
Working Paper
A Modular Presolve Procedure

for Large Scale
Linear Programming

Artar ~ w i ~ t a n o w s k i

WP-95-113
October 1995

IQIllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

.L A.

..B I. Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: infoQiiasa.ac.at

A Modular Presolve Procedure
for Large Scale

Linear Programming

WP-95-113
October 1995

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

Ffl I IASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

b d Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: infoQiiasa.ac.at

Foreword

It is possible to solve larger and larger linear programming models because of the growing
capacity of computers and the refinement of algorithms. However, the linear programming
models to be solved grow even harder. Therefore, it becomes even more important to present
the model in such a way to the algorithm that it can be solved most efficiently. This point
is further stressed by the fact that large models are usually generated in an automated or
semi-automated way, which is primarily based on systematic description of the model and its
precise formulation. In this process the quality of the formulation with respect to the solution
is difficult to incorporate. Therefore, the present paper is devoted to methods which aim at
reformulating the original model is such a way that it is ready for the Simplex Method and
also in methods to translate the computatuional results back to the original formulation. The
presented work is largely inspired by experiences with IIASA with formulation and solving large
linear programmiilg models.

iii

Abstract

In this paper we present a survey of methods used for analysis and simplification of a general
single-objective linear program prior to solving it with a simplex type optimizer. We consider
the methods known since the early work of Brearley at al. as well as less known or appreciated
numerical elimination methods. We then proceed to analyze in detail the usefulness of some of
the presolve methods. We attempt to explain what impact each of these methods may have on
the activity of a simplex type optimizer.

These theoretical speculations are validated by experiments involving the discussed methods
and an advanced implementation of the simplex algorithm: a set of very large linear problems
analysed with different subsets of available presolve techniques are solved using the simplex
optimizer.

The paper is accompanied by a modular linear optimization package consisting of a stand
alone presolver and postsolver as well as a new release of our advanced simplex optimizer with
embedded presolve capabilities.

l i e y u~ords: simplex met hod, presolve analysis

Contents

1 Introduction: The Presolve Analysis Rationale 1

2 The Kuhn-Tucker optimality conditions 2

3 Presolve methods 3
. 3.1 Simple presolve methods 4
. 3.1.1 Empty constraint 4

. 3.1.2 Empty column 4
. 3.1.3 Infeasible simple bounds 4

. 3.1.4 Fixed variable removal 4
. 3.1.5 Singleton row conversion to variable bounds 4

. 3.1.6 Computing bounds on dual variables 5
. 3.2 Singleton columns 5

. 3.2.1 Removal of slack variables 5
. 3.2.2 Free singleton columns 6

. 3.2.3 Implied free column singleton 7
. 3.3 Iildividual constraint analysis 8

. 3.3.1 Implied bounds on row activity 8
. 3.3.2 Tightening variable bounds 8

. 3.3.3 Dominated and weakly dominated variables 9
. 3.4 Linear transformations 10

. 3.4.1 Numerical elimination heuristic 10

4 Optimal solution recovery 11
. 4.1 Fixed variable's value recovery 11

. 4.2 Free singleton's value recovery 11
. 4.3 Explicit slack's recovery 11

5 Experimental results 12
. 5.1 Usefulness of the simple presolve methods 12

. 5.2 The advantages of column singleton reductions 16
. 5.3 Usefulness of row constraint analysis 16
. 5.4 Advantages of numerical eliminations 16

6 Conclusions 20

7 Acknowledgements 20

A The software 2 4

B Software availability 2 4

vii

C User's guide t o using the presolve analysis 2 4
. C. l Batch processing 25

. C.2 The common characteristics 25
. C.3 The options of the presolver 26

. C.4 The options of the postsolver 26
. C.5 Using the presolver /postsolver pair: examples 27

. C.6 The options of the simplex optimizer 28
. C.7 Using the simplex optimizer: examples 28

. C.8 Using the smip companion application 29
. C.9 Usiilg the smip integrator: examples 29

viii

A Modular Presolve Procedure
for Large Scale

Linear Programming *

Artur Swietanowski**

1 Introduction: The Presolve Analysis Rat ionale

Despite advances in computer technologies, which resulted in a great increase of affordable
computing power and equally important developments in the field of linear optimization, there
is still demand for more efficient methods for solution of large scale linear programs (LP's). One
of possible approaches to this problem is presolve analysis. It is based on the observation that
most LP's are formulated inefficiently from the point of view of an optimizer (although this
may be the result of a perfectly valid modeling process). Presolve analysis attempts to identify
and remove as many redundancies as possible. The analysed problem is then optimized and
the optimal values of primal and dual variables and reduced costs of the original problem are
recovered.

Presolve analysis aims a t reducing the problem solution time and perhaps, making it possible
to solve some problems that are too difficult in their original formulation. The goals of a presolve
procedure are:

1. reduction of problem dimension (i.e. the number of constraint matrix rows, columns and
non-zeros),

2. improving problem's numerical properties and computational characteristics (e.g., by re-
moving linearly dependent rows),

3. ea,rly detection of infeasibility or unboundedness,

4. revealing of some properties of the problem that may not have been obvious during model
generation (e.g., the fact that some variables may be fixed, some constraints are redundant,
etc.).

Typically used analysis methods, known since the work of Brearley et al. [4] are heuristic
(see also [:I.]). They are designed to eliminate simple redundancies relatively cheaply, but they
fail to discover more complicated relations that might be used to reduce the problem's size. On
the other hand there were attempts to develop optimal methods for elimination of certain kinds
of redundancies. Among those, an idea of McCormic [14] provided (directly and indirectly)
some interesting results and prompted development of new techniques, like the one proposed by
Gondzio [lo] and followed in this research.

The focus of this paper is on the presentation of the impact of presolve analysis on perfor-
illa'llce of the revised simplex method. The selection of presolve techniques that we made is in
our opinion perfectly suitable for application as a front end to a simplex optimizer. If an interior
point method were to be used, then yet another preprocessing stage might be useful, or indeed,

'This research was partially sponsored by the Committe for Scientific Research of Poland grant no. 3P40301806.
* * Institute of Automatic Control & Computation Engineering, Warsaw University of Technology, ul.

Nowowiejska 15/19, 00-665 Warsaw

A. ~wi~tanowski - 2 - Modular Presol ve Procedure

necessary to make some problems solvable (for an in-depth discussion of presolve analysis as
applied t o a primal-dual interior point method the reader is referred to Gondzio [lo].)

On the other hand, all linear optimization methods might benefit from some or all of the
presolve techniques presented here as, surely, redundancies in LP formulation will always remain
redundant. Therefore all effort has been made to make our presolver implementation as flexible
as possible: the user is allowed to choose virtually any subset of presolve methods that he or
she wishes to use for a particular purpose, e.g., as a front-end for a different type of a linear
optimizer.

In section 2 the presolve methods are divided into categories, each associated with certain
parts of Kuhn-Tucker optimality conditions. In section 3 each of the analysis methods is dis-
cussed in detail. All optimal solution recovery procedure is given for every method in section 4.
Section 5 covers the results of numerical experiments conducted with a linear program presolve
procedure embedded in a simplex optimizer. Finally, the conclusions from this research are
given in section 6.

The contents of the linear optimization package developed in cooperation with IIASA project
~ ~ e t h o d o l o g y of Decision Analysis are listed in appendix A. In appendix B we give all the
information necessary for obtaining the whole optimization package, which is intended for use
not only a t IIASA but also in other research institutions. The applications are presented in
lllore detail in appendix C. Their calling syntax is defined and a number of typical examples of
their use is given.

2 The Kuhn-Tucker optimality conditions

We are concerned with a linear optimization problem of minimizing the objective function

subject to constraints
b A x S b -
x < x < x - -

where A E R m x n , x , c E Rn, f E R , x E (Ru{-CO})~, % E (R u {+co})~, b E (R u { - c Q }) ~ and
-

b E (R U { + C O)) ~ . The so-called "fixed adjustment" f usually is not included in the problem
formulation, however in this paper it is convenient to introduce it right now.

Let x, y and z denote the primal and dual variables and the reduced costs, respectively.
Their values represent an optimal solution to the problem (1)-(2) if and only if the Kuhn-
Tucker optimality conditions are satisfied:

1. Primal feasibility:
b < A x < b -
x < x < x

2. Dual feasibility:
A ~ ~ + Z = C

Modular Presolve Procedure

3. Complementarity:

(otherwise xjzj = 0

By analogy to the grouping of the optimality conditions, the presolve analysis methods may
be divided into three categories. We must note, however, that such grouping is only a matter of
presentation convenience. In most cases it is possible to derive each method from the analysis
of both the primal and the dual problem. We add the fourth group - numerical eliminations
performed on the constrained matrix:

1. methods derived from analysis of the primal feasibility conditions:

r empty constraint removal,

r singleton row removal,

r fixed variables removal,

r row constraint analysis,
It is applied t o one row a t a time. Attempts to detect a limited class of redundant
constraints (so called forcing and dominated constraints).

r elimination of slack variables explicitly represented in the LP,

r free singleton variable removal.
By a free singleton we mean a variable which has infinite simple bounds and a non-zero
coefficient in only one constraint.

