

prevailing in this scenario. 

mother 

H Wind 

El SolarPV 

I3 SolarTh 

,El NewNuclear 

Nuclear 

GasCC 

GasStd 

CoalAdv 

Figure 4: Electricity generation in the static case, 1990, 2020 and 2050 

The static case, as presented here, reflects the usual paradigm of running out of resources: 

nmrginal oil and gas resources are expensive, nuclear energy is required to  provide energy 
at attractive prices, and coal, with its vast resource base at economic costs, is the second 
choice for electricity generation. New, renewable energy sources cannot provide electricity 
at competitive prices, and natural gas resources are not cheap enough to  provide significant 
shares of electricity. 

The introduction of technological learning as described in section 3 for the electricity 
generation technologies in Table 1 changes the picture dramatically (see Figure 5). 

The use of standard technologies (coal and nuclear in addition to gas) is reduced con- 
siderably (by 2050, only 14% of electricity is generated from these two sources), while 
new technologies, which have potential for technological learning, expand considerably. 
Wind generators, solar electricity generation and new nuclear generators are employed, 

and also the use of advanced coal-based systems is increased a little. In 2020 two changes 
can be realized, namely the starting penetration of solar PV and wind systems, and the 
larger contribution of new nuclear reactors to the smaller overall share of nuclear energy. 
By 2050, the coal share is 17% -\.ersus 33% in the static case and nuclear supplies 36% 
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I Clother 

1 wind I I 

NewNuclear 

61 Nuclear 

II GasCC 

GasStd 

BCoalAdv 

CoalStd 

Figure 5: Electricity generation in the case with learning in electricity generation, 1990, 

2020 and 2050 

compared to  46%, while solar PV contribute 19% and wind energy amounts to 10% of 
electricity generation (compared to 0.7 and 1% in the static case, respectively). The .effect 
of technological learning on marginal production cost (or shadow prices) provides stable 
prices of electricity compared with a 13% increase of marginal cost in the static case. 

One notable result of this analysis is that gas-based combined cycle power plants are used 
to a lower degree compared to the static case. Although the costs of these systems have a 
reduction potential of 45%, other systems become more attractive. The main reason is the 
high share that fuel costs have in the production cost of gas-based electricity generation 
systems. Over the planning horizon, the shadow price of natural gas doubles from roughly 
lG$/boe in 1990 to 32$/lsoe in 2050 in both cases, making gas an unattractive source of 
electricity. 

Since the growing price of natural gas clue to depletion of cheap reserve categories shows 
a major effect on model results, a logical next step in model development is an extension 
of the principle of technological learning to the extraction technologies. The assumpti011 
in Case A concerning technological learning in oil and gas extraction (applied to the more 
expensive categories only) is that up to 2050 a reduction of 40% could be achieved. This 
a.ssumption is incorporated into the small world model as potential cost reduction. 

In this new case, marginal prices of primary energy are reduced considerably: in 2050, 
oil is priced a t  35$/boe instead of about 40$/boe in the other two cases, while gas costs 
23$/boe instead of 32$/boe. At the same time, cumulative use of oil over the 60 years is 
increased by 5% or 18 Gtoe, cumulative gas use is 10% or 30 Gtoe higher. 

In the electricity generation pattern in 2020 (see Figure 6) there is no major difference 
to  the previous case, but by 2050 the contribution of gas-based combined cycles reaches 
a higher share than in both other cases, 36% of electricity. This expansion is reached a t  
the expense of nuclear (no standard nuclear systems are used and the advanced systems 
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contribute 25% iess) and cLncc , ,-oal, that contributes only 4% compared to 15% in 

the previous case. 

Q Other 

Q Wind 

El SolarPV 

C3 SolarTh 

Ll NewNuclear I 
Nuclear ' 

IB GasCC 

GasStd 

CoalAdv 

CoalStd 

Figure 6: Electricity generation in the case with learning in electricity generation and 
extraction, 1990, 2020 and 2050 

5 Comparison to Standard Applications 

The analyses in section 4 have shown, that modeling technological learning in terms of 
cost reduction with growing experience dramatically influences model outcomes compared 
to static assumptions. In the following this approach is compared to using dynamic 
parameters, i.e. introducing a deterministic trajectory of future cost reductions into the 
model parameters. 

