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Abstract 

The paper aims to develop a more systematic approach to the problem of model structure 
identification for continuous time (physically based) mathematical models with discrete 
observations. An introduction to the model structure identification problem is first pre- 
sented. The approach to this problem is the application of a modified version of the 
extended Kalman filter, originally defined in [23]. This filter is tested using artificial data. 
The results obtained lead to  a further discussion of the filter's stability properties and 
also to a metaphor for model structures. Further study of the numerical properties of 
the algorithm reveal that its stability can be improved. An alternative algorithm, the 
so called recursive prediction error algorithm, is modified to a Kalman-like algorithm in 
continuous-discrete formulation. This algorithm is also tested using artificial data. The 
RPE-type of filter has better stability properties and appears to be very robust to initial 
conditions. Its applicability to  environmental case studies is set out through the applica- 
tion of the filter to a familiar case study. Applications of this type of filter is valuable for 
validation/verification of environmental and/or economical models that include a set of 
ordinary differential equations. 
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Model Structure Identification: 
Development and Assessment 

of a Recursive Prediction Error 
Algorithm 

J.  D. Stigter and M. B. Beck 

1 Introduction 

1.1 A Conceptual Framework 

The problem of model structure identification as it is defined in environmental systems 
analysis is concerned with the definition of a model of the form, 

Here x(t) ,  a ( t )  and u(t)  are the state-, parameter-, and input-vector, having dimensions 
12, q,  and r respectively. The vector y(tk) is the vector of measurements or observations 
(dim(y )=m). Equation (2) includes the discrete time sampling process into the model. 

Formally, it is required for the existence and uniqueness of the solution of (1) on the 
interval [tk, tk+l)  that the function f (x, u, a) satisfies the Lipschitz continuity conditions 
and exhibits linear growth in x and 0, [14]. In short the Lipschitz condition requires that 
there exists a I{ > 0 such that Vt E [tk, tk+l)  and u, v E R: 

where ( u ,  v) can be (xl , x2), (u l ,  u2),  or (a1, a2) and R is the vector space Rn+' , Rq+' , Or 
AT+', respectively. To fully expand this assumption to the case of measurable functions, 
needed in the stochastic setting of the differential equation ( I ) ,  the reader is referred to 
[14], chapter 3. 

The model definition (1)-(2) is completed with a continuous-time noise process ((t) 
and a discrete-time noise process q(tk) .  Both are assumed Gaussian white noise with first 
and second moments respectively defined by 

E{ t ( t> )  = 0 (3) 

E{77(tk)) = 0 (4) 

~ { t ( t ) l ~ ( t ) )  = Q(7)6(t - 7) ( 5 )  
E{v(tj)vT(tk)) = Rl(tk)Gjk PI 

where E{) is the expectation operator1, 6(7) is the symbolic Dirac &-operator, and dik is 
the I<ronecker &-function. Also, an error in the input sequence 

'Note should be taken that in continuous time the expectation is an integral expression, while in 
discrete time it is a summation. 



may be included that introduces an uncertainty. First and second order moments are 
defined by 

The ordinary differential equation set (1) represents a very wide class of system models. 
A priori knowledge is commonly used as a starting position from which the system ana- 
lyst attempts to define, validate, and improve a conceptual representation of the form (1) 
and (2). This process is called 'grey-box modeling' of an environmental system meaning 
that the model definition is based on physical and biochemical knowledge. We acknowl- 
edge the fact that distributed parameter systems, involving partial differential equations 
in the model structure, are preferred in some cases. In this working paper it is the aim to 
develop the theory for the field of identification of environmental systems. Here continu- 
ous time lu~n,ped parameter system models are used frequently. This is the most natural 
choice, since the data that have been collected are often sparse and also, many of the 
model definitions are based on dynamical laws that include lumped instead of distributed 
parameters. The model definition (1) and (2) in the above is then preferred (see e.g. [28]). 

1.2 Model Structure Identification 

The physical and/or (bio)chemical quantities that are sampled from the system involve 
uncertainties. For example: A biochemical oxygen demand (state) variable is difficult to 
measllre accurately in practice and introduces considerable uncertainty in the measure- 
ment equation (2). Also, it is typical for a system variable to fluctuate around a certain 
(time varying) mean value. Such fluctuations are included via a random process [(t) in 
equation (1). Of course one must be careful about the assumptions on [(t) and ~ ( t k )  
that were i~ltroduced in section 1.1. Typically [(t) is far from Gaussian- distributed, but 
exhibits a bias that can be related to an ill-defined model structure or structural incom- 
pleteness of f (x,  u ,  a;  t ) .  If the sequence [(t) would be truly Gaussian, then the parameter 
estimates generated by a combined state-parameter estimation algorithm such as the ex- 
tended Kalman filter (EI<F) would generate unbiased estimates of the state and parameter 
vectors given that the system model is linear. Both assumptions, i.e. non-linearity of the 
dynamical description f (x, u,  a; t )  and non-Gaussian white noise of especially [(t) are im- 
portant issues that need to be addressed. Also, it is typical that [(t)  can not be measured 
directly and its variance has to be specified 'a priori' through Q(to),  the system noise 
matrix. Alternative formulations of the Kalman filter are possible such that this matrix 
can be estimated on-line so that no 'a priori' value Q(to) needs to be specified - this type 
of filtering is often referred to as adaptive filtering, e.g. [19]. 