2. methods derived from the dual feasibility conditions:

r removal of empty columns,

r determining of finite bounds on dual variables and reduced costs.

3. inethods derived from the complementarity conditions:

r fixing of variables for which a positive lower bound or a negative upper bound on
reduced cost has been computed.

4. general linear transformations performed on a set of equalities which aim at reducing the
density of the constraint matrix.

This paper shall not be directly concerned with detection of split free variables or duplicate
constraint matrix rows or columns. They pose a serious problem for an interior point optimizer
(see e.g., Gondzio [lo]), but the simplex algorithm can handle them easily.

3 Presolve methods

In addition to the notation introduced in the previous section, from this moment on we shall
use the following symbols:

a;, to denote i-th row of the constraint matrix A, or all of this row except one element
singled out in the context,

r a,j to denote j - th constraint matrix column, or all of this column except one element
singled out in the context.

Furthermore, we shall use terms "variable" and "(constraint matrix) column" as well as "(con-
stra.int matrix) row" and "constraint" interchangeably.

A. Swie tanowski Modular Presolve Procedure

3.1 Simple presolve methods

3.1.1 Empty constraint

If the i-th row is empty, i.e. a;, = 0, then obviously scalar product a: x is equal to zero. If
b . < 0 <_ 8; holds true, then the constraint is always fulfilled, and thus redundant. Otherwise -1 -
the problem is structurally infeasible.

3.1.2 Empty column

Given an empty column a,j = 0 from dual feasibility (4) we have

When we compare the value of zj with its bounds (4) we may either fix variable xj or declare
the dual problem infeasible. The possible cases are presented in the table 1.

Table 1: Variable fixing following dual problem analysis

3.1.3 Infeasible simple bounds

If there should exist a variable xj such that gj > Tj then we declare the LP structurally infeasible.

3.1.4 Fixed variable removal

7 .
-3

= 0
< O
< O
> o
> O

Whenever we fix a variable XF (i.e. we determine that g~ = XF = ?FF) we eliminate it (and
remove the column a+F) from the problem. We also update the fixed adjustment f and modify
vectors b and b. If the constraints before the reduction were

-
x j

any
+a

<+a

any
any

x . -

any
any
any
-00

>-a

then after the reduction we "shift" the constraint activity bounds b and

a,ild upda.te the fixed adjustment

f ' f + XFCF.

xj E < gj, Fj >
-

x . - F .
3 - 3
-

xj = g .

3.1.5 Singleton row conversion t o variable bounds

Note
May be fixed on any feasible value
Problem unbounded

Problem unbounded

-4 singleton row of the form
b. < a . . x . < 8;
-1 - 13 3 - (9)

may be converted to simple bounds on variable xj and then removed from the problem. If
a;j > 0 the resulting bounds are

A. ~ w i ~ t a n o w s k i - 5 - Modular Presolve Procedure

If nij < 0 the direction of inequality (9) changes and the implied bounds change appropriately.
The problem is found infeasible or the singleton row is removed.

3.1.6 Computing bounds on dual variables.

As dual feasibility conditions (4) state, each infinite simple bound on a primal variable x j is
equivaleilt t o a bound on the corresponding reduced cost z J . Whenever we establish such bounds
on zj, a dual constraint becomes an inequality or non-binding. Notably, singleton columns of
the primal problem may also be singleton rows of the dual one. The analogy to singleton row
reduction is obvious.

3.2 Singletoil columns

Our approach is to view all column singletons as possible slack variables. A variable x s , corre-
sponding t o a column singleton with zero cost coefficient c s shall be called a slack variable.
The procedure removes a slack variable and converts it to wider bounds on row activity and,
possibly, an update of the fixed adjustment.

Let us note that if the variable has its only non-zero in an equality row, it is possible to
convert the non-zero cost coefficient to zero. Suppose the i-th row has the form

where a is is the singleton's only non-zero, and the objective function is

The following equivalence

allows to change the objective to

with an updated fixed adjustment and singleton's cost coefficient of zero. Thus the variable x s
may also be considered a slack variable.

Note that:

there may be more than one slack variable in one row, in which case they all correspond
t o a single "logical slack" variable,

a singleton column may belong to a free variable, which means that the row is non-binding,

a set of explicit slacks and slack variables implied by an inequality row may add up to
create a "logical free singleton", which implies that the row is non-binding.

The second case (known as a "free singleton column" reduction) will be treated separately in
section 3.2.2.

3.2.1 Removal of slack variables

Sometimes LP's are formulated using only equality constraints (non-equality rows have slack
variables explicitly added). This hides the real nature of the variable from the linear optimizer.
Soine efficient crashing algorithms used in the simplex method (see e.g., [2]) base their success
on special treatment of slack variables. There are also some other new linear optimization
inethods that could benefit from detection of explicitly given slacks (see e.g., Gondzio [9] and
IVierzbicki [20]).

A . ~ w i e tanowski - 6 - Modular Presol ve Procedure

A slack variable may be removed by converting its bounds to wider bounds on row activity.
Given constraints

b . < a z x + a ; s x s < Zi -1 -
:s < x s < :s

we update its activity limits
bi + bi - SUP a s x s
- - 1~5xsLFs
bi + inf a s x s

bi - is~is5as

and obtain
b; < aEx < 6;.

The variable x s is removed from the problem. It is also possible that the above conversion will
make the row non-binding and thus redundant.

3.2.2 Free singleton columns

A constraint

in which a free singleton column (with a ; ~ as the only non-zero) appears is non-binding. It is
removed from the problem as it does not influence the primal feasible region.

Analogously, an equality row with a free column singleton may be removed. Let us consider
a constraint

T -
ai,x + a i ~ x ~ = b;(= bi = b;). (19)

If the objective coefficient c~ is equal to zero, the row is removed without taking any other
actions. Naturally, variable X F is removed as well.

If however c~ # 0, we modify the objective in order to bring c~ to zero. Since

the objective
f + cTx + C F X F

is transformed to

The i-th row is now removed.
In case of non-equality rows there is one more step we have to take before the row is elimi-

nated. Let us consider a "less than" row

By adding a slack variable s we transform it into an equality

and modify the objective:

The free singleton's cost equals zero and the row is removed.
The difference between this and the previous example is that an empty column of the freshly

introduced slack variable s is still left. We treat it as we would treat any other empty column
(see section 3.1.2):

Modular Presolve Procedure

if (cF/aF) is positive, the problem is declared unbounded,

otherwise s is fixed a t its lower bound, i.e. a t zero.

Similar reasoning leads us to conclusions about a "greater than" row. Note tha t slack s acts
only as a conceptual help and is never actually introduced into the LP.

A general constraint
T b; < a;,x + a ; ~ x ~ I b; (26)

is transformed to -
a z x + a;FxF + s = b;

O < s < 6 ; - b ; .

We fix s a t (&i - b,) (and update fixed adjustment) if c F / a ; ~ is positive, a t zero otherwise.
Sometimes a column singleton in doubleton equality row is treated as a special case (see

e.g., Andersen and Andersen [I]). If a doubleton row has one entry in a singleton column then
bounds on the other variable may be modified so as t o make singleton's bounds redundant. The
singleton becomes an implied free variable and is treated in a manner described previously. It is
easy to see that the methods described so far will eliminate such a doubleton row in two phases:

1. first the singleton variable will be removed (converted into wider bounds on row activity)
and the row will have only one non-zero left,

2. tllen the siilgleton row will be converted into simple bounds on the other variable.

As it has been shown above the row in which a free singleton column has its non-zero may
always be removed. In some cases a slack variable is added, but its only lasting effect is a
possible change to the fixed adjustment f . We compute the adjustment update based on the
type of row activity bounds and sign of (cF/aiF) (see table 2).

Table 2: Objective adjustment update after free singleton column removal

3.2.3 Implied free column singleton

Row type:

7
b, < ...
b; < ... < 6;

. . . = b; (= 6; = b;)

A variable is called "implied free" when its simple bounds may be dropped, because row con-
straints gua,rantee that the variable stays within limits as least as tight as those imposed by
the sinzple bounds. If the implied free variable is a column singleton, we may perform a very
advantageous free column singleton reduction.

The coilstra,int in which the singleton column XI, gI I X I 5 TI has its non-zero

Value of cF/ajF
= 0

0
0
0
0

> 0
unbounded solution

(~ ~ / a i ~) b ;
(cF/aiF)b;

< 0

(c ~ / a ; ~) b ;
unbounded solution

(cF/aiF)bi
(cF/aiF)bi

Modular Presol ve Procedure

implies bounds .u> and Z> on variable X I

T a;I > 0 + (b; - sup a ; ,x) /a i~

z: = { x < x < x --
T ail < 0 + (- inf ai,x)/a;I

x < x < x --

a;[> 0 + (8 - inf a:x)/ai~
-I x < x < x
X I = { --

a;I < 0 + (bi - sup a z x) / a i ~
x < x < x --

If (gz,T>) I (cI, TI) then simple bounds on the variable are redundant (we have found
an implied free variable). If (z > , ~ >) n (zI,ZI) = 0, then the problem is declared infeasible.
Otherwise the simple bounds on variable are tightened:

3.3 Iiidividual constraint analysis

Analysis of an individual constraint and comparison with box constraints on the variables in-
volved may reveal that some rows are redundant, some variables may be fixed or new variable
bounds may be imposed.

