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Preface 

The paper presents the mathematical part of a joint research on an endogenous growth 
theory and alternative approaches performed by Gernot Hutschenreiter (the Austrian In- 
stitute of Economic Research, WIFO), Yuri Kaniovski (the project on Systems Analysis of 
Technological and Economic Dynamics) and Arkadii Kryazhimskii (the Dynamic Systems 
project). A substantial part of the research is presented in Hutschenreiter, et. al., 1995, 
together with relevant references, an entire explanation of all variables and parameters, 
and economic interpretations of the results, whose formal justification is the goal of the 
present paper. 



Contents 

1 Model . Result Formulations 1 
. . . . . . . . . . . . . . . . .  1.1 Equation of technological leading-following 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 Goals . Outlineofresults 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 Result formulations 3 

2 Upper and Lower Asymptotics 11 
. . . . . . . . . . . . . . .  2.1 Elementary properties of solutions and barriers 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 Thethreeinitialcases 13 
. . . . . . . . . . . .  2.3 Case 1 (above the vB.barrier) . Absolute asymptotics 13 
. . . . . . . . . . . .  2.4 Case 1 (above the vB.barrier) . Relative asymptotics 14 

. . . . . . . . . . . . . . . . . . . . . . . . . .  2.5 Case1 (atthevB-barrier) 16 
. . . . . . . . . . . . . . . . .  2.6 Case 2 (below the nB.barrier) . Divergence 17 

. . . . . . . . . . . . . . . .  2.7 Case 2 (below the nB.barrier) . Convergence 18 
. . . . . . . . . . . . . . . . . . . . . . . . .  2.8 Case 3 (between the barriers) 19 

2.9 Summary: upper and lower asymptotics, and intermediate trajectories . . 19 

3 Intermediate Asymptotics 20 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Introductory comments 20 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 New variables 20 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Absolute asymptotics 22 

. . . . . . . . . . . . . . . . .  3.4 Specification of monotonicity conditions . 1 23 
. . . . . . . . . . . . . . . . . . .  3.5 Crossing the critical level from the right 25 

. . . . . . . . . . . . . . . . .  3.6 Specification of monotonicity conditions . 2 26 
. . . . . . . . . . . . . . . . . . .  3.7 Classification of monotonicity intervals 26 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.8 [-Boundedness 27 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.9 x.Limit . 1 27 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.10 x-Limit . 2 28 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.11 x-Limit . 3 29 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.12 [-Limit 29 
. . . . . . . . . . . .  3.13 Intermediate asymptotics for intermediate trajectory 30 

4 Existence of Intermediate Trajectories 30 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Introductory comments 30 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 A nonexistence domain 31 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 Lower bound trajectory 33 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Specification of parameters 33 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 Definition of a trajectory 34 

. . . . . . . . . . . . . . . . . . . . . . .  4.6 Monotonicity before crossing xt 35 
. . . . . . . . . . . . . . . . . . . . . . . .  4.7 Staying under xt after crossing 36 

. . . . . . . . . . . . . . . . . . . . . .  4.8 Staying under x, ( t )  after crossing 37 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.9 Staying between barriers 37 



5 Existence of Catching Up and Overtaking Intermediate Trajectories 38 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 lntroductory comments 38 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 A nonexistence domain 39 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Upper bound trajectory 41 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.4 Specification of parameters 41 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 Definition of a trajectory 43 

. . . . . . . . . . . . . . . . . . . . . . .  5.6 Monotonicity before crossing xt 45 
. . . . . . . . . . . . . . . .  5.7 Strict monotonicity in a neighborhood of xt 45 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.8 Staying between barriers 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.9 Proof of Proposition 1.6 47 



An Endogenous Growth Model for 
Technological Leading-Following: 

an Asymptotical Analysis 

Arkadii Kryaxhimskii 

1 Model. Result Formulations 

1.1 Equation of technological leading-following 

We deal with a differential equation for technological leading-following (suggested in 
Hutschenreiter, et. al., 1995,) 

-A A hA( t )  = g n ( t )  (1.1) 

B B hB( t )  = (n  ( t )  + -y(nB(t))6nA(t)) - ~1 
vB(t) + 

B B 1 - 0  
6 ( t )  = pv ( t )  - - nB(t)  ' 

In (1.2) we set [p]+ = max{p, 0). The equation generalizes the brand proliferation model 
due to Grossman and Helpman, 1991. It is intended to model the economic development 
of a large country A, a technological leader, and a smaller country B, a technological 
follower. Variables nA( t )  and nB(t)  stand for the knowledge stocks which originate at 
time t in countries A and B respectively, and variable vB(t) stands for the value a t  t of 
the representative firm in country B. It is assumed that country B "taps" a part of the 
knowledge stock accumulated in country A. The varying coefficient -y(nB(t)) in (1.2) is 
responsible for the rate of "tapping". Function -y(nB) is defined on [0, m). It is assumed 
to be continuously differentiable, strictly increasing, and satisfying the conditions 

Coefficients gA, cB, p, 6, cu are positive constants, and a < 1. One has 

where LA and LB are exogenous labor supplies in countries A and B respectively. Coef- 
ficient a is related to the elasticity of substitution, c ,  by 6 = 1/(1 - a), p is the discount 
rate, and l / n  stands for the amount of labor needed to develop a unit of new product. In 
what follows, time t varies from zero to infinity. 

1.2 Goals. Outline of results 
As it is seen from (1.1), 

A n ( t )  = exp(ijAt)nt 



where n t  = nA(0). Our goal is to compare nB(t) with nA(t )  at large t .  Namely, we shall 
be interested in finding an asypmptotics for the ratio 

as t grows to infinity. The three asymptotics are radically different: 

lim r ( t )  = r, = 0 
t+m 

lim r ( t )  = r, = oo 
t+m (1.8) 

lim r ( t )  = r,, O < r , < o o .  
t+m (1.9) 

Relation (1.7) implies that in the long run the knowledge stock of the follower asymp- 
totically vanishes in comparison to that of the leader. Relation (1.8) reflects, conversely, 
the situation where the follower's knowledge stock grows so rapidly that in the long run 
the knowledge stock of the leader vanishes in comparison to it. In case of (1.9) we have 
approximately the same rates of growth for the knowledge stocks of the leader and the 
follower. 