The innovations-error t ( tk )  is measured more directly, through the difference between 
the observation y(tk)  and the model's prediction of the same observation $(tk).  This 
error will be interpreted in terms of uncertainties. Four sources of uncertainty with their 
associated covariance matrices can be mentioned in this respect. They are: 

1. model structure error (Q( t ) )  

2. measurement error (Rl( tk)  and R2( tk))  

3. state uncertainty (Pxx(tk)) 



4. parameter uncertainty (Paa(tk)) 

A major practical problem is that the first and fourth error source in the above are difficult 
to quantify 'a yriori'. Especially the earlier-mentioned specification of Q( t ) ,  the system 
noise matrix, is a difficult task for the engineer, [3, 181. 

1.3 A Formal Definition 

The problem of model structure identification has quite a long history. It appeared in 
environmental systems analysis in the 19707s, [2, 3, 41. In this field very often the aim is 
to reconstruct a continuous model f (x, u, a )  from a historical data record and 'a priori' 
knowledge. The approach to a solution for the problem is a somewhat unconventional 
application of the extended Kalman filter. Instead of using the filter primarily for com- 
bined state-parameter estimation, here the results generated by the EKF (including the 
calculated innovations residuals {e(tk), k = 0,1, ...)) are used to infer conclusions on the 
validity or, as Young termed it ,  the credibility of the model of the badly defined system 
under study, [3_8]. Emphasis should be given to the fact that so often in environmental 
systems analysis the case studies are very poorly defined and it is difficult to deduce any 
structure in the sparsely collected data. Tools that are discussed in this report have the 
aim to help the system analyst to complete this task in a satisfying and more systematic 
way, i.e. less ad hoc, than originally in [2, 4, 61. 

The model structure identification problem may be defined more specifically. If all 
the observed (historical) data up to and including time tk are stacked into one set the 
following notation can be defined for the output and input sequence respectively: 

Further, let N denote the length of the data record. Now the following definition for the 
model structure identification problem can be given, [4]: 

Given the observations {Y(tN),  U(tN))  and given the the various sources of un- 
certainties, i.e. {Pxx(to), Paa(to),  Rl(to),  &(to), Rz(to)) ,  determine [f, h; x, a] 
and the accompanying uncertainties {Pxx(tN), Paa(tN),  Q(tN)) .  

In other words: The signals {Y(tN), U(tN)) generated by the system are used to  construct 
or identify a model. Very often the state and parameter uncertainties Pxx(to) and Paa(to),  
as well as the value for the system noise matrix &(to), are not well known 'a priori', so 
that minimal information on the processes is available. As said before, this is typical for 
the field of environmental systems analysis. 

2 Filtering Theory 

2.1 Introduction 

The history of filtering theory takes us back to the eminent scientist Carl Friedrich Gauss 
who developed the least squares method to predict the position and velocity of some 
of the asteroids that revolve around the sun between the orbits of Mars and Jupiter, 

[15]. This classical work found its counterpart in a modern approach published in the 
seminal work of Kalman, [20]. Filtering is an on-line estimation method that is used 



frequently in signal processing problems. Numerous applications of some form of the 
Kalman filter, originally derived in the previously mentioned paper [20], have been re- 
ported, [2, 5 ,  9, 10, 11, 13, 16, 17, 18, 21, 2712. Typically one studies well defined objects 
of study that can be defined in 'grey-box' models that have a sound physical foundation. 
The primary interest in this kind of application is not so much one of model structure 
identification, but rather one of combined statelparameter estimation and this is why 
the extended Kalman filter plays such an important role. The basic (linear) filter was . 

originally developed with emphasis on state estimation, [18]. One of the aims of this pa- 
per is to show that an algorithm developed in [24], is thought to be better suited for the 
identification of model structure in environmental systems analysis because it is especially 
developed for parameter estimation. The parameters in the model description (1)-(2) are 
focal elements that can reveal an incorrect model description when estimated through a 
recursive 'Kalman-like' algorithm. This technique is not new, [2], but needs a better devel- 
oped tool that is more suited for the problem of identification. Also, the approach taken 
in [2] is rather ad Izoc and needs to be modified so that more systematic identification of 
environmental models is possible. 

2.2 State-Parameter Reconstruction 

In this introductory section a very brief summary of the extended Kalman filter algorithm 
will be presented. Other publications, e.g. [l ,  16, 18, 241, give a much more detailed 
description of the mathematics involved. In section 3.2.2 a metaphor is presented that 
will help the reader in understanding the action of the filter clearly without too much loss 
of mat hematical details. 

2.2.2 Some Notation 

The extended Kalman filter (EKF) recursively updates the most recent estimate of the 
so called augmented state vector 

A note should be made on the notation in (11). With the argument (tk+1 Itk) it is meant 
that an estimate of the augmented state vector is obtained at the discrete time instant 
tk+l conditioned upon all the observations that were processed up to and including time 
instant tk. The estimate ia(tk+1ltk) is based on the previous estimate ia( tkl tk-l) ,  and its 
uncertainty 

'Note t,hat t,his is only a small selection from the vast amount of literature that has been writt,en on 
filt,ering theory. 