3.3.1 Impl ied b o u n d s o n r o w act iv i ty

A constraint
bi 5 aEx 5 6;

confronted with variables' bounds
x < x < x -

reveals implied limits on row activity:

b! = inf aEx = C a i j q + C a j i q -a zr<x<_K a;,>O aij<O
-I
bi = sup aEx = C a;jZj + C ajigj

x < x L R -- a;, >O a t3<0

If (bi, z:) n (bi, zi) = 0 the problem is declared infeasible. If b: = zi or & = &:, we call the
row "forcing7' as it forces all variables involved to their bounds. The row is removed and the
variables are fixed on appropriate bounds. Finally, if (b:,$) _> (bi,zi) the i-th constraint is
redundant ("dominated") and removed.

3.3.2 Tigh ten ing variable b o u n d s

By reversing the procedure presented above we compute variable bounds implied by the row
constraints. This process helps to provide more finite simple bounds for dominated and forcing
coilstraint detection.

An example of implied variable bounds computation was provided in section 3.2.3. Identical
procedure is employed here:

but the purpose is different: we attempt to tighten variable bounds as much as possible.

A . ~wi~ tanowsk i - 9 - Modular Presolve Procedure

Note that a, procedure for global bounds cross-checking according to the above formula
will involve as many bound computations, as there are non-zeros in the constraint matrix.
Additionally, if two (or more) variables are active in two (or more) constraints, it is possible
that a change of a bound on one variable will necessitate new computation of bound on the
other (or others).

This procedure is too expensive and unreliable, as it can cause infinite loops. A much more
efficient approach to has been proposed by Gondzio [lo] who has observed, that bounds on row
activity (which are calculated in forcing and dominated row detection routines) may be used to
clleaply compute the implied variable bounds. If both i-th row activity and j - th variable have
at least one finite bound each, a simple calculation may provide finite implied bounds.

We can compute inf a z x and sup a z x cheaply and then calculate implied variable
x<x<x x<x<K

bounds efficiently. We know the follow& bounds on row activity:

T a z x + a i j x j) = i n f a i , x + i n f a i j x j x x~

T + aijXj) = sup x ai,x + sup aijxj
XJ

from which it follows
T inf ai,x = gi - inf aijxj

X
r r 3

x~
- s u p a k x = a; - sup aijxj.

X XJ

Finally for a;+ > 0 we have

and for nij < 0

Needless to say, the above implied bounds may still be infinite.
A complete constraint matrix scan consists of the following computations:

1. for each i E (1, . . . , m} a pair of implied row activity bounds gi and i i i is computed,

2. for each row i with a t least one finite activity bound and for each j E (1,. . . , n } such that
a;j # 0 and gj > --oo or 7 j j < +oc, we compute implied variable bounds.

3.3.3 Dominated and weakly dominated variables

It is possible to apply some of the analysis methods presented in section 3.3.1 to the dual
problem. This will allow us to detect and eliminate forcing and dominated variables and fix
some variables on their finite bounds.

Each dual constraint a,j implies bounds on associated reduced cost zj . Whenever we are
able to determine that the sign of the reduced cost zj is strictly positive of strictly negative, we
can fix variable . ~ j a t one of its bounds. From

T T 2 z! = c j - sup a , j y 5 zj 5 c j - inf a . y = 2 . -3 ' 3 3 (40)

and the dual feasibility conditions (4) it follows that

'The reader may wish to analyze a small LP example:

in whicl~ the only feasible point is zl = 1, 22 = 0. A possibly infinite cycle of bound tightening would occur. The
feasible intervals would slowly converge to the solution.

A . swie tanowski - 10 - Modular Presolve Procedure

if the bounds above are inconsistent with those previously known, then the dual problem
is infeasible,

if z> > 0 (7; < 0)) we say that variable xj is dominated and may be fixed a t its finite lower
(upper) bound, respectively; if the appropriate primal variable bound is infinite, the the
problem is declared unbounded,

if 2'. = 0 or F; = 0, then xj may be a so called "weakly dominated" variable.
-9

Andersens [I.] give a definition which enables them to treat weakly dominated variables as
dominated ones. They require that the bounds on the dual variables y are derived from singleton
columns and that those singletons are not removed from the problem.

Conversely, C:ondzio [lo] proposes a more general approach in which he allows to use dual
variables' bounds of any origin and does not rely on the singletons' existence. Instead he imposes
some requirements concerning row types of the matrix rows concerned (see Gondzio [lO] for the
theorem as well as the proof):

1. I f q -j 0) gj > -q and

then the variable xj is weakly dominated and it may be fixed a t its lower bound.

then the variable xj is weakly dominated and it may be fixed a t its upper bound.

3.4 Linear transformations

Chang and McCormic [5] and earlier McCormic [14] have presented an algorithm for solving of
a so-ca,lled "spa,rsity problem". Given a sparse matrix A , A E Smxn, a non-singular matrix
M , M E Smxm is to be found such that M A is sparsest possible. The problem arose from
consideratioil of possible ways of reducing time needed to solve a linear optimization problem (1)-
(2). It was assumed that an equivalent problem

T min c x
M b 5 (M A) x = MT;

x 5 x 5 x -

will in general be solved faster by a simplex optimizer than the original one. The results reported
by McCormic [14] were not encouraging: despite savings in optimization time, the time spent
finding M in all cases exceeded the savings. Only more recent results of Chang and McCormic [5]
docuilleneted an overall gain in the range of 10%.

For this reasoil we have decided to implement a much less time consuming heuristic algorithm
that would perform numerical eliminations. It has been originally described by Gondzio [lO].

3.4.1 Numerical elimination heuristic

I11 a linear problem (1)-(2) transformed to equality form we find such row pairs, in which one
row has a non-zero pattern, which is a superset of the non-zero pattern of the other. The shorter
row is then used as a pivot row in elimination of a t least one non-zero of the longer one. Of
course further 11011-zero cancellations may occur. Among the main advantages of this procedure

A . ~ w i ~ t a n o w s k i - 11 - Modular Presolve Procedure

are its simplicity and effectiveness, ability to reduce problem density and potential to eliminate
some duplicate rows.

The main computational effort goes into non-zero pattern comparison. The data struc-
tures should facilitate efficient access to both rows and columns of the constraint matrix. We
found duplicate storage of the constraint matrix (row-wise and column-wise) very helpful. See
~ w i ~ t a n o w s k i [19] for a list of reasons why a simplex optimizer benefits from such double storage.

4 Optimal solution recovery

In this paper we are only concerned with recovery of the values of the primal variables x.
Therefore we will proceed to present postsolve methods only for those presolve techniques,
which affect their values. Primal variables are removed from the problem when they are fixed,
found to be free singletons or found to be slack.

Reader interested in recovery of dual variables and reduced costs is referred to papers by
Andersens [I.], Brearley et al. [4] and Gondzio [lO]. Only [lo] presents methods for recovery of
dual variables after linear transformations.

4.1 Fixed variable's value recovery

This is a trivial task. The value of the variable is known a t the moment of fixing, therefore it
may simply be stored and later retrieved during the postsolve phase.

4.2 Free singleton's value recovery

As it was shown in section 3.2.2, the free variable's value may be calculated as

where

and

4.3 Explicit slack's recovery

Recovering the values of explicitly defined slack variables is a more complex problem. However,
the difficulty inay only arise when more than one variable in the same constraint matrix row is
detected to be a slack. We believe it t o be a relatively rare case. In our implementation this
possibility has been excluded: only one explicit slack reduction per row is allowed.

In case of a general constraint, the variable xs may take any value which satisfies one of the
two sets of inequalities given below:

1 - T
- (- a x) x bi - a i * x

Cs I xs I cs
(T) .

Naturally, the recovery of explicit slack variables is not strictly deterministic.

A. ~wi~ tanowsk i - 1 2 - Modular Presolve Procedure

Unless there is more than one explicit slack per row, any solution to the corresponding
system of inequalities is acceptable. Otherwise, for each row with more than one explicit slack
eliminated, we would need to find a feasible solution of a combined system of all inequalities
resulting from separate consideration of all slacks removed from that row.

5 Experimental results

I11 this section we present the results of some numerical experiments conduced with the presolve
procedure. Each subset of the presolve methods is analysed with respect to possible gains in
coinputation time when the presolved problem is solved with a simplex type optimizer. The
theoretical speculations are supported by tables with computation times and iteration counts of
a revised simplex method implementation (see ~ w i ~ t a n o w s k i [19]).