Relations (1.7) - (1.9) can also be interpreted in terms of ~ ( t ) ,  the follower's time lag 
defined through 

nB(t)  = nA(t  - ~ ( t ) )  = n$ exp(gA(t - ~ ( t ) ) )  . (1.10) 

If one of the relations (1.7) - (1.9) takes place, then exp(-gA7(t)) + r, as t + oo, and 
there exists the limit 

lim ~ ( t )  = 7, 
t+m 

In case of (1.7) we have 7, = oo, that is, the follower's lag grows to infinity. In case of 
(1.8) it holds that 7, = -oo, that is, the follower overtakes the leader, and the leader's 
lag grows infinitly. In case of (1.9) the limit 7, is bounded, and we have 

Our main result states the following. For every solution to equation (1.1) - (1.3) 
starting at a state with positive coordinates the ratio r ( t )  has a limit r, (thus r ( t )  cannot 
move periodically or chaotically). For the limit r,, which depends on a solution, only 
three values are admissible. We compute these values explicitly. The largest is either oo, 
or positive; the smallest is zero; the intermediate one is positive and bounded. We call 
the corresponding asymptotics upper, lower and intermediate. We prove that the upper 
and lower asymptotics are feasible, that is, each of them is realized by some solutions. 
The feasibility of the intermediate asymptotics is proved under an extra constraint on the 
parameters (see below (1.13)). 

As justified in Hutschenreiter et. al., 1995, the intermediate asymptotics is of special 
interest. Further economic arguments lead to the following question: can r ( t )  correspond- 
ing to the intermediate asymptotics be strictly increasing? A sharper setting: can such 
r ( t )  starting at r(0) < 1 end up with r, > l ?  In the first case the follower steadily 
approaches the leader. In the second case the follower overtakes the leader starting at a 
lagged position. Under appropriate constraints on the parameters, we provide positive 
answers to the above questions. (The second one is provided under stricter constraints.) 

The accurate result formulations are given in the next subsection. Sections 2, 3, 4 and 
5 contain the proofs. 



In some episodes, we shall use the following inequalities: 

g A  + P  c B + p  < - 
l - a  
l - a  

acB < - 
gA + P  

B c  > g A .  

Referring to (1 .4)  rewrite these inequalities in other notations. We have that (1.12) is 
equivalent to 

L B  < L A  , (1.15) 

(1.13) is equivalent to  

and (1.14) is equivalent to 

Inequality (1.14) being rewritten as 

is in a sense complementary to (1.12); we shall utilize its equivalent form 

l - a  
(cB  + P): g A + p + a > l .  

1.3 Result formulations 
In what follows, the term solution (to (1.1) - (1 .3))  means a solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  
to equation (1 .1)  - (1.3) defined on the half-interval [O, oo) and starting at positive values 

Let ( n A ( t ) , n B ( t ) , v B ( t ) )  be an arbitrary solution. Let ratio r ( t )  be defined by (1 .6) ,  
and time lag r ( t )  be defined by (1.10). Let, finally, 

ym = lim y ( n B )  . 
nB-cc 

(1.19) 

The next Proposition presents our main result. (Below, for better coordination with 
Hutschenreiter, et. al, 1995, values depending on cB and, sometimes, g A  are doubled by 
their expressions computed through (1 .4)  .) 

Proposition 1.1 For an arbitrary solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) ) ,  one and only one of the 
following three cases takes place: 

the lower asymptotics: 
B n ( t )  = const for large t  

B lim v ( t )  = -a 
t-a2 

lim r ( t )  = r ,  = 0 
t-a2 



lirn r(t) = r, = co ; 
t-+, 

the upper asymptotics: 
lirn nB(t) = co 
t-+, 

lirn vB(t) = co 
t-+, 

{ A 

-A < CB = LB/a 9 - 
lim r ( t )  = r, = - A  
t+, ~ , G & F  = 9" > cB = LBIa 

-A < CB = LB/a 9 - lirn ~ ( t )  = T, = 
t+m { i n  ii A , i A  > cB = LB/a ; 

the intermediate asymptotics: 

B lirn n ( t)  = co 
t+, 

lirn vB(t) = 0 
t+, 

B B 1 - a  - - 
1 

lirn n (t)v ( t )  = 
t+, 9 + P LAIa + P 

cB(l - a) - 1 
lirn r ( t )  = r, = y,G 
t+, (SA + P) - (cB + p)(l  - a) - % G L  A / L B - 1  

Remark 1.1 In the case of the intermediate asymptotics the denominator in the expres- 
sion for r, is necessarily positive; consequently inequality (1.12) is satisfied. Therefore, 
if (1.12) is violated, then there is no solution having the intermediate asymptotics. 

Remark 1.2 The labels for the above three asymptotics, lower, upper and intermediate, 
are motivated by the fact that the limit r, of r ( t )  for the intermediate asymptotics lies, 
a.s one can easily verify, between zero (that is, the limit of r ( t )  for the lower asymptotics) 
and the limit r, for the upper asymptotics. 

Proposition 1.2 For each ofthe two asymptotics, lower and upper, there exists a solution 
having this asymptotics. 

Let us give sufficient conditions for a solution to have the lower or upper asymptotics. 
Introduce the two curves where the right hand sides of equations (1.2) and (1.3) vanish. 
Call them, respectively, the nB- barrier and the vB- barrier. As one can easily see, the 
equations for the nB- and vB- barriers are, respectively, 

where 



We shall write 

~ n [ t l  = pn(nB(t) ,nA(t))  

P U P ]  = /lu(nB(t)) . 
Take a tA > 0 such that 

-A A 4y(n:)6n; exp(g t ) > 1 . 

Clearly, one call put 

; 
+ 

in particular tA = 0 if n t  and n t  are large enough, namely 

Proposition 1.3 Iffor a certain to > tA it holds that 

then (nA(t) ,  nB(t) ,  vB(t)) has the lower asymptotics. 

Proposition 1.4 Iffor a certain to > 0 it holds that 

then (nA(t ) ,  nB(t),  vB(t)) has the upper asymptotics. 

Let us pass to the intermediate asymptotics. Referring to Remark 1.1, we list (1.12) 
among conditions sufficient for the feasibility of the intermediate asymptotics. 

Proposition 1.5 If (1.12), (1.13) (or, equivalently, (1.15), (1.16)) are satisfied, then 
there exists a solution with the intermediate asymptotics. 

As justified in Hutschenreiter, et. al, 1995, the intermediate asymptotics is of pri- 
mary interest from an economic point of view. In particular, the follower's trajectories 
(nB(t) ,  vB(t)) corresponding to the intermediate asymptotics satisfy the so called perfect- 
foresight condition (see Grossman and Helpman, 1991), whereas those corresponding to 
the lower and upper asymptotics do not satisfy this condition. The existence of a solution 
with the intermediate asymptotics and r ( t )  strictly increasing is the next issue in our 
analysis. Below, we formulate sufficient existence conditions. 