Here Pxx(tkltk-l) is the (n  x n)-dimensional variance matrix of the state vector, P,, 
( tk ltk-l) is the (n  x q) dimensional covariance matrix of the states and parameters system, 
and Paa(tkltk-l) is the (q x 9)-dimensional variance matrix of the parameter vector. Also, 
the new observation ~ ( t ~ + ~ )  that comes available from the data record is included in the 
estimate. It is easy to show that Pa(tkltk-l) is positive semi-definite, i.e. 

This property is used for a factorization of the matrix Pa(tkltk-l) which can be useful with 
regard to the stability of the filter and/or numerical roundoff errors in the computations 
involved. 

2.2.3 A Modification 

In this sectioil a modified version of the extended Kalman filter will be introduced that 
forms our object of research. It has been shown to be useful in the context of identifiability, 
and especially an interesting extra element is included in the modified filter that can be 
useful for the detection of a failure of the model structure on a certain part of the data 
record Y(tN).  The filter has been applied to a case study in [27] that was originally 
defined a.nd studied in [2]. The case study involves data that were taken from the (non- 
tidal) lowland River Cam in the United Kingdom. The importance of this revisited case 
study is that a comparison can be made between the modified filter and the extended 
Kalman filter a.s defined in [18]. In [27] a discussion can be found of the results of the 
inodified filter a.pplied to  the same data set. The modification is essentially due to Ljung, 
[23], and is rewritten in continuous-discrete formulation in 1261. 

Let us first introduce some notation. Let the model of the system not be given by (1)- 
(2), but by the innovations form representation of the system, i.e. 

.(t) = f (x, u, a; t )  + Ir'(t)rl(t) 

~ ( t k )  = h(x, U ,  a; tk) + rl(tk) 

where Ir'(t) is the so called steady state Kalman gain matrix. Incorporating the ideas of 
Ljung, 1231, the augmented state vector is now augmented again, including the elements 
of the matrix Ir'(t) in the parameter vector a ( t ) .  The number of elements of the matrix 
Ir'(t) are 17171, SO that the augmented state vector (11) has now dimension (11 + q + nm). 
Now define 

where L(tk)  is the Kalman gain sub-matrix associated with the parameters of the system. 
It can be shown that Ra(tk) includes a state transition matrix @,(tk+l, tk) that has a 
specia.1 block structure. More specifically, the matrix @a(tk+l, tk) is defined by 



with 

and At = tk+l - tk. This leads to the following block representation: 

Further, the observation matrix H(x ,  u, a; tk)  can be partitioned as the m x (n + q + nm) 
matrix 

H(x, U ,  Q;  tk) = ( C(X,  U, a; tk) D(x, U ,  a; tk) ) (22> 

where 

The following algorithm can now be derived, [26]: 

It could be noted that, when there is no 'a priori' information on A(tk) (a  matrix 
that gives an estimate of the variance of the innovations sequence {c(tk), k = 0,1,  ..., N))  
available, then it should be estimated by (31). Otherwise it is preferable to fix the value of 
this matrix to an initial value so that the number of free parameters is minimal. Further 
discussion of this so called tuning of the filter can be found in section 3.2.2. The author 
developed a MATLAB implementation of algorithm (25)-(31) as part of the project. The 
source code is included in appendix A.l of this report. 



2.3 Taking the Modification Further 

2.3.1 Introduction 

When applying algorithm (25)-(31)) it appears that serious stability problems arise. Es- 
pecially worth mentioning is that the main diagonal elements of the covariance matrix 
P,, become negative when the initial value P,,(to) is too large. This effect has also been 
reported in the literature, [8, 10,241, and is usually due to round off errors in equation (30) 
that arise when subtracting two matrices that have entries close to zero. In [8, 10, 241 
alternative formulations, namely 

a stabilized filter 

a square root formulation due to Potter 

a UDUT factorization 

are suggested to solve this problem. It is the positive definiteness of the variance covariance 
matrix Pa ( tk  1 tkPl)  that is utilized in these factorizations. However, factorization methods 
do only seem to be a solution for higher order systems and these kind of system are not 
used in the current analyses. When looking closer to equation (30)) i.e. the propagation 
of the covariance matrix Pa,, it appears through numerical experiments that this matrix 
becomes unstable because of the high values of especially L(tk).  This would also have 
happened in case of a factorization of the covariance matrix Pa(tkltk-1). It was found 
useful to study the book [24] more extensively because it is here where problems related 
to the implementation of recursive algorithms are discussed in much more detail than in 
the paper [23]. 

In the following a stable algorithm that is specially suited for parameter estimation is 
presented. In the context of the model structure identification problem it has attractive 
potential. Let us emphasize here that the testing of a hypothesis via the interpretation of 
the parameter trajectories of a recursive identification algorithm is the main theme and 
our motivation for the research that is conducted in this report, [27]. It is the estimation 
trajectories of the parameters that play a crucial role in the verification of a model. Some 
of the parameters may be well known from 'a priori' knowledge and the related hypothesis 
can be defined in very bold and rigid terms. Also, the time invariance of the parameters 
can be used to identify the structure, [2]. It is therefore believed to be useful to develop a 
tool that is most suited for estimation of parameters in the context of identification. This 
view also has a sound foundation in the (Popperian) hypothetico-deductive philosophy of 
science, [22]. In general, the continuous testing of hypotheses is crucial to the progress of 
science. The model (1) can be seen as a constitutive assembly of hypotheses that need 
to be tested for their explanatory power. Filtering theory elegantly combines knowledge 
and data in one framework, [3]. 