Thus far not all of the presolve methods described in this paper have been actually im-
plemented. Dominated and weakly dominated variable reduction methods together with dual
variable bound tightening procedures are still missing. Therefore, in lack of numerical evidence,
some of the conclusions are of preliminary nature.

The test problems chosen are the largest ones of over a hundred LP's from the extended
NETLIB test collection initiated by Gay ([7]). The short characteristics of those problems are
given in table 3.

The numerical tests were performed on a CRAY Superserver 6400 shared memory multi-
processor. However, since the code is entirely sequential (and portable to other platforms, e.g.,
SUN SparcStation, IBM P C 386, IBM RS6000) all the computation times are given in seconds of
sequential CPU work. The times quoted are those measured by a Solaris operating system func-
tion t imes () and always refer to entire computation time: presolving (if performed), conversion
to standard form, scaling and solution. The reader should take into account the inaccuracy
of time measurement (in the range of a few percentage points) resulting from different system
loads.

All comparative tables in this paper contain ratios expressed in per cent, e.g., percent of
eliminated constraint matrix rows, or percent of computation time saved when a certain presolve
technique is used. Time savings are computed according to formulas like

time~without~presolve - time-with-presolve
saving = . 100%.

time~without~presolve

All those tables also list average and average deviation for each table column. For data xj ,
j E (1, . . . , n) the average 5 is

- 1
x = - C X j

j=1

and the average deviation 2 is
, n

Two of the test problems were not solved in their original form due to numerical difficulties,
therefore it is impossible to calculate computation time ratios for those problems. Appropri-
ate positions in the tables are marked with "???". Whenever these problems were not solved
successfully with a certain presolve technique, the tables contain "num. diff." instead of the
ratios.

5.1 Usefullless of the simple presolve methods

By simple presolve methods we mean those that require little or no searches, comparisons and
floa.ting point operations. They include removal of empty rows and columns, conversion of
singleton rows into variable bounds and removal of fixed variables. They are singled out because

hfodular Presolve Procedure

Name

25FV47
80BAU3B
BNL2
CRE- A
CRE-C
CYCLE
CZPROB
D2QO6C
DGCUBE
DEGEN3
FITlP
FIT2P
GREENBEA
GREENBEB
KEN-07
KEN-1 1
KEN-13
MAROS-R7
MAROS
NESM
OSA-07
OSA-14
OSA-30
PDS-02
PILOT
PILOT87
P1LOT.J A
PILOTNOV
SCSD8
SCTAP3
SHIP08L
SHIP12L
SHIP12S
STOCFOR3
TRUSS
WOODW

Table 3: Test problems - the summary

Rows

822
2263
2325
3517
3069
1904
930

2172
416

1504
628

3001
2393
2393
2427

14695
28633
3137
847
663

11 19
2338
4351
2954
1442
2031
941
976
398

1481
779

1152
1152

16676
1001
1099

Columns

1571
9799
3489
4067
3678
2857
3523
5167
6184
1818
1677

13525
5405
5405
3602

21349
42659
9408
1443
2923

23949
52460

100024
7535
3652
4883
1988
2172
2750
2480
4283
5427
2763

15695
8806
8405

Density

[%I
0.86
0.13
0.20
0.13
0.15
0.39
0.43
0.32
1.71
0.96
1.03
0.15
0.24
0.24
0.14
0.02
0.01
0.51
0.82
0.72
0.63
0.30
0.16
0.10
0.82
0.74
0.79
0.62
1.04
0.29
0.51
0.35
0.34
0.03
0.42
0.41

Scaling

A. ~ w i ~ t a n o w s k i - 1 4 - Modular Presolve Procedure

it is possible to implement them easily and efficiently and they may be embedded directly in a
linear optimizer a t almost no cost.

Empty rows (or columns) are a rather rare occurrence, however most presolve methods may
cause elimination of all non-zeros in some rows (columns). The same is true for inconsistent
variable simple bounds: they may result form other analysis methods. On the other hand fixed
variables and siilgleton rows are rather common (at least in the NETLIB set). It is worth noting
that singletoil rows may result from a conversion of general linear constraints (2) to a standard
form, in which all variables are subject to non-negativity bounds 0 5 x in which case all finite
lower bounds are shifted to zero and upper bounds are transformed into singleton rows.

We will show that all those redundancies should not affect significantly the performance of
the revised simplex met hod.

Let us assume that there is an empty column a,j = 0 in the constraint matrix. It is clear that
it cannot be introduced into the initial basis. Its reduced cost is equal t o its objective function
coefficient zj = cj - c;~-'a,j = cj. If cj = 0 the variable will never become a candidate to
enter the basis. Otherwise, the x j will move between its bounds (if they are both finite) or the
problem will be declared unbounded.

If the constraint matrix contains an empty row a;,, an artificial variable (possibly fixed
a t zero) will be added to i-th row in order to construct a non-singular basis. The variable
will never leave the basis and although it may be structurally degenerate, it will never cause
degenerate iterations. Furthermore, most modern factorization routines (based on Bartels-
Golub or Forrest-Tomlin algorithms - see, e.g., Reid [16]) will locate a singleton row of the
basis matrix aad will permute it rather than use it in eliminations. Clearly, most of the analysis
given above applies directly to singleton rows.

Finally, the fixed variable elimination has to be examined. Typically, fixed variables never en-
ter the basis, except for the initial basis creation in some crashing schemes (see, e.g., ~wietanowski 1171
or [18]). Their presence in the basis is likely to cause degeneration, but they are the first can-
didates t o leave the basis. We may conclude that their impact on solution times should not be
too great.

It has previously been stated that the problem's difficulty is proportional not only to the
dimension of the constraint matrix, but also to its number of non-zeros. It is clear that removal
of empty or singleton rows and columns must result in increased matrix density.

All in all we do not expect the simple reductions to be very advantageous by themselves. Any
substantial changes in computation time should rather be contributed to a change of optimization
path followed by the simplex algorithm. These claims are substantiated by data collected in
table 4 where solutioil times and iteration counts with and without the simple presolve methods
are compared.

The table lists the percentage of rows, columns and non-zeros removed from the constraint
matrices as well as iteration and solution time savings. Ten of the problems were not reduced,
but presolving caused only a negligible loss of time. On the average the number of iterations
needed to solve the problems has decreased by 1.62% and the average time was cut by 8.33%.
Both these average reductions are rather small, which supports our speculations. The simple
methods caused a meaningful loss of time in case of only one problem: 25FV47. On the other
hand, sometimes they provide savings much exceeding the ratios of problem size reduction. The
latter phenomenon is probably only an example of simplex algorithm's sensitivity to initial basis
choice.

It nlay also be noted that whenever a significant portion (10% or more) of the problem's rows,
coluinns or non-zeros is removed, a time saving is always seen. To conclude: large reductions
are always helpful, but negligible ones only change optimization path and thus distort iteration
counts and times. Simple presolve methods are apparently too simple to reduce many problems.

Modular Presolve Procedure

Table 4: Efficiency of simple presolve methods

Name

25FV47
80BAU3B
BNL2
CRE-A
CRE-C
CYCLE
CZPROB
D2QO6C
DEGEN3
FITlP
FIT2P
GREENBEA
GREENBEB
KEN-07
KEN- 11
KEN-13
MAROS-R7
MAROS
NESM
OS A-07
OSA-14
OSA-30
PDS-02
PILOT
PILOT87
PILOT.JA
PILOTNOV
SCSD8
SCTAP3
SHIP08L
SHIP12L
SHIP12S
STOCFOR3
TRUSS
WOODW
Average
Avg. dev.

Eliminated [%I I Improvement [%I
Rows I Columns I Non-zeros I Iter. 1 Time

-11.94
-3.23
23.40
-2.64

5.37
15.32
9.64
8.64
0.00
0.00
0.00

-3.91
2.05
0.58

-0.06
-0.72

0.00
3.11
5.57
0.00
0.00
0.00

-5.14
num.

-8.02
4.81

33.63
8.86

19.14
19.17
6.1 1

17.21
-0.04

0.00
-0.02

2.73
11.59
24.26
9.20

15.35
-0.07

2.91
13.26

-0.59
-0.32
-0.24

5.45
diff.

? ? ?
5.87

- 1.48
0.00
0.00

-1.82
-4.10
-1.73

3.12
0.00
7.67
1.62
4.36

13.05
5.02
0.00
0.00
7.32

10.31
34.25
5.68

-0.02
14.98
8.33
7.73

Modular Presolve Procedure

5.2 The advantages of column singleton reductions

It has been shown in section 5.1 that the removal of a singleton (or empty) row does not bring
about significant decrease in problem solution time. Similar reasoning leads us to believe that
removal of a slack variable which is not followed by further reductions is also of very little value.
We ougl~t to remember that a simplex optimizer will introduce a slack variable for every non-
equality row prior to solving the problem. It follows that only when we manage to remove a
slack from an inequality row, the optimizer will actually solve a reduced problem. However,
a free siilgleton variable removal ought to be advantageous, because a whole constraint matrix
row is removed.