Introduce 

Condition 1.1 For every time interval [tl ,  t2] of nonzero length and every solution (nA(t ) ,  
nB(t) ,  vB(t)) such that vB(t) satisfies pn[t] < vB(t) < pv[t] (t E [ t l ,  t2]), the product 
nB(t)vB(t) is nonconstant on [ t l ,  t2]. 

Condition 1.2 For every interval [pl,p2] of nonzero length with pl > 0 one cannot find 
ally positive a, /3 such that 

Y'(P) = 



Remark 1.3 Here are two examples of y (p )  satisfying Condition 1.2: 

Proposition 1.6 Condition 1.2 implies Condition 1.1. 

Let us call a solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  catching up if r ( t )  (1.6) is stricly increasing, 
and overtaking if  it is catching up, and 

r ( 0 )  < 1 < r ,  = lim r ( t )  
t-+a2 

Propositioil 1.7 Let one of Conditions 1.1, 1.2 and inequalities (1.12), (1.13)) (1.18) 
(or, equivalently, (1.15), (1.16), (1.17)) be satisfied. Then 

(i) there exists a catching up solution with the intermediate asymptotics; 
(ii) if (see Proposition 1.1) 

then there exists an overtaking solution with the intermediate asymptotics. 

A criterion of the intermediate asymptotics is as follows. 

Proposition 1.8 A solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  has the intermediate asymptotics if and 
only if there exists a to  2 0 such that 

for all t 2 to. 

The next characterizations specifying Propositions 1.5 and 1.7 are given in terms of 
variables 

x ( t )  = n B ( t ) v B ( t ) ,  [ ( t )  = n A ( t ) v B ( t )  . 

Set 

xo=x(O) ,  t o  = J ( O )  

and introduce 

l - c r  
X (  = 

S A  + P 
l - c r  

2," = - 
P 

Obviously, 



Proposition 1.9 Let inequalities (1.12), (1.13) be true. Let Jo > 0 and v,8- > 0 satisfy 

Then there exists an xo E [ x t ,  x u )  such that solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  with the initial 
state 

has the intermediate asymptotics. 

Remark 1.4 Inequality (1.28) is satisfied for to close to zero, since, as follows from (1.26) 
and (1.12), 

1 - a  
(cB + P ) X (  = (cB + P)V < 1 .  

g A + p  

If Jo  > 0 is fixed, (1.29) is satisfied for sufficiently small v:-. It is seen from the relations 

Figure 1 schematically illustrates Proposition 1.9. The upper curve symbolizes the set of 
initial pairs (so,  to) corresponding to solutions with the intermediate asymptotics ( v :  is 
fixed); this curve lies between xt and xu. The bold curves ended by arrows show corre- 
sponding solutions in coordinates ( x ( t ) ,  t ( t ) ) .  They converge to ( x E  , ztlr,). Condition 
(1.28) is reflected in the fact that the curve for ( xo ,  to) lies on the left of J + ;  condition 
(1.29) is illustrated by the fact that xt lies above the curve 7(x / v ,8 - )  = q / J .  

Proposition 1.10 Let one of Conditions 1.1, 1.2, and inequalities (1.12), (1.13)) (1.18) 
(or, equivalently, (1.15), (1.16), (1.1 7)) be satisfied. For every n t -  > 0 there exist a 
to > 0 and an zo E (0, x E )  such that solution ( n A ( t ) , n B ( t ) , v B ( t ) )  with the initial state 

is catching up and has the intermediate asymptotics (an additional characterization of 
( x o ,  to) is that a - cB 7 ( n t - ) 6 t o  is positive and suficiently small). 

hloreover, if 
c B ( l  - a )  

f ,  = y,6 
( I A  + p )  - (cB + p) ( l  - a )  > 

and 

then Jo and zo can be selected so that the above solution is overtaking. 



Figure 1: A schematic illustration of Proposition 1.9. The upper curve represents the set of 
initial points (xo, to) on the (x, [)-plane corresponding to solutions with the intermediate 
asymptotics. 



Figure 2: A schematic illustration of Proposition 1.10. Point (xo,&) on the (x,<)-plane 
corresponds to a catching up solution with the intermediate asymptotics. 



Figure 3: A schematic representation of the nB- and vB-barriers and the separation of the 
nB-,  lane into domains which lead to the lower, intermediate and upper asymptotics. 



Remark 1.5. The existence of n:- > 0 satisfying (1.32) follows from the fact that $0) = 
0. 

Figure 2 illustrates Proposition 1 . lo.  The upper curve symbolizes relation (1.31) (with 
11:- expressed through xo as in (1.30)) between the components of pairs (xO, tO)  corre- 
sponding to catching up solutions with the intermediate asymptotics; v t +  is fixed. The 
lower curve illustrates the relation cr - C ~ ~ ( ~ : - ) S [ ~  = 0 (see the additional characteriza- 
tion of (xo, to)). The two curves cross under xt and on the right of xt/r,. An initial point 
(xo, to) lies on the first curve, slightly below the point of crossing. The bold curve ended 
by the arrow shows a corresponding solution in coordinates (x(t) ,  [(t)). It converges to 
(xt,xt/r,) moving North-West, which implies that r ( t )  = nB(t) /nA(t)  = x(t)/[(t) is 
strictly increasing. 

Propositions 1.9 and 1.10 imply obviously Propositions 1.5 and 1.7, respectively. 
Therefore, we shall prove Propositions 1.9 and 1.10 only. 

The paper is organized as follows. In section 2 we prove Propositions 1.3, 1.4 provid- 
ing sufficient conditions for the lower and upper asymptotics, and establish the important 
fact that for an arbitrary solution (nA(t) ,  nB(t), vB(t)) either one of these sufficient condi- 
tions is satisfied, or vB(t) stays between the barriers, that is, the condition of Proposition 
1.8 holds true. In section 3 we consider an arbitrary solution satisfying the condition of 
Proposition 1.8 and prove that it has the intermediate asymptotics. This proves Propo- 
sition 1.8 and completes the proof of the main Proposition 1.1. In section 4 we prove 
Proposition 1.9 on the feasibility of the intermediate asymptotics; as it was said above, 
this proves Proposition 1.5, too. In section 5, Proposition 1.10 on the existence of catching 
up and overtaking solutions having the intermediate asymptotics is justified (thus proving 
Proposition 1.7); the proof of Proposition 1.6 finalizes the analysis. 