2.3.2 A Unified Approach 

In [24] it is shown in a revealing way that most of the recursive (Kalman like) estimation 
algorithms stem from one and the same recursive prediction error algorithm (RPE for 
short). Also, the numerical deficiencies of equation (30) are explained much better than 
in the paper [23] and some remedies are suggested to improve the stability of the filter. 
At this point it should be mentioned that many different algorithms for state-parameter 
estimation exist. Among these are the extended Kalman filter (EKF), [18], the instrumen- 
tal variable method (IV), [25], and a Recursive Prediction Error algorithm (RPE),  [24]. 



In the following a modified algorithm especially suited for continuous discrete systems, 
and more specifically applicable to environmental water quality systems, is developed and 
tested. 

The RPE-algorithm as defined in [24] is not unique. For different tasks different sets 
of equations can be utilized that have their root in a recursive prediction error algorithm. 
This 'master' algorithm also needs some minor modifications to make it more applicable in 
the field of environmental systems analyses where ordinary differential equations are often 
used. Also, implementation considerations lead to a slightly different algorithm because 
the stability of the algorithm can be improved using a stabilized version of the variance- 
covariance equation (35). Some adjustments of the basic algorithm will be presented in the 
next section. After that, the resulting algorithm will be tested on an artificial set of data 
and also the 'real-life' Cam 1973 data set will be used for evaluation of the performance 
of the algorithm in the context of identifiability. 

In [24], pg 127, a recursive prediction error (RPE) algorithm is developed starting 
with a (discrete) innovations form model of the form 

where G( tk )  is the input matrix. The RPE-algorithm is summarized below for future 
reference and also, to introduce some notation. 

where y ( tk)  is a series of positive numbers that decreases with order ~ ( l / t ~ ) ~ ,  and 

For an explanation of the matrix R( tk)  the reader is referred to [24]. This is not of interest 
here, since the matrix is only a way to arrive at the variance-covariance matrix Pa, in 
a later version of the algorithm. Further, some considerations for implementation of the 
algorithm should be presented that are of concern here. Because of the parametrization 
of the matrix I? better convergence properties are guaranteed when compared to the 
(conventional) extended Kalman filter as defined in [IS]. Further, if one uses the so 
called stabilized Kalman equation a very simple, however, computational more intensive, 

3Here the decreasing series is taken as y(tk) = l / t k .  



solution to the problem of stability of the variance covariance matrix P,,(tk) is achieved. 
This stabilized equation is straightforward to derive. If one starts with equation (35) and 
defines 

one can use the matrix inversion lemma4 to arrive at the following equation for the 
propagat ion of the variance-covariance matrix: 

Finally, it could be noted that equation (40) can be modified so as to increase computa- 
tional efficiency. Instead of calculating $ it is more efficient to calculate GT because then 
there is no need to transpose the matrices W,  H, and D on the right hand side of (40). 
The following algorithm is now found: 

Although algorithm (45)-(54) is not new it does not appear to have caught the attention 
in the environmental sciences. A literature search confirmed this statement. The above 
algorithm has been implemented in MATLAB as part of the project (appendix A.2). It 
will be tested on a familiar ARMA time series in the next section. 

3 Some Results 

3.1 Introduction 

Having inti-oduced a filtering algorithm in section2.2.3, the discussion will continue with 
a test of algorithm (25)-(31) using artificial data. The reason for testing the algorithm 
more extensively is that one of the results of the (revisited) Cam '73 case study in [27] 
was that the algorithm showed unstable behavior whenever the main diagonal elements of 

4This important lemma is st.at.ed in appendix B. 

9 



the matrices {P,,(to), A(to)) were specified too large. This was not really an issue at that 
time, because much of the Cam case study was well known through [2] and especially the 
'a priori' values of the various uncertainty matrices and the augmented state vector were 
well tuned through these results. For future reference it is interesting to mention that the 
values of the uncertainties in the parameter vector (P,,(to)) were taken to be very small 
(e.g. P,,(to) = 0.005 for a (BOD) decay rate constant). It now appears that this small 
magnitude is a necessity for the algorithm to work. This will be shown in a later section. 

The first objective is to test whether the algorithm indeed generates accurate estimates 
of both the states and parameters of the system. Hereto a model of the system is defined 
that is completely equivalent to the (artificial) system that generates the data. A later 
planned exercise will include simulations that have a structure f (x, u, a) not equivalent 
to the system, i.e. model structure errors (Q(t))  are imposed. The latter is indeed often 
the case in environmental case studies where systems are usually poorly defined. 

3.2 Testing the LEKF 

3.2.1 A Data Generating System 

To test the LEI<F for convergence the following very simple system definition is used: 

where 

a,nd w(tk) a (discrete) normally distributed random variable. The value of the measure- 
ment noise matrix R2(tk)  is taken as R2(tk)  = R2 = 0.1. The constant parameter vector 
a is defined as a = ( 0.8 ). An example of output generated by system (55)-(57) is given 
in figure 1. 