Table 5 suminarizes the reductions obtained by the singleton column analysis. Empty rows
and columns are also removed.

The avenge reductions (1.51% in terms of iteration number and 4.12% in terms of time) are
indeed negligible. Both these reductions are highly problem-dependent (which is highlighted by
significant average deviation factors). Eleven problems were solved more than 5% faster and 5
LP's lost more than 5% of computation time. Time gains are typically noted when the number
of free (and implied free) column singletons removed is over 0.5%,

Surprisingly, we note that removal of explicit slack variables (listed in the table under the
heading "relaxed constraints") almost always coincides with iteration and time losses. We are
unable to present any satisfying explanation for this phenomenon.

5.3 Usefullless of row constraint analysis

The simplex method should not be affected greatly by presence of a number of dominated
constraints. They are always fulfilled and so they never cause degeneration. Their only impact
is on the size and density of the subsequent simplex bases, but their presence in the optimal
basis will be limited to slack variables (they are inactive at the optimum). Elimination of a
dominated row will probably give way to further reductions (e.g., by producing new column
singletons).

The forcing constraints - if left undetected - are structurally degenerate and thus much
more damaging to simplex method's efficiency. A forcing constraint is eliminated together with
all its variables, which is yet another benefit.

These elimination methods rely on presence of the simple presolve techniques as well as on
bound tightening, which makes some of the reductions possible. Table 6 summarizes the results
gathered when using those techniques.

The overall gains are quite impressive: 7.10% of iterations and 18.88% of computation time.
Only three problems lost more than 2% of time. It must be noted, that whenever any forcing
constraints are eliminated from the problem, both iteration counts and times are improved (often
by as much as 20, 40 or even 60%). On the other hand, dominated row elimination may still
lead to computation time loss (see e.g., problems OSA-30 and SCTAP3).

5.4 Advantages of numerical eliminations

\,Ve expect that decreased sparsity of the constraint matrix will be reflected by reduced average
simplex basis density. This in turn should allow faster factorizations and linear system solution
(with the right hand side vectors also sparser). We thus predict an overall better efficiency when
solving reduced problems.

Table 7 presents the results obtained when numerical elimination was applied, supported
by empty row and column removal and singleton row elimination, which were included because
numerical eliminations are likely to create empty rows and columns as well as singleton rows.

The table shows small average improvements (1.22% loss in iterations and 6.64% time gain)
with large average deviation. Nine problems were not reduced at all, 19 cut the time by more
than 5% and 3 lost more than 5%. Again, it seems that large reductions (10% or more) guarantee

Modular Presol ve Procedure

Table 5: Efficiency of singleton column analysis

Name

25FV47
80BAU3B
BNL2
CRE-A
CRE-C
CYCLE
CZPROB
D2QOGC
DEGEN3
F I T l P
FIT2P
GREENBEA
GREENBEB
KEN-07
KEN-11
KEN-13
MAROS-R7
MAROS
NESM
OSA-07
OSA-14
OSA-30
PDS-02
PILOT
PILOT87
PILOT.JA
PILOTNOV
SCSD8
SCTAP3
SHIP08L
SHIP12L
SIIIP12S
STOCFOR3
TRUSS
WOODW
Average
Avg. dev.

Rows

0.61
1.68

16.17
0.00
0.00
7.04
2.15
1.38
0.00
0.00
0.00
0.96
0.92
0.00
0.00
0.00

31.37
4.72
0.00
0.00
0.00
0.00
0.00
0.62
1.33
4.25
7.38
0.00
0.00
6.42
6.68
6.68
7.68
0.00
0.36
3.10
3.85

Improvement
Iter.

-11.59
1.11

21.15
0.00
0.00

20.41
19.21
6.06
5.37

-9.92
-6.88

-13.51
4.63
2.46

-0.76
0.82

-3.73
-1.71
-2.44

0.00
0.00
0.00
0.00

Columns

1.72
1.80

12.55
0.00
0.00
9.28
0.57

15.79
0.55

37.39
22.18

0.70
0.68
0.69
0.25
0.17

43.79
7.42

10.95
0.00
0.00
0.00
0.00
0.49
0.70
7.04
8.79
0.22

25.00
1.17
1.42
2.79
8.16
0.05
2.00
6.41
7.51

[%]
Time

-10.09
5.95

33.47
-0.05
-0.06
17.52
21.11

3.98
7.69

-1.69
-1.93

-13.06
14.35
4.26

-10.19
-2.16

8.28
2.43

-2.49
-0.59
-0.68
-0.18
-0.11

???
???

Relaxed
constr.

2.68
0.31
2.41
0.00
0.00
5.93
0.00

36.19
0.66

99.84
99.97

0.59
0.59
1.03
0.36
0.25

68.60
6.85

48.27
0.00
0.00
0.00
0.00
0.62
0.34

10.63
10.45
1.51

41.86
0.00
0.00
0.00
0.00
0.40

13.83
12.98
18.16

Eliminated [%]
Non-zeros

0.44
0.83
6.89
0.00
0.00
4.77

25.84
4.75
0.04
5.76
4.94
0.59
1.43
0.21
0.08
0.05

30.78
5.93
2.29
0.00
0.00
0.00
0.00
0.08
0.42
3.27
4.96
0.05
5.78

18.62
19.55
19.83
12.81
0.01

16.20
5.63
6.06

-3.83
-0.23

-11.59
-8.38
23.55
10.05
17.66
5.44

-5.85
-7.64

1.5 1
7.23

Free
singl.

0.32
0.32
9.29
0.00
0.00
4.69
0.57
0.56
0.00
0.00
0.00
0.43
0.41
0.00
0.00
0.00

10.46
2.77
0.00
0.00
0.00
0.00
0.00
0.25
0.55
2.01
3.31
0.00
0.00
1.17
1.42
2.79
8.16
0.00
0.05
1.41
1.84

-4.61
0.00

-3.02
-8.14
27.64
14.43
23.29
19.92

-6.15
-3.33

4.12
9.00

Table 6: Efficiency of row analysis

Modular Presolve Procedure

Name

25FV47
80BAU3B
BNL2
CRE-A
CRE-C
CYCLE
CZPROB
D2QO6C
DEGEN3
F I T l P
FIT2P
GREENBEA
GREENBEB
KEN-07
KEN-1 1
KEN-13
MAROS-R7
MAROS
NESM
OSA-07
OSA- 14
OSA-30
PDS-02
PILOT
PILOT87
PILOT.JA
PILOTNOV
SCSD8
SCTAP3
SHIP08L
SHIP12L
SHIP12S
STOCFOR3
TRUSS
WOODW
Average
Avg. dev.

Improvement
Iter.

-11.94
6.73

15.92
3.08

14.94
16.29
20.22

9.00
0.00
0.00
0.00

17.07
30.15

2.78
-0.55

3.39
0.00

15.03
5.57

-1.90
2.83

-5.74
1.14

Rows

5.35
10.83
9.29

15.21
24.89
23.48
30.97
3.36
0.00
0.00
0.00

28.83
28.79
40.75
3 1.36
21.30
0.00

26.56
2.41
3.31
1.58
0.85

12.90
5.41
2.76

14.98
12.40
0.00
4.86

53.66
52.95
67.53
0.35
0.00

70.34
17.35
15.76

[%:I
Time

-9.48
17.92
27.89
15.05
35.34
33.38
37.22
14.67

-0.04
0.00

-0.02
31.93
46.21
39.34
31.43
24.39

-0.11
28.16
16.57
10.98
7.98

-3.62
11.01

???

Columns

1.65
6.16
1.63
3.17

11.66
11.45
21.37

0.19
0.00
0.00
0.00

23.52
23.72
27.46
21.59
14.29
0.00

26.40
6.26
0.00
0.00
0.00
4.82
7.37
5.35

19.97
12.20
0.00
0.00

26.48
22.17
27.76
0.20
0.00

36.29
10.38
9.75

num. diff.
6.75
7.07
0.00

-37.60
28.48
21.70
14.08
4.46
0.00

45.43
7.10
9.88

Eliminated
Non-zeros

1.38
3.52
2.67
4.16

10.71
24.83
16.45
0.27
0.00
0.00
0.00

21.66
21.85
20.12
14.98
10.40
0.00

28.44
1.67

33.08
32.77
32.43
3.99
5.53
3.57

22.77
9.12
0.00
2.60

20.23
16.96
21.52
0.42
0.00

38.24
12.18
10.49

15.35
16.81
0.00

-37.21
47.15
40.72
49.32

8.40
-0.02
66.37
18.88
16.64

[%]
Forcing
constr.

0.00
0.18
0.26
0.37
2.31
3.78
5.1Ei
0.00
0.00
0.00
0.00

10.41
10.28
0.00
0.00
0.00
0.00
6.97
0.00
0.00
0.00
0.00
1.12
1.73
0.89
3.40
1.64
0.00
0.00

20.54
12.67
3.82
0.00
0.00

35.12
3.45
4.44

Dominated
constr.