Thus, sections 4 and 5 are devoted to the existence statements, whereas the main 
qualitative results are concentrated in sections 2 and 3. These results are illustrated 
schematically on Figure 3 for a fixed n t .  The Figure shows the borders between domains 
of (n:, v:) starting different asymptotics. The bold lines with arrows illustrate behaviors 
of (nB(t),  vB(t)). In accordance with Proposition 1.3 the lower asymptotics starts below 
the nB-barrier p,; (nB(t),  vB(t)) goes vertically down. By Proposition 1.4 the upper 
asymptotics starts above the vB-barrier p,; both nB(t) and vB(t) go to infinity. We do 

B B not exclude that some points (no , vo ) above p, (not above p,) start the lower asymptotics, 
B B and some poiilts ( n o ,  vo ) below p, or p, start the upper asymptotics; the corrsponding 

B B trajectories are sketched out on the Figure. Points (no ,vo ) starting the intermediate 
asymptotics lie either between the barriers p, and p,, or (we do not exclude this) below 
the barriers. Point (nB(t),  vB(t)) with the intermediate asymptotics enters the corridor 
between the barriers from below, or starts in this corridor, and stays there forever. 

2 Upper and Lower Asymptotics 

2.1 Elementary properties of solutions and barriers 

Note first that,  as follows from equation (1.2), 

nB (t)  is nondecreasing . 

The next properties of pn[t] and p,[t] (see (1.22), (1.23)) are obvious: 

pn[t] is strictly decreasing 



pn[ t]  2 0  

pn [ t ]  + 0  as t  + cm 

pu[ t ]  is nonincreasing . (2.5)  

The properties follow from (1.5)  and (2 .1) .  
The signs of the derivatives n B ( t ) ,  and i rB( t )  are determined by a position of v B ( t )  

with respect to pn[ t ]  and p u [ t ] ,  respectively. Namely, 

i rB ( t )  < 0  if v B ( t )  < pu[ t ]  

i r B ( t ) > O  if v B ( t ) > p u [ t ]  

i r B ( t ) = O  if v B ( t )  = p u [ t ] .  

From (2 .6 )  and (1 .21)  follows: 

Properties (2 .2)  and (2 .4)  of function pn [ t ]  are supplemented by the following: 

Indeed, let us compute d2pn  [ t ] / d t 2 .  By (1.22) ,  (1.20)  

where 

Hence 

We have 
g ( t )  = n B ( t ) [ l  + y ' ( n B ( t ) ) 6 n A ( t ) ]  + y ( n B ( t ) ) 6 n A ( t )  . 

By (2 .6 )  n B ( t )  = 0 ;  therefore 

The next differentiation with the usage of n B ( t )  = 0  provides 

d 2 n A  ( t )  
d 2 g ( t )  = y ( n B ( t ) ) 6  dt2  . 

d t2  



Substituting in (2.13) and using (1.5), we get 

- d2pn [ I  - k72(nB (t))b2(hA2 (t))  - $nB (t))b dt2 
dt g2 ( t )  d2nA(t'1 

Since nB( t )  is nondecreasing (see (2.1))) $nB(t)) is nondecreasing too; hence for t > tA 
the last square bracket, in view of (1.24), is positive, and we obtain (2.12). 

2.2 The three initial cases 

Fix a 
t o > O .  

We shall consider separately the three positions of vB(to) with respect to  the nB- and 
vB-barriers. These are: 

vB(to) > pu[to] (2.14) 

Note that  the above cases do not overlap, and one of them holds true. We denote 

2.3 Case 1 (above the vB-barrier). Absolute asymptotics 

Consider case (2.14). Here and in the next subsection we assume that inequality (2.14) 
is sa,tisfied strictly, i.e. 

vB(to) > pu[toI (2.1s) 

Let us show the "absolute" asymptotics 

nB(t)- ,co as t + c o .  (2.20) 

We start  with (2.19). ~ F s o ~  equation (1.3) for vB(t) and the fact that  nB(t) is non- 
decreasing (see (2.1), we get 

also (2.18) implies that 

Hence 
uB(t) 2 v,B(t) 

where 
f i . B ( t ) = p ~ , B ( t ) - p p u [ t o ] ,  v.B(to)=vB(to) 



We have 
u f ( t )  = (uB(tO) - pv[to]) exp(p( t  - 2 0 ) )  + pv[toI . 

Since 
u f ( t ) + m  as t + m ,  

we get (2.19). 
Let us prove (2.20). From (2.19) and (2.5) we deduce that for all sufficiently large t  

the first inequality in (2.7) is satisfied. Hence the second inequality in (2.7) is true for 
all large t .  For all large t  the right hand side of this inequality is greater than a positive 
t; this follows easily from (2.19) and the fact that n B ( t )  and n A ( t )  are nondecreasing. 
Therefore 

i zB( t )  2 6 > 0 

for all large t .  This obviously yields (2.20). 

2.4 Case 1 (above the vB-barrier). Relative asymptot ics 

Basing on (2 .19) ,  (2.20),  we shall find an asymptotics for the ratio r ( t )  ( 1  . G ) .  Recall that 
inequality (2.18) is assumed. Note first that by (2.20) and by the definition of y,  (see 
(1.19)) it holds that 

y ( n B ( t ) )  + y, as t  -+ m . (2.21) 

Let v ( n A )  be the inverse to nA( t ) ,  that is, 

Denote 
B A n [n ] = n B ( v ( n A ) )  

Obviously 
lim r ( t )  = lim r [ n A ]  . 
t+w nA +m 

Let us find the limit. Differentiate nB [nA]. Introducing 

using equation (1.1) and inequality (2.7) (we showed above that it is satisfied for all large 
t ) ,  we obtain that for all sufficiently large nA 

B' A 7iB (v) n [ n ]  = - 
7iA ( v )  

- - 
1 

gAnA ( v )  



By (1.5) and (2.19) 
0 > a[nA] + 0 as nA + oa . 

Treating (2.23) a.s a linear differential equation for nB[nA] and integrating it from an 
arbitrary n t  2 n t  to an arbitrary nA 2 n;f we get 

B A B n [n ] = n, exp 

a [n,] dn, 

- - B n* exp (c ln 2) + 

r m 6  exp (c  in z) dn. + 1; exp (c  in C) a[n.]dn. 