As our main concern here is to test the convergence behavior of the filter the model 
f (x, ZL, a) is defined equivalent to the system so that the model reads: 

Results of the LEKF are summarized in figures 2 and 3. It is apparent from figure 3 
that the algorithm has difficulty in swiftly reconstruction the true values of a. When 
the 'a priori' estimate for a is too far away from the initial value the algorithm even 
generates very poor estimates that converge to a completely different value. It is therefore 
a.pparent that the only good results are obtained when the initial values for &(to) are 
relatively close to the true values a. This does not mean that the LEKF is useless, 
since the estimation trajectory of the Kalman gain can be useful in finding an incorrectly 
specified model structure, [27]. The robustness of the filter is, however, rather poor. 
Further, something more can be said a.bout the stability properties of the LEKF. Through 
numerical experiments it became clear that 

1. The value of the variance matrix P,,(to) should be taken to be very small so as 
to define the model parameters very rigidly. This allows the model to 'survive' the 
transient effects at the beginning of the simulation. 
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Figure 1: A N=100 size sample of the data generated by the system. 
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Figure 2: Results of the LEKF applied to the a.rtificia1 data. Top: state estimates (-) 
a.nd observa,tions (0). Bottom: The innovations sequence t ( tk) .  

2. The value of the innovations variance matrix A(to) should be taken to be large with 
the result that the initial corrections to the parameter vector &(to) are small. 

3.2.2 A Metaphor 

The results so far obtained may be explained using a simple metaphor that increases 
our insight into algorithm (25)-(31). Suppose the model (1)-(2) is visualized as a clay 
structure. Further, let us assume that different regions with different densities represent 
pa'rameter/parameter-uncertainty pairs {(&;(to), b;(to)), i = 1, .., q) .  The bi can be asso- 
ciated with the flexibility of the clay structure for every &;. Hence, the structure has not a 
uniform flexibility, but rather a heterogeneous structure. A rigid, more brittle region can 
thus be associated with a highly certain parameter (&,(to) = 0.005) while in the opposite 
case a highly uncertain parameter corresponds to a flexible part (&;(to) = 0.01). Now 
imagine that the clay structure is continuously exhibited to  stresses that cause the model 
to change its shape. These stresses are 'caused' by the data {Y(tk)) ,  and more specifically, 
l ~ y  the innovations sequence { t ( tk) ,  k = 0,1, ..., N). Further, one can imagine a shield that 
surrounds the clay model and weakens the forces/stresses that cause the model to change 
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Figure 3: The parameter cul and Icalman gain kll estimates. 

its structure over time. The 'strength' of this shield can be specified through the value of 
the matrix A(to). If the main diagonal elements of this matrix are high, this causes the 
stresses to chailge the structure weakly, while if the diagonal elements are small, it allows 
the data to change the shape of the clay structure strongly. Since h ( t k )  is estimated 
on-line its value tends to decrease as the innovation c(tk) decreases through adjustment of 
the parameters so that the data are explained best. Thus, while the filter is learning the 
stresses acting on the model structure increase. These stresses are counterbalanced by a 
more rigid model definition through decreasing uncertainties of the parameters. In some 
cases it can even cause the model to crash, i.e. the stresses are so high that the model 
collapses and the values of the parameters 'explode' to infinity. 

To be more specific, the update step of the parameter vector ti was previously defined 
in (26) as 

&(tk+l ltk) = &(tkltk-1) + L(tk)c(tk) 

with c(tk) a,nd L( tk)  defined in equations (27) and (28) respectively. The clay-metaphor 
now helps to understand the behavior of the LEKF better. Note that in equation (28) 
tlre matrix A(tk) is inverted, so that small values for h ( tk )  cause strong corrections to the 
values of the parameter vector ti(tk+1 Itk). In other words: When the stresses shaping the 
model structure f (x ,  u ,  cu) are high, the structure changes substantially. The filter simul- 
taniously reduces the uncertainty in the parameter estimates and the structure freezes, as 
it were, to a final shape that is very rigid. The set of parameters in the model, included 
in the ordinary differential equation set ( I ) ,  has a very natural analogy in the metaphor 
presented in the last section. The 'explanation' for the unstable behavior of the LEKF 
is that the stresses that sculpture the predefined structure are so high and some of the 
parameters are so weakly defined that the complete structure crashes. It is especially 
the first period of the data record in which the model's shape can change dramatically. 
Initially, the flexibility of the structure is very high and it is as if a small 'earth-quake' 
shakes the model and changes its structure dramatically during the first iterations of the 
filter. These so called transient effects are vital to the explanation of the instability of 
algorithm (25)-(31). 
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Figure 4: State estimation of an ARMA time series by the RPE-algorithm. Top: Obser- 
vations (0) and predicted observations (-). Bottom: The innovations sequence. 

3.3 Testing the RPE algorithm 

3.3.1 A Data Generating System 

The RPE-algorithm is tested on an ARMA time series of the following form 

with cr = ( 1.0 -0.2 0.6 ) and R(tk) = R = ( 0.2 ). Equation (61) can be rewritten in 
observable canonical form, i.e. 