0.00
0.71
0.99
0.00
0.00
7.93
0.00
0.00
0.00
0.00
0.00
0.42
0.42
0.00
0.00
0.00
0.00
1.18
0.00
3.31
1.58
0.85
0.14
0.55
0.25
4.04
3.59
0.00
4.86
1.03
0.43
0.43
0.00
0.00
0.00
0.93
1.15

Modular Presolve Procedure

Table 7: Efficiency of numerical eliminations

Name

25FV47
80BAU3B
BNL2
CRE-A
CRE-C
CYCLE
CZPROB
D2QO6C
DEGEN3
F I T l P
FIT2P
GREENBEA
GREENBEB
KEN-07
KEN- 11
KEN-13
MAROS-R7
MAROS
NESM
OSA-07
OSA- 14
OSA-30
PDS-02
PILOT
PILOT87
PILOT.JA
PILOTNOV
SCSD8
SCTAP3
SHIP08L
SHIP12L
SHIP12S
STOCFOR3
TRUSS
WOODW
Average
Avg. dev.

Rows
5.35
9.72
7.66

12.48
14.40
7.83

20.65
3.41
0.00
0.00
0.00
3.18
3.26

40.75
31.36
21.30
0.00
4.13
2.41
0.00
0.00
0.00

10.12
0.55
0.74
2.23
5.53
0.00
0.00

11.55
27.17
59.46
0.35
0.00
0.09
8.73
9.31

Improvement
Iter.
-3.67
-3.23
16.88

-0.38
-6.94

8.82
9.64

-32.17
1.83
0.00
0.00

- 19.41
-8.6 1

0.58
-0.06
-0.72

0.00
-12.12

5.57
0.00
0.00
0.00

-5.14

[%I
Time

5.71
5.09

26.45
10.43
5.65

15.86
22.78

-34.01
5.29
0.00

-0.40
-16.99

2.28
35.74
30.82
19.22

-0.76
-15.05

17.68
-0.59
-0.32
-0.14

6.11
???

Eliminated
Columns

1.65
5.70
0.97
0.15
0.73
3.82

11.89
0.21
0.00
0.00
0.00
3.26
3.52

27.46
21.59
14.29
0.00
3.60
6.26
0.00
0.00
0.00
3.94
5.61
4.61

15.85
10.73
0.00
0.00
0.56
3.76

20.85
0.20
0.00
0.00
4.89
5.22

[%I
Non-zeros

2.73
3.06
3.00
3.91
4.21
5.78
8.83
1.55
1.08
0.00
0.00
3.25
3.48

20.12
14.98
10.40
0.00
3.33
1.67
0.00
0.00
0.00
2.85
4.88
3.40

20.72
7.98
0.00
0.00
0.42
2.83

15.79
0.42
0.00
0.16
4.31
4.04

? ? ?
8.38

-0.69
0.00
0.00

-1.82
-4.10

12.94
-0.22
-0.38

0.00
5.69
7.73

-1.73 34.25

10.65
- 1.22 6.64

10.03

A. ~wi~ tanowsk i - 20 - Modular Presolve Procedure

time savings, while small ones may only change the route the simplex algorithm takes on its
way to optimum. Insignificance of small reductions may partially be explained by the fact that
the LIT factorization scheme would perform most of them.

6 Conclusions

The ultimate results obtained by our presolve procedure are presented in table 8. The total gain
measured by average decrease in computation time is smaller than might be expected after the
partial results from the previous sections, especially after the row analysis methods.

Apparently, the result of all presolve techniques working together is not much better than
the row analysis methods supported only by simple presolve techniques. Both the average
time gain and its deviation are almost 20%, which points out again that each linear problem
reacts differently to presolve analysis. This time all problems were reduced, even if the smallest
reduction was in the range of 0.01% of non-zeros (problem TRUSS) and caused a 9% time loss.
The encouraging result is that 24 problems benefited from analysis (and 23 of them by at least
10%) while only 5 lost more than 5% of time. The results already quoted in section 5 could be
used as a guideline as to which presolve procedures are worth implementing by themselves and
which may only prove advantageous when used in conjunction with a whole set of other analysis
methods. Again, as in section 5.2, we notice that constraint relaxation usually coincides with
iteration and time losses.

Other general conclusions that may be drawn from the results are:

the presolve analysis methods may significantly reduce solution time of linear problems
and

the impleinentation described in this paper gives very encouraging results, even though it
is still incomplete,

addition of dominated variable detection procedure may still allow us to provide even more
reliability (measured by the ratio of problems that benefit to those that do not).

7 Acknowledgements

The author wishes to thank Dr. Jacek Gondzio for many helpful comments during the prepa-
ration of this paper. We are also grateful to Dr. Marek Makowski for providing the binary
input-output library LP-DIT for our applications as well as many interesting real-life linear
problems.

Modular Presolve Procedure

Table 8: Global efficiency of presolve analysis

,

Name

25FV47
80BAU3B
BNL2
CRE-A
CRE-C
CYCLE
CZPROB
D2QO6C
DEGEN3
F I T l P
FIT2P
GREENBEA
GREENBEB
KEN-07
KEN-11
KEN-13
MAROS-R7
MAROS
NESM
OSA-07
OSA-14
OSA-30
PDS-02
PILOT
PILOT87
PILOT.JA
PILOTNOV
SCSD8
SCTAP3
SHIP08L
SHIP12L
SHIP12S
STOCFOR3
TRUSS
WOODW
Average:
Avg. dev.:

Rows

5.96
12.28
25.63
15.21
24.89
29.15
32.90

6.91
0.07
0.00
0.00

28.79
28.83
41.16
31.53
21.35
31.37
31.17
2.41
3.31
1.58
0.85

12.90
7.35
3.84

18.81
15.47
0.00
4.86

60.08
59.64
74.22
8.03
0.00

70.70
20.32
16.38

Improvement
Iter.

-17.55
6.42

20.74
3.30
8.77

11.64
25.35

-22.78
4.61

-9.92
-6.88
15.79
30.13

4.93
0.27
1.74

-3.73
12.07

-25.16
-1.90

2.83
-5.74

1.14
?

Columns

4.01
6.50

14.42
3.17

11.66
19.18
21.88
16.12
0.55

37.39
22.18
24.74
25.00
27.90
21.79
14.43
43.79
32.99
20.80
0.00
0.00
0.00
4.82
8.35
5.98

26.86
18.55
0.22

25.00
27.64
23.59
30.55
8.37
0.05

38.14
16.76
10.64

[%]
Time

-11.66
15.21
41.12
16.10
29.21
33.79
43.89

-33.13
10.92

-1.69
-0.31
30.84
45.85
41.97
34.98
24.62
10.43
33.50

-19.61
12.15
7.77

-4.30
13.41

? ?

Non-
zeros
3.27
4.25

11.36
6.20

12.20
32.43
36.44
5.85
1.12
5.76
4.94

22.84
23.17
24.34
19.17
12.26
30.78
35.84
4.71

33.08
32.77
32.43
3.99
5.89
3.79

26.01
12.68
0.05
8.38

33.37
32.13
35.69
13.22
0.01

47.70
17.66
12.32

num. diff.
13.59
9.75

-11.59
-36.17

39.72
32.96
36.52

8.27
-5.85
45.53

5.72
14.03

Eliminated
Free
singl.

0.25
0.30
9.43
0.00
0.00
3.89
0.51
0.50
0.00
0.00
0.00
0.70
0.70
0.00
0.00
0.00

10.46
2.56
0.00
0.00
0.00
0.00
0.00
0.71
0.49
1.46
1.43
0.00
0.00
1.17
1.42
2.79
8.16
0.00
0.05
1.34
1.69

23.14
22.27
-2.26

-36.05
57.72
52.06
65.75
23.34
-9.05
66.81
19.36
20.72

[%I
Relaxed
constr.

4.01
0.22
2.54
0.00
0.00
5.88
0.00

36.60
0.66

99.84
99.97
2.05
2.13
0.66
0.29
0.20

68.60
6.85

64.10
0.00
0.00
0.00
0.00
0.76
0.44

11.90
11.07
1.51

41.86
0.00
0.00
0.00
0.00
0.40

13.83
13.61
18.83

Forcing
constr.

0.00
0.18
0.26
0.37
2.31
2.52
5.16
0.00
0.00
0.00
0.00
9.40
9.32
0.00
0.00
0.00
0.00
6.85
0.00
0.00
0.00
0.00
1.12
1.66
0.79
3.08
0.72
0.00
0.00

20.54
12.67
3.82
0.00
0.00

35.12
3.31
4.37

Dom.
constr.

0.00
0.66
0.95
0.00
0.00
9.09
0.00
0.00
0.00
0.00
0.00
0.42
0.42
0.41
0.16
0.05
0.00
1.42
0.00
3.31
1.58
0.85
0.14
0.76
0.25
4.14
3.59
0.00
4.86
1.03
0.43
0.43
0.00
0.00
0.00
1.00
1.20

Modular Presolve Procedure

References

[I] Erling D. Andersen and Knud D. Andersen. Presolving in linear programming. Technical
report, Odense University, August 1993.