Here we use notation (2.17) and set n: = nB[n;f].  Specify the second and the third terms 
on the right. For the second term we have 

For the third term, using the inequality from (2.24), we get 

where 
A A 

~ [ n f ]  = sup{I a[nA:l I : n > n , )  

Note that convergence (2.24) implies 

Dividing nB [nA] by nA,  we arrive at the following estimates: 

Hence 

B 1 

l imsupr[nA] < lim n* 
7 1 - 1 ,  c # 1 

A 

n A - m  "A-m ( n f ) ~ ( n ~ ) l - ~  ymbln$, c = l  



n: el c # l  lim inf r [nA] > lim (crm6 - c[nAI)& [l - (,;,I-, 
nA -+m n A - + m  (n+A)~(nA)l-c ( ~ 0 3 6  - c[nA])ln$, c = l  

Letting nf + cc and referring to  convergence (2.24), we obtain: 

or, in the initial notations (see (2.22), (2.17)), 

Relations (2.26), (2.19), (2.20) show that for the case where (2.18) is satisfied the 
statement of Proposition 1.4 is true. 

2.5 Case 1 (at the vB-barrier) 

In this subsection we consider the case where inequality (2.14) turns into the equality, i.e. 

thus we complete the analysis of case (2.14). We reduce the situation to  that  considered in 
the previous two subsections, and thus show that asymptotics (2.26), (2.19), (2.20) takes 
place. This - together with the observation given in the last paragraph of subsection 2.4 
- complete the proof of Proposition 1.4. 

Like in subsection 2.3, we get 

Hence, due to  (2.27), 
vB(t) > pv[to] . 

Since pV[t] is nonincreasing (see (2.5)), we have 

It  is sufficient to  show that for a certain t l  > to, the inequality (2.29) is satisfied strictly. 
In this case we repeat the argument of the previous two subsections starting with 

instead of (2.18), and arrive a t  (2.26). 
Let us suppose, to  the contrary, that (2.29) is untrue, that is, 

vB(t) = pv[t] (t 2 to) (2.30) 

 from convergence (2.4), inequalities (2.28) and the inequality pv[to] > 0, we deduce that 

B v (t)  2 pv[to] > ~ n [ t ]  



for all t  greater than a sufficiently large t,. Hence by (2.7) n B ( t )  is strictly increasing 
after t,. Therefore, as it is seen from (1.23), (1.21), pu[t]  is strictly decreasing after t,. 
Now (2.28) and (2.5) imply that for t  > t ,  

contradicting the assumption (2.30). The contradiction completes the proof. 

2.6 Case 2 (below the nB-barrier). Divergence 

Let us pass to case (2.15).  In this subsection we assume that 

and the velocity of v B ( t )  at t = to  is no greater than that of pn[t] ( v B ( t )   diverge^'^ from 
/ in[ t]  at t  = t o ) ,  that is, 

We shall prove that 

B lim v ( t )  = -GO 
t+m 

Note that (2.33) yields by (2 .6)  that 

B n ( t )  = const ( t  >_ to) ; 

con~bining this with (1 .5) ,  we arrive at the lower asymptotics 

lim r ( t )  = 0 . 
t+m 

This proves Proposition 1.3. 
Let us prove (2.33) and (2.35).  Introduce 

t* = sup{ t  > to  : v B ( r )  -  TI 5 v ( t O )  - pn[tO] for all T E [ to , t]  } . (2.38) 

By (2.15) and (2.11) 
p,[t] = const = d ( t o  5 t < t*) . 

Hence (see also the second inequality in (2.15)) 

v B ( t )  = (vB(tO)  - pu[to])exp(p( t  - t o ) )  + pu[toI 
= ( v B ( t o )  - d )  e x p ( p ( t  - t o ) )  + d 

< v B ( t o )  < d = p,[t] ( t o  5 t < t * )  . 

Therefore, in order to prove (2.33), (2.35),  it is sufficient to show that 



Suppose, to  the contrary, that 
t* < oo 

Note that (2.39) implies 

fiB(t) = p(vB(tO) - d) exp(p(t - to)) 

< p (vB(to) - d) 
< fiB[tO] (to < t < t*) 

yielding (see (2.32) and (2.15)) 

vB(t) < h [ t ]  (to < t < t*) . (2.40) 

Hence 
v B ( t ) < p n ( t )  ( t o < t < t * + t )  

for a sufficiently small positive t, which contradicts to the definition of t*. The contradic- 
tion coinpletes tlze  roof of (2.33), (2.35). Repeating the above proof of (2.40) for t* = GO, 

we obtain (2.34) and (2.36). 

2.7 Case 2 (below the nB-barrier). Convergence 

Continuing the analysis of the previous subsection, we study case (2.15) under the as- 
sumption (2.31). Here, instead of (2.32), we assume the opposite inequality, that is, 

(implying "convergence" of vB(t) to pn[t] at  t = to). Introduce 

t* = sup{ t 2 to : v ~ ( T )  < / L ~ [ T ] ,  vB( r )  < P,[T] for all E [to, t] } 

Like in (2.39) we state that 

vB ( t )  = (vB(tO) - d) exp(p(t - to)) + d (to < t < t*) 

p,[t] = const = d (to < t < t*) . 

In view of the second inequality in (2.15), vB(t) is decreasing on [to, t*) ,  and 

fiB(t) = p(vB(t) - d) < liB(to) < O (to < t < t*) . 

On the other hand 
lim i n ( t )  = 0 
t+m 

(indeed, (2.12) implies the existence of the above limit, (2.2) shows that it is nonpositive, 
and (2.4) proves that in cannot be strictly negative). Hence, if t* = oo, then there exists 
a t; > to such that we have (2.15), (2.32) (see subsection 2.6) with to replaced by t;. As 
it is shown in subsection 2.6, in this case the lower asymptotics (2.37) takes place. Let 



Then either 
vB(t*) = p,[t*] 

If (2.42) is satisfied, then we have case (2.14) with to replaced by t*; consequently, the 
conclusion of subsection 2.5 is true, that is, the asymptotics (2.26) takes place. 

If (2.42) is untrue, (2.43) is satisfied, and we have 

then we again have the case considered in subsection 2.6 (with to replaced by t,), and the 
lower asymptotics (2.37) takes place. If 

then evidently 
vB(t) > pn[t] (t* < t < t* + E)  

for a small positive E ,  and we have case (2.16) with to replaced by a tg E ( t*, t*  + E). This 
case is considered in the next subsection. 