The small world model was applied with the cost trajectories underlying Case A, reaching 

the level described in Table 1 by 2040. Figure 7 compares the electricity generation 
patterns in 2050 for this case (labeled dynamic) with the static case and the case with 

endogenized learning in electricity generation and extraction. 

In the dynamic case, where the cost trajectories correspond to IIASA-WEC Case 'A, 

coal is reduced to approximately 5%, standard nuclear technologies are phased out and 
partly replaced by advanced nuclear systems. However, the major share of electricity 

generation in this case is supplied by gas-based combined cycle power generation. The 
overall contribution of solar systems is about 20%, and PV start to penetrate the market. 

Comparing this dynamic case with the learning case shows some small and one major 
difference, which concerns solar electricity generation. Overall solar electricity generation 

is the same, but in the learning case nearly all comes from PV, while in the dynamic case 
some 60% are still from thermal systems. This is an effect of the cross-over of the costs 
curves of the two solar electric systems, which is at a fixed point in time in the dynamic 
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I Etl Dynamic 1 

Figure 7: Electricity generation in 2050 by case and technology 

I Learning J I . - - - -- 

Figure S: Electricity generation from solar PV in the dynamic and learning cases, 1990 
to 2050 

case, while it can be influenced by higher investments in PV systems in the learning 
case. Consequently, PV penetration starts already in 2000 with endogenized learning (as 
compared to 2020 in the dynamic case) and penetration rates are also much higher (see 
Figure 8). 

The specific investments per kW installed for solar PV systems in the dynamic and learn- 
ing cases are contrasted in Figure 9. The assumption in Case A is a linear cost decrease 
over 50 years at around 3% per year. In the learning case, the final level of US$ 1000/kW 
is reached 10 years earlier, in 2030, and the development of the costs over time is nonliner. 
The initial small reduction of 10% between 1990 and 2000 is followed by a major step of 
reducing the costs by more than 50% up to 2010. Thereafter, another large step of 40% 
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reduction between 2010 and 2020 follows. The final reduction up to 2030 again is in the 

range of 10%. 

1 -  I Dynamic I - Learning 1 

Figure 9: Specific investment cost for PV systems in US$(9O)/kW in the dynamic and 
learning cases, 1990 to 2050 

Similar comparisons can be made for all technologies. One interesting case is that of 
advanced coal shown in Figure 10. Initially, no investments takes place in this system, so 

costs are not reduced in the learning case up to 2000. Thereafter, learning starts slowly up 

to 2010, thereafter accelerates and by 2030 reaches the ultimate level of cost improvement. 

In the dynamic case, on the other hand, cost improvements are again predefined with a 
given pa,ttern over time. Although investments in advanced coal systems start only in 

2010, parameters iinprove in a static manner over time. 

Figure 1 i shows the effect of clynamizing investment cost (dynamic case) and endogenizing 
technological learning in terms of investments (learning case) by comparing the investment 
profile for these two cases to the investment profile of the static case. Investments in the 
energy sector today are a t  least 10% of international credit financing, which presently is 

around US$ 3.6 trillion (1012) [38]. In the static case, the annual energy investments grow 

at an average annual rate of 2.4% and reach 4.2 times the level of 1990 by 2050. This 
trajectory is taken as basis for the comparison in Figure 11 and shown as 100% there. If 
specific investment costs of new technologies decline over time (dynamic case), the overall 
investments start higher than in the static case to initialize faster market penetration of 
the new technologies, which after 2020 reduces investments by up to 20%. 

In the case with endogenized technological learning investments in expensive technologies 
like solar PV is started earlier, as was shown in the previous analysis. Consequently, 

overall investments are even higher than in the dynamic case. However, in the longer 
run the reduction in investment starts earlier and sustains a higher level in the case 

with endogenized learning compared to the dynamic case. Up to 2020, the dynamic 
case has 0.2% higher cumulative investments than the static case, while the case with 

endogenized technological learning invests 1.5% more in the energy sector. Between 2020 
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- - Dynamic 1 
Learning 1 

Figure 10: Specific investment cost for advanced coal power plants in US$(9O)/kW in the 

dynamic and learning cases, 1990 to 2050 

- Static 

1 - - - Dynamic ( 
i- Learning I 

Figure 11: Annua,l i.nvestm:i.ts in :;'it-, dynamic and endogenized learning cases corliparcd 
to the static case, 1990 to 2050. 

and 2050, both cases show reductions in cumulative investments, that are 50% higher 
in the case with endogenized technological learning (-13.2% compared to the static case) 
than in the dynamic case (-8.7% compared to the static case). Over the whole time 
horizon from 1990 to 2050, cumulative investments in the dynamic case are 6.6% lower 
than in the static case, while this figure is 9.7% for the case with endogenized learning. 