[2] Robert E. Bixby. Implementing the Simplex method: The initial basis. ORSA Journal on
Computing, 4(3):267-284, 1992.

[3] Robert E. Bixby. Progress in linear programming. ORSA Journal on Computing, 6(1):15-
22, 1994.

[4] A. I. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical Programming, 8:54-83,
1975.

[5] Thomas S. Chang, Frank S. McCormic. A hierarchical algorithm for making sparse matrices
sparser. Mathematical Programming, 56:l-30, 1992.

[GI CPLEX Optimization, Incline Village. Using the CPLEX Callable Library and CPLEX
Mixed Integer Library, 1993.

['i'] David M. Gay. Electronic mail distribution of linear programming test problems. hlathe-
metical Programming Society COAL Newsletter, 1985.

[8] Donald E. Goldfarb and John K Reid. A practicable steepest-edge simplex algorithm.
Mathematical Programming, 12:361-371, 1977.

[9] Jacek Gondzio. Another simplex-type method for large scale linear programming. Technical
report, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland, 1994.

[lo] Jacek Gondzio. Presolve analysis of linear programs prior to applying an interior point
method. Technical Report 1994.3, Departament of Management Studies, University of
Geneva,, 102, Bd. Carl-Vogt, 1211 Geneva, Switzerland, 1994. (to appear in ORSA Journal
on Computing).

[I l l Jacek Gondzio and Marek Makowski. HOPDM, modular solver for LP problems; User's
guide to version 2.12. Working Paper WP-95-50, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1995.

[12] IBM, New York. Mathematical programming system: extended (MPSX) and generalized
upper bouizding (GUB) program description, 1972.

[13] M Makowski. LP-DIT data interchange tool for linear programming problems (version 1.20).
Working Paper WP-94-36, International Institute for Applied Systems Analysis, Laxenburg,
Austria, 1994.

[14] Thomas S. McCormic. Making sparse matrices sparser: Computational results. Mathemat-
ical Programming, 49:91-111, 1990.

[15] W. Ogryczak and K . Zorychta. Modular optimizer for mixed integer programing MOMIP
version 2.1. Working Paper WP-94-35, International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1994.

[16] John I\'. R.eid. A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases. Mathematical Programming, 24:55-69, 1982.

[17] A. ~ w i ~ t a n o w s k i . A modern implementation of the revised simplex method for large scale
linear programming. Master's thesis, Institute of Automatic Control, Warsaw University of
Technology, Warsaw, 1993. (in Polish).

A . swie tanowski - 23 - Modular Presolve Procedure

[18] A. ~ w i ~ t a n o w s k i . SIMPLEX v. 2.17: an implementation of the simplex algorithm for large
scale linear problems. User's guide. Working Paper WP-94-37, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1994.

[19] A. ~ w i ~ t a n o w s k i . A penalty based simplex method for linear programming. Working Paper
WP-95-005, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1995.

[20] Andrzej P. Wierzbicki. Augmented Simplex: a modified and parallel version of Simplex
method based on multiple objective and subdifferential optimization approach. Working
Paper WP-93-059, International Institute for Applied Systems Analysis, 1993.

Modular Presolve Procedure

A The software

It is now quite common for the suppliers of professional optimization packages (e.g. Cplex 3.0, see
Bixby [3] or [6]) as well as advanced research codes (e.g., Gondzio [ll.]) to provide the customer
with an option to perform presolve analysis prior to applying an optimization method. On the
other hand it may be convenient for the user to be able to perform such analysis and then decide
on the optimization software to use or to reformulate a problem. Therefore we have decided to
provide both an embedded implementation and a stand alone presolve/postsolve package.

Thus the presolve procedure has become a new feature of our simplex optimizer (see
~ w i ~ t a n o w s k i [19] for description of the unique features of this implementation of the revised
simplex method). At the same time two programs: presolve and postsolv2 are provided,
which enable the user to perform presolve analysis of a linear problem, solve it with any lin-
ear optimizer (provided it can produce the solution in one of the formats understood by the
postsolver) and recover the solution of the original problem using the postsolv.

B Software availability

The optimization software package consisting of simplex, presolve and postsolv is made freely
available for scientific non-commercial use in teaching and research institutions only. Researchers
who want to obtain a binary executable version of some or all files of the package should contact
Dr. Marek Makowski, Methodology of Decision Analysis project, IIASA, A-2361 Laxenburg,
Austria. Then a license agreement form under the title "Request for Software" will be mailed
back. When the completed form is received by Dr. Makowski, the software will be transferred
by ftp or by other means together with documentation in form of IIASA working papers. You
may also e-mail Dr. Makowski. The address is: marekQiiasa . ac . at.

The binary versions of the program are available for the following system platforms:

1. SparcStation running Solaris operating system; code compiled with GNU C++ ver. 2.6.3
or later, or SunPro C++ compiler ver. 3.0.1,

2. CRAY Superserver 6400 running Solaris operating system; code compiled with GNU C++
ver. 2.7.0,

3. IBM P C AT compatible with 386, 486 or Pentium processor; code compiled with GNU
C++ ver. 2.6.0 or Watcom C++ compiler ver. 10.0; a 32-bit DOS executable with extender
allowing to use the entire physical memory and, in case of the GNU compiler, also virtual
memory.

If this should be necessary, the code may be recompiled for any other platform under a separate
agreement with the code's author. Other platforms that we know our code to be compatible
with are IBM RS 6000 with AIX and DEC workstations running Ultrix operating system.

This report and other IIASA working papers (including those referenced in this paper) are
a.vailable via W W W at http: //www. iiasa. ac. at/docs/IIASAPublications .html.

In case of any problems with the software or questions regarding it's applicability in non-
standard applications feel free to contact the author using the address given on the title page
or e-mail a.ddress: swietano0ia.p~. edu.pl.

C User's guide to using the presolve analysis

I11 this section we shall present the calling syntax of all three applications. It was our intention
to make their user interfaces as similar, consistent and easy to use as possible. Therefore we

'This is not a t,yping error. For compatibility with MS-DOS the names of the programs have been limited to
eiglit characters, thus the 'e' a t the end of the word 'postsolve' had to be omitted.

A. ~~v i~ tano rvsk i - 25 - Modular Presolve Procedure

shall first give a general description, which applies to all the programs, then we shall proceed to
define the options available in each of them. Finally, a number of typical usage examples will
be given for each of the programs in the package.

C.1 Batch processing

All three applications (simplex, p reso lve and pos t so lv) work non-interactively, taking a num-
ber of input files and when required producing some output files. At runtime the programs may
output a report to the standard output (normally the screen). When called without any argu-
ments they print out a short reminder of the calling syntax. All the directives concerning the
activity of a program have to be given as command line arguments.

C.2 The common characteristics

The common, most general calling syntax is:

where <programname> (one of simplex, p reso lve or pos t so lv) is followed by any number of
options. Each option consists of a keyword (beginning with a dash '-') and an argument, e.g.,
-mps-in af i r o .mps. The options may be given in any order, but may not be repeated (except
wheil repetition is specifically allowed).

Whenever the option's argument refers to a file name, no extensions are assumed or added.
In particular input and output file formats are not recognized by file name extensions.

Any error detected during argument parsing causes a runtime error message to appear on
standard error device (usually the screen) and the program terminates. In particular, each of
the programs requires that one or two input files always be given.

The programs input and output data in the following formats:

1. Fixed or free MPS text file for linear problem input and output.

MPS format wit11 mixed integer programming extensions is described in IBM's MPSX
linear algebra package manuals [12].

Warning: Mixed integer extensions are understood in input files, but are not present in
the output files.

2. A text format for optimal basis output.

It is defined in the user's guide to the previous release of the simplex optimizer (see
~ w i ~ t a n o w s k i [18]) and is accepted by the MOMIP mixed integer optimizer of Ogryczak
and Zorychta [15].

3. A solution in text format identical to the format provided by the previous release of
simplex.

Since the postsolve procedure does not recover the values of the dual variables or reduced
costs of the original problem, those values are not available in the solution whenever
presolving is performed. Similarly, after presolving the row activities are unavailable.

4. A text file containing the log of all presolve actions.

This file is only to be used for data interchange between p reso lve and pos t so lv . The
format is not published and subject to change without notification.

5. A binary LP-DIT format for linear problem input and output (see Makowski [13]).

6. A binary LP-DIT format for problem solution input and output.

Modular Presolve Procedure

C.3 The options of the p r e s o l v e r

Program p r e s o l v e accepts the following options:

This is the only mandatory option. It defines the name of the input file in appropriate
format. Exactly one input file must be given. In case of an MPS file the keyword -mps-in
may be omitted.

-mps-out < f i l e name> and -di t -out < f i l e name>

The reduced LP may be output in either MPS format, or LP-DIT format or both.

There is no default output name.