2.8 Case 3 (between the barriers) 

Let us consider case (2.16). With no loss of generality assume (2.31). 
There are the only three possibilities, that is, 

~ n [ t ]  < vB(t) < ~l,[t]  (t 2 to) . (2.46) 

If (2.44) holds, then we have case (2.14) with to replaced by t l ,  and the conclusion of 
subsection 2.5 is true, that is, the asymptotics (2.26) takes place. If (2.45) holds, then 
obviously 

fiB(tl) i in[ t l ]  

and we have (2.15), (2.32) (see subsection 2.6) with to replaced by t l ;  by the state- 
ment of subsection 2.6 the asymptotics (2.37) takes place. In case of (2.46), where vB(t) 
stays in the corridor between the nB- and vB-barriers starting from t = to, we shall call 
(nA( t ) ,  nB(t) ,  vB(t)) an intermediate trajectory. 

2.9 Summary: upper and lower asymptotics, and intermedi- 
ate trajectories 

Let us sum up the results obtained in this section. In subsections 2.3 - 2.5 it was stated 
that in case of (2.14) (nA(t),  nB(t) ,  vB(t)) has the upper asymptotics (see Proposition 1.1). 
In subsection 2.8 it was stated that in case of (2.16) there are the only three outcomes, 
that is, 



(i) (nA ( t ) ,  nB(t) ,  vB(t)) has the lower asymptotics; 

(ii) (nA(t ) ,  nB(t),  vB(t)) has the upper asymptotics; 

(iii) (nA( t ) ,  nB(t) ,  vB(t)) is an intermediate trajectory. 

The same three outcoilles are the only admissible ones in case of (2.15); this was shown 
in subsection 2.6, 2.7 (in subsection 2.7 we refer to case (2.16) considered in subsection 
2.8). 

SO far as for a solution (nA(t ) ,  nB(t),  vB(t)) one and only one of cases (2.14), (2.15), 
(2.16) may occur, one and only one of situations (i), (ii), (iii) takes place. Therefore, in 
order to complete the proof of Proposition 1.1, it is now sufficient to show that in situation 
(iii) (nA(t) ,  nB(t) ,  vB(t)) has the intermediate asymptotics. In other words, one should 
prove Proposition 1.8. This is our goal in the next section. 

Recall that Propositions 1.3 and 1.4 characterizing some of the solutions having the 
lower and upper asymptotics were proved, respectively, in subsection 2.6 and subsections 
2.4, 2.5. 

3 Intermediate Asymptotics 

3.1 Introductory comments 

As it was said in subsection 2.9, the goal of the present section is to complete the proof of 
Proposition 1.1 by proving Proposition 1.8. In fact only the sufficiency conjecture of this 
Proposition (stating that an intermediate trajectory has the intermediate asymptotics) 
should be justified. The necessity conjecture follows from what was said in subsection 2.9. 
Indeed, if a solution (nA(t ) ,  nB(t) ,  vB(t)) has the intermediate asymptotics, it has neither 
the lower, nor the upper asymptotics (it is easily seen from the characterization of these 
asymptotics given in Proposition 1.1); in other words, cases (i) and (ii) of subsection 2.9 
cannot take place. Consequently (iii) takes place yielding that (nA(t) ,  nB(t) ,  vB(t)) is an 
intermediate trajectory. 

Thus, in this section (nA(t ) ,  nB(t) ,  vB(t)) is an intermediate trajectory, or, equivalently, 
(2.46) is satisfied. We shall prove that it has the intermediate asymptotics. 

3.2 New variables 

Along with variables nA(t) ,  nB(t),  uB(t) introduce 

x( t )  = nB(t)vB(t), [(t) = nA(t)vB(t) . (3.1) 

Note that 

Multiply (1.2) by vB(t) and (1.3) by nB(t) and add; we get an equation for x(t):  



A transformation of (1.3) leads to an equation for ( ( t ) :  

( ( t )  = h A ( t ) v B ( t )  + n A ( t ) f i B ( t )  
l - a  

= i j A n A ( t ) v B ( t )  + p n A ( t ) ~ B ( t )  - 
n B ( t ) v B ( t )  

nA ( t ) v B ( t )  

( 
l - a  

( ( t )  = ijA + p  - -) [ ( t )  - 
x ( t >  

The criterion (2.46) for an intermediate trajectory is obviously equivalent to 

where 
l - a  B l - a  

n ( t ) = -  
P 

So far as for v B ( t )  = pn[t]  we have i l B ( t )  = 0 ,  the differentiation of x n ( t )  provides 

(we have also used (2 .2)) .  Note that since the left hand side of (3.6) is positive (see ( 3 . 5 ) ) ,  
(3 .1)  implies that 

v B ( t )  > 0 ,  [ ( t )  > 0 ( t  2 to)  . (3.10) 

Come back to the characterization of the intermediate asymptotics given in Proposition 
1.1. To complete the proof of Proposition 1.9, it is sufficient to establish the convergences 

l - a  
lim x ( t )  = x( = - 
t+oo yA + P 

cBhy,(l - a )  
lim r ( t )  = r ,  = 
t+oo 

(3.12) 
( g A  + p) - (cB + p ) ( l  - a )  ' 

note that (3.11) and (3.16) imply the equality 

lim v B ( t )  = 0 
t+oo 

mentioned in Proposition 1.1. Also observe that 

Thus, in what follows ( x ( t ) , [ ( t ) )  satisfies (3.1),  (3 .4) ,  (3 .5) ,  (3.6).  We shall also refer 
to the monotonicity conditions for [ ( t )  obviously following from (3 .5)  and the definition 
of z( (1.26).  Namely, we have 

( ( t )  > 0 if x ( t )  > x( 

( ( t )  < 0 if x ( t )  < x( . 



3.3 Absolute asymptotics 

In this subsection we state that 
B lim n ( t )  = m 

t-rw 
(3.16) 

thus proving the first convergence in the characterization of the intermediate asymptotics 
given in Proposition 1 . l .  

Suppose, to the contrary, that 

B B lim n ( t)  = n, < m . 
t-+w 

Note that since nB (t ) is nondecreasing (see (2. I ) ) ,  

Hence (see (l.21), (1.23)) 

Suppose that 
vB(t*) < pu* 

for some t, 2 to. 
By (1.3) and (3.18) 

I p(vB(t) - pu*) . 
Consequently 

vB(t) < v,B(t) 

where 

.;,B(t) = p(v,B(t) - pu*), $(to) = vB(tO) 

We have 
v?(t) -- (v(t0) - p*) exp(p(t - to) + I"* 

In view of (3.19) 
lim v,B(t) = -m . 
t-rw 

Hence and by (3.20) 
B lim v ( t)  = -m . 

t-rw 

So fa,r as p,[t] is bounded (see (2.4)), there is a tl 2 to such that 

which contradicts the assumption (2.46). The contradiction proves (3.16) under the con- 
dition that (3.19) holds for some t, > to. 