The above representation is in state-space form which is preferable with regard to the 
RPE-algorithm as formulated in the above. The results for this simulation exercise 
are summarized in figures 4 and 5. The two figures show that the algorithm is really 
performing very well. The values for cr are recovered fast and also, the initial high 
uncertainties (equal to one for all parameters) are decreasing rapidly. Also, the in- 
novations error sequence shows white noise characteristics, with a mean close to zero 

1 N ( F  Ck=l c(tk) = -0.0044), except for the initial simulation interval which is due to initial 
transient effects. The above results are encouraging and suggest it may be possible to de- 
velop the algorithm further to  a continuous-discrete formulation that is capable to attack 
models of the form (1)-(2). This will be done in the next section. 

3.3.2 A Continuous-Discrete Formulation 

If one is pragmatic about the assumption of white Gaussian noise of [(t) then it is not too 
difficult to include a continous time model into the filtering algorithm. Instead of using a 
discrete (linear) formulation of the model through discretization of the state propagation 
equation ( I ) ,  see e.g. [12], one can include the continuous model through a simple Runge- 
Kutta procedure that numerically integrates the set of ordinary differential equations. 
The formulation of the innovations model, however, leads to a problem. Because ~ ( t )  in 
equation (14) is continuous-time white noise it is expected to drop out of the equation 
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Figure 5: The parameter estimates for c u l l  0 2 ,  and a3, (-) and the Kalman gain elements 
k l l  and k 1 2 ,  including estimated uncertainties P, , ( tk )  (...). For layout-reasons only the 
first 400 iterations are included. 

when calculatillg the estimate ? ( t k )  through applying an expectation operator to the 
original equation ( I ) ,  see e.g. [18 ] .  This is circumvented pragmatically here and c ( t k )  is 
therefore taken constant over the simulation interval [ t k ,  t k + l ) .  The following equation 
now appears for the propagation of the state vector: 

Finally, the algorithm is completed by substituting d l  ( t k + l ,  t k )  for Fxx and f$12(tk+l, t k )  
for ~ ( t ~ )  following the arguments in [2615. Since the algorithm is completely recursive 
we omit the notation . ( t k l t k - l )  and abbreviate this to t k  only. This yields the following 
algorithm: 

'Note tha t  q511 and were defined in equation (21). 
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Algorithm (65)-(74) has been tested on artificial data and it was found that the results 
indeed recover the parameters very well. Because the behavior of the continuous-discrete 
RPE algorithm is similar to the previous test case the test results for the continuous 
discrete algorithm have been omitted in this report. 

3.4 Application to  the Cam-1973 data 

3.4.1 Introduction 

As a final exercise the continuous-discrete algorithm (65)-(74) is applied to  a familiar case 
study. This case study includes a collection of water quality data taken from the river Cam 
(UK)  in 1973 as part of [2]. The data have been discussed extensively in this reference, 
and also in e.g. [7]. In short the question is how to validate a set of candidate models that 
describe the processes that influence the downstream BOD concentration of a predefined 
4.7 km strech of the river Cam. This set of models is increasingly more sophisticated 
and includes a mass-balance, a decay of BOD due to satisfaction of BOD modeled as a 
first order chernical decay process, a persistent bias in the BOD concentration due to e.g. 
BOD increase caused by chemical reactions in the suspended solids, and an increase of 
BOD due to growth of an algae population in the river water during long sunny weather 
conditions. How these processes are included in a differential equation of the form (1)- 
(2) is discussed extensively in e.g. [2]. The main interest here is to study the behavior 
of the recursive (continuous-discrete) prediction error algorithm. This is also to make a 
comparison between the results in [27] and the new type of filter. 

3.4.2 BOD Model I 

The first model is known to be rather poorly defined. It includes a mass balance over 
the sytem and a decay of BOD is assumed that behaves as a first order chemical decay 
reaction with decay rate constant kl. The model reads 

Q(t> Q(t> ( t )  = ( k  + I / ) ~ ( t )  + V ~ ( t )  

where Q(t)  is the flow rate in the river stretch, V is the volume of the body of water in the 
defined system (assumed constant over time), u(t)  is the BOD concentration upstream 
(mg/l), and x(t)  is the BOD concentration at the downstream border of the stretch (mg/l). 
It is assumed for simplicity that 

The results summarized in figures 5-6 show clearly that the model is badly defined over 
the middle part of the simulation period. It is here where the gain matrix I(( tk)  suddenly 
increases to a constant value of approximately 0.8 (see figure 7), implying an 'injection' 
of uncertainty in the model structure definition. Also, it is clear from the first parameter 
estimation trajectory that kl is far from constant, but deflects to a substantially lower 
value than estimated initially. 

3.4.3 BOD Model I1 

The discussion is continued with the definition of a second model that includes a so called 
low-pass filter that simulates the increase of BOD due to an algae bloom in the river water 
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Figure 6: Estimates of observed and predictied BOD concentration, including the inno- 
vations sequence t ( tk )  for BOD model I. 

during long sunny weather conditions. The model reads 

1 (CY - 6) 
I @ k )  = I(tk-1) + - (~2( tk )  T CY - - q t k - I ) )  (77) 

I )  = 0 i f I ( t k ) < 7  (78) 

where I ( t k )  is derived from the low-pass filter (77) and reflects the addition of BOD due 
to growthldeath of an algae population, see also [27]. Further a l  is a 'sunlight'-parameter 
associated with the process of growthldecay of algae. It is estimated on line by the filter 
and assumed constant. 7 is specified 'a prior' and reflects a threshold level above which 
the process becomes truly active. Results for the model are summarized in figures 8 and 
9. Thb conclusion that the model better simulates the processes involved in the BOD 
dynamics in the river water is confirmed through this estimation process. The reader is 
referred to e.g. [7] for a more detailed discussion of this model validation process. Suffice 
to say here is that the filter clearly shows an improvement of model structure. The gain 
estimates (figure 9) are more constant and closer to zero during the whole simulation 
interval of 80 days when compared to the results of model I1 (see 7). Also the parameter 
al shows truly constant behavior which confirms our expectation and contributes to a 
credible model structure definition. The results discussed are of preliminary nature. One 
should realize that the innovations sequence also plays an important role in the judgement 
of the model structure(s) that have been proposed. Current research is elaborating on this 
and attempt to include these results in a systematic approach to the problem of model 
structure identification. 