- a c t i o n < f i l e n a m e >

Defines the name of a file to which the presolve actions will be written.

By default (i.e., when this option does not appear in the command line) the presolver will
be invoked with all presolve techniques a ~ t i v e . ~ The argument following the option must
consist of one or more abbreviations of specific presolve methods (flags) separated only
by plus ("+") characters (and not by whitespace). For example, to specify all presolve
inethods irxcluding the explicit slack conversion you need to write: -mode a l l + e s . See
Table 9 for a full list of available flags.

This option may be repeated.

-v [none l low l high]

The amount and detail of the report that the optimizer produces when it solves a problem
is decided by this option. The verbosity level none causes the program to operate silently;
only the possible error messages are output to standard error.

The default setting is low.

C.4 The options of the p o s t s o l v e r

The p o s t s o l v program reads the following options:

This (1na.ndatory) option informs the program of the name of the linear problem solution
in LP-DIT format.

- a c t i o n < f i l e n a m e >

The presolve actions are read from the given file. This option is also mandatory.

- t x t - s o l < f i l e name> or - d i t s o l < f i l e name>

Solutioil output in either text or LP-DIT format or both may be requested. If the problem
is not solved (e.g., when it is found to be infeasible) the solution will not be produced.

There is no default solution file.
-

3Since removal of explicit slack variables is suspected to worsen simplex optimizer's performance, this presolve
technique has to be invoked explicitly.

- 27-

Table 9: Presolve flags

Modular Presolve Procedure

-mps-lp < f i l e name> or - d i t l p < f i l e name>

After presolving, the solution file (either in LP-DIT or MPS format) contains only the
values of the primal variables. If, however, the user should wish to obtain the row activities
as well, he or she must provide the original linear problem to the postsolver using either
one of the above options.

The program reads in the original constraint matrix and multiplies it by the solution
vector. The dimensions of the vector and the matrix must match. Additionally, p o s t s o l v
checks whether the primal solution is feasible. Any infeasibility over 1.OE - 8 is reported
but no other actions are taken (the row activities are calculated regardless of possible
infeasibility).

Flag
on, a l l
o f f , none

s r
f s c
f d r
d c
n e
e s
min

simple
pr imal
dua l

-v [none l low l high]

Meaning identical to defined in appendix C.3.

Meaning
all presolve techniques, except explicit slack removal
no presolving (has no effect when preceded or followed
by other flags)
singleton row removal
free and implied free singleton column elimination
forcing and dominated row elimination
dominated and weakly dominated constraint detection
numerical eliminations
explicit slack removal
empty row and column and fixed variable elimination
(added by default to all other options except o f f /none)
same as min+sr
same as min+f dr+f s c
same as min+dc

C.5 Using the p r e s o l v e r / p o s t s o l v e r pair: e x a m p l e s

Presolver and postsolver are to be used together. Therefore the example here would present the
whole processing cycle: from presolving through external optimizer to postsolving. In the exam-
ple simplex will be used, but of course the reader would use an optimizer of his or her choice.
For a description of the command line arguments of the simplex optimizer, see sections: C.6
and C.7.

p reso lve l.mps - a c t i o n a c t -d i t -out l . d i t

simplex -presolve o f f - d i t - i n l . d i t - d i t - s o l s o l

p o s t s o l v s o l - a c t i o n a c t - t x t - s o l 1 . ~ 0 1 -mpslp l.mps

This example starts with presolving an MPS file 1 .mps to an LP-DIT file 1. d i t with presolve
actions written to file a c t . Then the simplex optimizer comes in. It is explicitly told not do
any presolving (-presolve o f f) . It reads the presolved LP and writes an LP-DIT solution to
s o l . Finally, the postsolver is told to read in the presolved problem's solution s o l , the presolve
a.ctions a c t and the original linear problem 1 .mps. From this it produces the solution to the
original problem containing the primal variables and the row activities: a text file 1. s o l . If the
option -mps lp I .mps was absent, the solution would only contain the primal variables.

Modular Presolve Procedure

C.6 The options of the s i m p l e x optimizer

The simplex optimizer accepts the following command line options:

-mps-in < f i l e name> or - d i t - i n < f i l e name>

Meaning identical to defined in appendix C.3. In particular, exactly one input file is
required.

- t x t - s o l < f i l e name> and -d i t - so l < f i l e name>

Meaning identical to defined in appendix C.4.

- b a s i s < f i l e name>

Tlle optimal basis will be output to a file when this option is present. If the optimal
solution is not found, the basis file contents will inform the MOMIP optimizer that the
problem was infeasible. When basis output is requested, presolve analysis is disabled.

By default the optimal basis is not stored.

-p reso lve x{+y{+z. . .))
Meaning identical to presolver 's option mode (see appendix C.3).

- p r i c Crc l se lase l

It is possible to specify the simplex pricing scheme. Available schemes are:

- r c for minimum reduced cost selection (Dantzig's criterion),

- s e steepest edge (see Goldfarb and Reid [a] or Swietanowski [19]) and

- a s e our own efficient steepest edge approximation (see ~ w i ~ t a n o w s k i [19]), which is
the default mode.

- s c a l e [on lo f f l

Allows to turn on or off the linear problem scaling. By default: on.

-v [none l low l high1

Meaning identical to defined in appendix C.3.

C.7 Using the s i m p l e x optimizer: examples

We shall now provide a number of basic examples of using simplex. In those examples we shall
assume that we have two linear problems: 1 .mps in MPS format and 2 . d i t in LP-DIT format.

1. simplex 1 .mps - t x t - s o l 1. s o l

This directs simplex to read 1 .mps (assuming it's in MPS format), solve it using all the
default options (including default presolving) and store the solution in a text file 1. s o l .

2. simplex -mps-in l.mps - t x t - s o l 1 . ~ 0 1 -v none

The difference between this and the previous example is such, that there will be no on-
screen report. The keyword -mps-in does not change anything here.

3. s implex - d i t - i n 2 . d i t -presolve min+ne -d i t - so l 2 . ~ 0 1

This time the simplex optimizer will read an LP-DIT file (keyword - d i t - i n must be given),
perform presolving consisting of numerical eliminations (ne), empty row and column re-
ductions and fixed variable removal (min). The min presolve flag could be omitted. An
LP-DIT solution will be written to file 2 . s o l .

4. s implex l.mps - b a s i s l . i n v

The simplex optimizer is used here to produce the optimal basis for MOMIP mixed integer
optimizer. The problem is not presolved (because the - b a s i s option was used).

Modular Presolve Procedure

C.8 Using the smip companion application

This applica,tion works on a slightly different principle than the other ones. While from user's
perspective it appears to be a stand alone mixed integer optimizer, it is actually no more than
a client application to a number of other stand alone programs. It calls simplex and MOMIP
and possibly, some other external applications providing them with necessary input files and
command line arguments. Each of the applications takes its input, provides some output data
(e.g., for further processing), reports its activity and perhaps produces some error messages.

To make the process of running two or more applications at a time manageable and easy to
understand, smip takes the burden of streamlining the applications off the user's back. Instead,
it operates silently and writes a common activity log file and possibly also an error log. N o
screen output is produced. Because of the long time that integer optimization usually takes we
decided that background operation will quite likely be the most useful one. On exit the error
log (by default smip. e r r is removed if it is empty. The log file (by default smip. log) always
remains.

At runtime smip creates in the current working directory a number of temporary files used for
communication between the applications and for some housekeeping chores. Those temporary
files are removed when the computations are finished.

The smip integrator accepts the following command line options:

-mps-in < f i l e name> or -d i t - in < f i l e name>

Meaning identical to defined in appendix C.3. In particular, exactly one input file is
required.

- tx t - so l < f i l e name> and -di t -sol < f i l e name>

Meaning identical to defined in appendix C.4.

- log < f i l e name>

By default smip produces a log file called smip. log. This name can be changed to any
other file name by using the above option.

- log < f i l e name>

By default smip produces an error log file smip . e r r . A different name may be given here.
If the error log is empty upon completion of all computations it is not stored a t all.

-v [none l low l high]

Similar to the meaning defined in appendix C.3, but this time (as smip writes it's reports
to a file rather than to a stream) the verbosity level refers the file output.

C.9 Using the smip integrator: examples

The following two examples demonstrate the uses of smip:

1. smip l.mps - tx t - so l 1 . ~ 0 1

This coinnland line will cause smip to:

a) convert the MPS input file 1 .mps to LP-DIT format,

b) solve the LP-DIT problem using the simplex optimizer and produce an optimal basis
for MOMIP,

c) invoke MOMIP which will read in the problem in LP-DIT format, solve it starting
from the optimal basis produced by simplex and write the text solution to file 1. so l .

2. smip -d i t - in 1 . d i t - log 1 . l og - tx t - so l 1 . ~ 0 1 -d i t - so l 1 .d s l

This time smip takes an LP-DIT input file (thus no conversion is necessary), writes the
log file in 1. l og and stores two solution files: one in text and one in LP-DIT format.