To complete the proof, it remains to show that the latter holds indeed. Assume the 
contrary, that is, 

B 
v ( t )  2 pu* (t  > to). 

I11 view of (2.46) we have 

B 
pu[tI 2 v ( t)  > pu* (t  2 to). 



Consequently 
B lim v ( t )  = p,, . 

t-03 

This together with (3.1) and the inequality p,, > 0, imply that 

lim ((t)  = cm . 
t+oo 

Hence in view of (3.4) we get 
lim x(t) = cm . 
t+oo 

On the other hand, (3.17) and (3.1) lead to 

The obtained contradiction finalizes the proof of equality (3.16). 

3.4 Specification of monotonicity conditions. 1 

In this and the next two subsections we shall specify the monotonicity criteria (3.14), 
(3.15) for the mriable ((t) .  Namely we shall prove that x( t)  can cross the critical level xc 
only once, and only from above. 

Thus, in this and the next two subsection we assume that x( t)  crosses xl.  Denote by 
t l  the smallest time t (no smaller than to) such that x(t) = xt.  So, we have 

In this subsection we state an auxilliary property of x( t ) .  Namely, we assume 

and prove that 
.(t) 2 ~ ( t l )  = x< (t 2 t l )  

and for some positive E and a* it holds that 

Differentiating (3.4) at  t = t l ,  we get 

The first term on the right is nonnegative in view of (3.22). The second term is positive, 
since y (nB)  is strictly increasing (subsection 1.1) and nB( t l )  > 0; the latter follows from 
(2.46) and (2.7) (with t = tl). The  third term is zero, since, as follows from (3.14)) (3.15) 
and (3.21), we have i ( t l )  = 0. Thus 



Consequently, by (3.22) 
i ( t )  > 0 (t, < t 5 tl + E )  

for a certain positive E. This together with (3.21) imply 

Let 
0 < a* < x(t l  $ 6 )  - x (  . 

Taking into account (3.25), note that in order to prove (3.23) and (3.24), it is sufficient 
to show that 

x( t )  > X ( + Q *  (t 1 t l + E )  

Suppose, to the contrary, that there is a t2  > t l  + E such that 

and obtain a contradiction. The supposition implies that there exists a t, E [tl ,  t2] such 
that 

~ ( t )  > X( = x(t1) ( t l  < t I t,) (3.26) 

and 
i ( t * )  < 0 . 

Using (3.22) and (3.4) we deduce 

The first term on the right is positive in view of (3.26). Since nB( t )  is increasing, 

By (3.26) and (3.14), 

[(t*) > J ( t l>  

Hence the difference of the last two terms on the right hand side of (3.27) is positive. 
Therefore the right hand side of (3.27) is positive, which is in fact not the case (see the 
left hand side of (3.27)). The contradiction completes the proof. 

, , 

Copying the above argument, we establish the following more general statement. Let 
for an arbitrary (not necessarily intermediate) solution (nA(t),  nB(t),  vB(t)), variables x( t) ,  
[(t) satisfy 

~ ( t ; )  1 X( 

and (see (3.4)) 

Then for some positive E and a* it holds that 

This statement will be used in subsection 4.6, 4.7. 



3.5 Crossing the critical level from the right 

In this subsection, we establish that in fact the inequality (3.22) does not hold. That 
means that x(t)  crosses the critical level xt the first time only from above. 

Assume, to the contrary, that (3.22) takes place. Prove that 

lim x(t) = cc ; 
t+oo 

this contradicts the assumption (3.6) (the contradiction shows that (3.22) is not possible). 
According to  subsection 3.4 (3.22) implies (3.24). Hence by (3.5) 

where 
A l - a  b = g  + p -  

Xt + a* ' 
note that by the definition of xt (see (1.26)) 

Then we have 
[(t) > t*( t )  (t  2 t l  + 6) 

where 
(*(t)=b[*(t) ,  C * ( t l + f ) = t ( t l + 6 ) .  

In accordance with (3.10), [,(tl + 6) > 0; consequently 

lim [,(t) = cc . 
t+oo 

Therefore 
lim [(t) = cc . 
t+oo 

Hence, for all sufficiently large t ,  the right hand side of (3.4) is no smaller than (cB + 
p)x(t) + 1. Then by the theorem of comparison 

where t, is sufficiently large, and 

So far as 
lim x,(t) = cc 
t+oo 

we have the desired equality (3.28). The proof is completed. 
In a simi1a.r way, we prove the following more general statement: relations 

imply (3.28) and, consequently, are not possible for an intermediate trajectory (nA(t) ,  nB(t) ,  vB(t)). 



3.6 Specification of monotonicity conditions. 2 

In the previous subsection we stated that (3.22) is not possible. Therefore we have 

Let us show that 

x ( t )  < X (  ( t  > t l )  . 
Indeed, we evidently have either (3.30),  or 

The latter implies 

i ( t 2 )  = lim x( t2)  - x ( t )  
t-+t2-0 t 2  - t  2 0 .  

This is not possible by the last statement of subsection 3.5. Thus (3.30) holds. 

3.7 Classification of monotonicity intervals 

The results of subsections 3.4 - 3.6 lead to a classification of monotonicity intervals for 
( ( t ) .  Namely, one and only one of the following three outcomes is admissible: 

~ ( t )  > s t  ( t  L to) (3.31) 

x ( t )  2 X E  (to 5 t < t l ) ,  x ( t )  < X (  ( t  > t l )  

x ( t )  < X (  ( 1  2 to) . 
Indeed let 

x( t0 )  L X [  

Then we have either (3.31), or (3.29),  where t l  is the time of the first crossing of xt  by 
x ( t ) .  In case of (3.29),  due to the statement of subsection 3.6, (3.30) is fulfilled. The 
latter is evidently equivalent to (3.32). Let 

Then we have either (3.33), or 

x ( t )  < X (  (to 5 t < t2 ) ,  x ( t 2 )  = X (  . 

If the latter holds. then 

i ( t 2 )  = lim x( t2 )  - x ( t )  
1-12-0 t2  - t L O ;  

this is not possible by the last statement of subsection 3.5. The proof is completed. 
Combining the above classification with the monotonicity criteria (3 .14) ,  (3.15),  we 

obtain the following: 

in case of (3.31) : ( ( t )  > 0 ( t  2 to) (3.34) 

in case of (3.32) : ( ( t )  > 0 (to 5 t  < t l ) ,  ( ( t )  < 0 ( t  > t l )  (3.35) 

in case of (3.33) : ( ( t )  < 0 ( t  2 t o )  . (3.36) 



Note that t ( t )  is bounded, namely 

0 < t ( t )  I a* < oo (t > to) . 