4 Conclusions 

In this working paper three filtering algorithms have been tested, namely 

A modified continuous-discrete extended Kalman filter as defined in [26]. 



Figure 7: Estimates of parameters a1 and the Kalman gain ill for the BOD model I. 
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Figure 8: Estimates of observed and predictied BOD concentration, including the inno- 
vations sequence t ( tk )  for BOD model 11. 
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Figure 9: Estimates of parameters al, a l ,  and the Kalman gain i l l .  



A discrete recursive prediction error algorithm based on an innovations representa- 
tion of the system, [24]. 

A continous-discrete prediction error algorithm, also based on an innovations rep- 
resentation of the system. 

First, the continuous-discrete LEKF as defined in [27] was implemented in MATLAB. 
The stability problems with this type of filter have been resolved using an alternative 
recursive prediction error algorithm that has excellent stability properties. Also this type 
of algorithm is well suited for the identification of environmental models because it is 
especially written for parameter estimation that can be related to the hypotheses that 
are included in the model structure f (x, u, a). This progress is of practical importance 
because not only the algorithm is capable of estimating the parameters in the model, but 
also, the 'a priori' information necessary to iterate the algorithm is kept to a minimum 
so that the system analyst only needs to specify the most necessary information, i.e. 
Pa(to), f (x, u, a ) ,  and possibly A(to) and P(to) .  Obviously, the specification of f (x, u, a) 
is most important in the context of the model structure identification problem and the 
question arises whether the 'true' model structure is specified. It is believed that through 
the results generated by the RPE continuous-discrete algorithm this question can be 
solved heuristically. A suggestion for further research is to address more case studies as 
to observe how this algorithm achieves in the context of identifiability. 



Two MATLAB programs 

This appendix includes two algorithms that were programmed in MATLAB. One should 
notice the efficiency and the shortness of the source code due to the compact representation 
of the matrices. The core of the program is almost a word to word repetition of the 
mathematical symbols. 

A. l  The LEKF Algorithm in MATLAB 
% Load t h e  d a t a  f i l e  
l oad  ' cam. d a t  ' ; 
% I n i t i a l i z a t i o n  of t h e  f i l t e r  
% n l  == l e n g t h  of t h e  s t a t e  v e c t o r  
% n2 == l e n g t h  of t h e  model parameter  v e c t o r  (a lpha)  
% m == l e n g t h  of t h e  obse rva t ion  v e c t o r  
% n3 == n2 + nl*m, i . e .  t h e  l e n g t h  of t h e  parameter  v e c t o r  
% ( a lpha  prime) t h a t  now inc ludes  t h e  Kalman g a i n  
% mat r ix  elements  K( t -k) .  
% n  == n l  + n3 l e n g t h  of t h e  augmented s t a t e  v e c t o r ,  
% i n c l u d i n g  t h e  g a i n  ma t r ix  elements  
nl=l ;n2=2;m=1; 
% c a l c u l a t e  t h e  r e s t  
n3=n2+nl*m;n=nl+n3; 

% s i z e  of t h e  d a t a  f i l e  
i=size(cam);i=i(l,l);t~=cam(i,l);clear i ;  

% Fixed c o n t s t a n t s  t h a t  a r e  t h e  same 
% f o r  a l l  of t h e  s imula t ion  t ime 
V=1.51; 
% ' A  p r i o r i '  S t a t i s t i c s  f o r  t = t s t a r t  
xha t  = [2.3] ' ; 
the ta=[O.  31 0  01 ' ; 

% v a r i a n c e  cova r i ance  m a t r i c e s  
P2=ze ros (n l ,n3 ) ;  
P3=diag([0.005,0.25,0.05]); 
R = d i a g (  [O .41) ; 
K = the ta (n2+1  : l e n g t h ( t h e t a ) )  ; 
C = e y e ( n l ) ;  
D =ze ros (n l ,n3 )  ; 

i=s ize(cam)  ; t i m e e n d = i ( l ,  1 )  ; 
% s p e c i f i c a t i o n  of t h e  i n i t i a l  i n p u t s  
d a t a l = c a m ( l ,  : )  ; t l = d a t a l ( l )  ; 

% Declare  t h e s e  v a r i a b l e s  g l o b a l  f o r  t h e  ode23 f u n c t i o n  
g l o b a l  V Q t h e t a  u ;  

s t a t e = f o p e n ( ' s t a t e . o u t '  , ' w ' )  ; 
param=f open ( 'param. out  ' , ' w ' ) ; 