Redistributing the investment decisions to enhance the process of technological learning, 
reduces overall capital investments in the energy sector by 50% more than just envisioning 
a time-dependent learning process, as it is modeled in the dynamic case. 
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The objective function of the optimization runs, which is the sum of all discounted costs 
(or the net present value) of the energy system (exc!uding energy utilization) over the 
whole horizon up to 2050, using a discount rate of 5%, is US$(90) 186.2 trillion (10") 
in the static case. In the dynamic case it is reduced by US$(90) 1.79 trillion, while the 
reduction is US$(90) 2.22 trillion or 24% more in the case with endogenized learning. 

6 Conclusions 

Technological learning has been endogenized in the energy systems model MESSAGE I11 
in terms of cost reduction as a function of accumulated knowledge. Results of model 
runs for a comprehensive model of the global energy system show drastic changes in 
model results compared to using static model parameters. Opposed to the mere inclusion 
of time-dependent cost trajectories this representation yields different results in cases 
where faster cost reductions for attractive technologies can be achieved by higher initial 
investments. This has been shown for the case of PV electricity generation, where the 
reduction potential is considerable. In the complete absence of technological learning, 
these systems are not employed, while in the case of a trajectory for system cost, a 
share of 8% of electricity generation is reached by 2050. By endogenizing the process of 
knowledge accuinulation and cost reduction in the model, this share is increased to nearly 
2 0 % ~ .  

An analysis of the investment requirements and objective function values reached in the 
three model runs, the static, dynamic and learning ca,ses, shows the influence of endo- 
geilizing technological 1ea.rning in the modeling approach: Cumulative illvestments are 
reduced considerably (by 13.% compared to the static and approximately 5% compared 
to the dynamic case). But eildogenizing technological learning also reduces the overall 
discounted costs of the energy system by 1.2% compared to the static case, that is.0.20 
more than the dyiiamic case. Compared to the static case the overall cost reduction is 
US(90)$ 2.2 trillion. 

The message from this experiment is that early decisions for the introduction of new 
technologies are essential in reaching good economic performance over time. In real life, 
where "technological innovations would consist mostly of non-starters" [39], the winners 
and loosers are not linown from the beginning. Therefore, diversification into various 
candidates and the acceptance to take a certain degree of risk will be required8. But finally 
the chance is much higher then that efficient and cheap technologies will be available for 
future energy supplies. 

7 ~ h e  discount rate used for this analysis is 5%, as in the underlying IIASA and WEC study [20]. 
'This is also supported by an analysis including the uncertainties of future investment cost [40]. 
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Outlook 

The approach to internalize technological learning in the energy systems model MESSAGE 

for technology investment costs has proven to yield fruitful results with respect to the 

introduction rates and points in time for new technologies. Further research will broaden 

the scope of the analysis to include more technology parameters. Conversion efficiency, 
the most important technical parameter describing a technology, and operating costs as 
a proxy for "learning by using" are prime candidates here. 

Learning processes of single technologies are also interrelated. Additional research is 
required on which technologies could be connected in terms of the learning process, and 
where a formalized model of these interrelations (technology cludtering) should be included 
in the model. A historical example of such cross enhancements is oil and gas extraction: 

extraction of natural gas has certainly profited considerably from research and experience 

in the oil extraction technologies. 

Another research effort to improve the representation of technological forecasting in the 
framework of MESSAGE I11 relates to the uncertainties with respect to model param- 
eters. An application of a new and very efficient approach to include stochasticity for 
investments [40] also yields more technological diversification (hedgeing against risks of 
future high costs). A combination of the two approaches could provide interesting and 
valuable results: the process of technological learning including uncertainties concerning 
the achievable cost reductions could be analyzed. 
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