% S t a r t  of t h e  F i l t e r  Loop 
f o r  i= l : t imeend-1;  

% S h i f t  t h e  d a t a  v e c t o r  da t a0  and update 
d a t  aO=dat a1 ; 
d a t a l = c a m ( i + l ,  : )  ; 



% The Runge-Kutta integration (prediction) of the system model 
[T, xhat] = ode23 ( ' cam2 ' ,to, t I ,xhat) ; xhat=xhat (length(xhat) ) ; 

%epsilon is the difference between model output and observation 
epsilon=y-xhat; 

% Update the Jacoby matrix 
% This file specifies the Fll and F12 blocks 
% derived from the function f (x,u,alpha; t) 
Fll=[-(theta(1) + Q/V)I ; 
F12= [-xhat I epsilon] ; 
% Calculate the State Transition Matrix 
Phi=expm([Fll F12; zeros(n3,n)l); 
phill=Phi(l:nl,l:nl); 
phil2=Phi(l:nl,nl+l:n); 

L=(P2'*C'+P3*D')*inv(R); 
LT=L ' ; % (Save on computation time) 
xhat=xhat+K*epsilon; 
theta=theta+L*epsilon; 
P2=phill*P2+phil2*P3-K*R*LT; 
P3=P3-L*R*LT; 
% R=R+I/ (tl+l)* (epsilon*epsilon'-R)+0.005*eye(m) ; 
K=theta(n2+1: length(theta) ) ; 

% write estimates to file 
fprintf (state, '%12 .8f\nJ ,xhat) ; 
fprintf(param,'%l2.8f %12.8f %12.8f\nJ,theta); 
% close the for loop 
end ; 
fclose('al1') ; 

A.2 The RPE Algorithm in MATLAB 
% Recursive Prediction Error Identification Algorithm 
% Load the data file 
load ' cam. dat ' ; 
load 'sunlight.datJ; 
% Initialization of the filter 
% nl == length of the state vector 
% n2 == length of the model parameter vector (alpha) 
% m == length of the observation vector 
% n3 == n2 + nl*m, i.e. the length of the parameter vector 
% (alpha prime) that now includes the Kalman gain 
% matrix elements K(t-k). 
% n == nl + n3 length of the augmented state vector, 
% including the gain matrix elements 
nl=l;n2=2;m=l; 
% calculate the other dimensions 
n3=n2+nl*m;n=nl+n3; 

% ' A  priori' Statistics for t=tstart 
xhat = [21 ' ; 



theta =[0.3 0.2 01 ';%zeros(n3,1); 
K = [theta(n2+1 :n3)1 ; 
C =eye(nl) ; 
D =zeros(l,n3) ; 
~ambda=diag( LO. 51 ) ; 
P =diag( [0.005,0.05,0.051); 
psi =zeros(n3,m); 
W =zeros (nl ,n3) ; 

% Define any global constants here 
V=l.5l;Ibar=6.0; 
global theta u Q V sun; 

% Find the lenght of the columns in the data file for later use 
timeend=length(cam( : , I)) ; 
tN=cam(t imeend) ; 

% Initialize memory storage 
state =zeros (t imeend, nl) ; 
param =zeros (t imeend-I , n3) ; 
pvar =zeros(timeend-l,n3); 
mnoise=zeros (timeend ,m) ; 
inno =zeros(timeend,m); 

% specification of the initial inputs 
yhat=xhat (I) ; 

% forgetting factor 
lambda=l ; 

% Start of the Filter Loop 
for i=2:timeend; 

% Define u and y 
y=[cam(i-1,8)1; 
u= [cam(i ,511 ; 
Q=cam(i,3); 
sun=sunlight(i-1)-6.0; if sun<O, sun=O;end; 

% epsilon is the difference between model output and observation 
epsilon=y-yhat; 
~ambda=~ambda+~amma*(epsilon*epsilon'-Lambda); 
S=psi'*P*psi+lambda*Lambda; 
L=P*psi*inv(S); 
U=eye(n3)-L*psiJ; % Save on computations 
P=U*P*U'/lambda+L*Lambda*L'; 
theta=theta+L*epsilon' ; 
K= [theta(n2+1 :n3)1 ; 

% Predict the value of xhat 
[T,xhat]=ode23('cam3' ,cam(i-1,l) ,cam(i,l) ,xhat) ; 
xhat=xhat (length (xhat ) ) +K*epsilon; 
FII=[-(theta(l)+Q/V)] ; 
F12= [-xhat sun epsilon] ; 
Phi=expm( [Fll F12; zeros (n3 ,n)] ) ; 
phill=Phi(l:nl,l:nl); 
phil2=Phi(l:nl,nl+l:n); 



% store results 
state(i,l)=yhat; 
param(i-1, :)=theta1 ; 
mnoise(i)=Lambda; 
pvar(i-l,:)=diag(P)'; 
inno(i,:)=epsilonl; 

% close the for loop 
end ; 

% show the results 
show ; 

B The Matrix Inversion Lemma 

The following leinma is taken from [24]. 

Le111111a 1 (Matrix Inversion Lemma): Let A, B, C ,  and D be matrices of 
coinpatible dimension, so that the product B C D  and the sum A + B C D  exist. 
Theil 

[A + BCD]-~ = A-' - AP1 B [DA-I B + C-'1 DAPi 
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