Indeed, from equation (3.5) for t ( t )  follows 

Hence, if (3.37) is violated, then 
lim t ( t )  = oo ; 
t+cu 

the latter yields, like in subsection 3.5, the limit equality (3.28) which is not possible by 
(3.6). The contradiction proves (3.37). 

In this and the next two subsections we employ the previously obtained results for proving 
the equality (3.1 1) (see also (1.26)). As it was noted in the last paragraph of subsection 
3.2, this equality provides one of the characterizations of the intermediate asymptotics. 

According to the classification of subsection 3.7, one of cases (3.31), (3.32), (3.33) 
takes place. In this subsection we prove (3.11) for case (3.31). Suppose that (3.11) is 
violated. Then (3.31) implies that 

Equation (3.4), assumption (3.31) and the lower bound in (3.37) yield that i ( t )  is bounded 
froin below, that is, 

i ( t )  2 b = (cB + p)xE - 1 ( t  > to) . 
This and (3.38) imply that 

x( t)  2 X( + PI2  (ti I t I ti + 6 )  

for a sufficieiltly small positive 6. Then by equation (3.5) 

where 

(the inequality follows from the expression (1.26) for x ~ ) .  So far as by (3.34) t ( t )  is 
increasing, we have 

Hence 
lim t ( t )  = oo 
t+cu 

which is not possible due to (3.37). The contradiction proves (3.11). 



Let one of cases (3.32), (3.33) take place. To justify (3.1 1) (see the next subsection) we 
need the following statement: 

[(t) 2 a* > 0 (t 2 to) . (3.39) 

Prove this statement. Suppose that (3.39) is untrue. Then by (3.35), (3.36) 

lim [(t) = 0 . 
t+w 

(3.40) 

We shall show that the latter yields that 

1 
lim x(t)  = ----- . 
t+w cB + p 

Note that the right hand side of (3.41) is greater than xt (1.26); this follows from (1.12). 
Therefore (3.41) contradicts (3.32) and (3.33). The contradiction proves (3.39). 

Thus, in the rest of this subsection we concentrate on stating (3.41). Suppose that 
(3.41) is violated. Let, first, 

Then by (3.4) and (3.37) 

1 
= exp((cB + p)(t - t i))  

Referring to (3.42), we see that 
lim x(t)  = cc 
t+co 

which contradicts (3.6). Thus (3.42) is not possible. Suppose that 

Due to (3.40), (3.37), for a large i, we have 

~ ( t )  = cB6y(lB(t))[(t) < 012 (t > ti) 

Fix such i. Then by (3.4) 

~ ( t )  = exp((cB + p)(t - ti))x(ti) - 

exp((cB + p)(t - r1d.r + 1; exp((cB + p)(t - T ) K ( T ) ~ T  

The expression in brackets is, as follows from (3.43), no greater than -(a/2)(cB + p). 
Consequently, 

lim x( t )  = -cc 
t+co 

contradicting to (3.6). The contradiction shows that (3.43) is not possible. Convergence 
(3.41) is stated, and the proof of (3.39) is completed. 



Prove (3.11) for cases (3.32) and (3.33). Suppose that (3.11) is untrue. Then (3.32) and 
(3.33) imply that 

x(t;) < X( - p, p > 0, t i  -+ oo . (3.44) 

Using (3.4), (3.6) and (3.37), we get 

Hence, in view of (3.44), 

x( t )  I X( - P/2  (ti 5 t 5 ti + E)  

for a certain positive E. Then by (3.5) 

where 

the inequality is seen from the expression (1.26) for x ~ .  Consequently, 

where 
q = exp(-lc) < 1 . 

Hence fixing k ,  we get 
[(ti + E)  < qi-k[(tk) -+ 0 . 

We have obtained a contradiction to property (3.39) stated in the previous subsection. 
The proof of (3.11) is completed. 

In this subsection we make use of (3.11) for stating that 

lim [(t)  = [, = 
1 - (cB + P)X( 

t+m cB67m 

Note that the above expression for [, is derived by formal letting the right hand side of 
equation (3.4) for x( t )  be equal to  zero "at infinity", that is, 

Substituting the expression (1.26) for xc, we specify [, as 

Em = 
(SA + P) - (cB + p)(l  - a) (3.46) 

(SA + p)cB6ym 

Prove (3.45). According to  subsection 3.7 (see (3.34) - (3.36)), [(t) is monotonical at  
large times. Hence there is the limit 

= Jim [(t) . 
-00 



Combiniilg this with (3.11), observing equation (3.4) for x(t) ,  and taking into account 
convergence (3.16), we conclude that 

B lim i ( t )  = ( c  + p)x[ + cBSy,[, - 1 = i, . 
t-03 

If i, > > 0, then 
?(t) > €12 

for all sufficiently large t ;  consequently 

lim x(t)  = oo 
t-03 

which contradicts (3.6). Similiarly, we arrive at a contradiction assuming i, < 0. There- 
fore 

i, = 0 

yielding (3.45). 

3.13 Intermediate asymptotics for intermediate trajectory 

Limits (3.1 1) and (3.45) provide the desired asymptotics of ratio r ( t )  (1.6) for an interme- 
diate trajectory (nA ( t ) ,  nB(t) ,  vB(t)) (characterized by (2.46)). Namely, we have (3.12). 
Indeed, using, sequentially, (1.6), (3.2), (3.11) and (3.45), we obtain: 

nB(t> lim r ( t )  = lim - x( t )  - xt = lim - - - 
t-a t-+mn"(t) t-,[(t) J, 

Proposition 1 .S is proved. In accordance with the summary given in subsection 2.9, the 
proof of Proposition 1.1 is completed. 

4 Existence of Intermediate Trajectories 

4.1 Introductory comments 

In this section we shall prove Proposition 1.9 (on the feasibility of the intermediate asymp- 
totics subject to condition (1.13)); this will prove Proposition 1.7, too. 

Like in section 3, we use variables x(t) ,  [(t) (3.1). Recall that in subsection 3.2 it was 
noted that the fact that a solution (nA(t ) ,  nB(t),  vB(t)) to (1.1) - (1.3) is an intermediate 
tra.jectory is equivalent to inequalities (3.6). Therefore, our goal is to prove that under 
conditions of Proposition 1.9 there exists a solution (nA(t ) ,nB(t ) ,vB(t ) )  (whose initial 
state is specified in this Proposition) satisfying (3.6). 

Note that equation (3.4) for x( t )  and equation (3.5) for [(t),  as well as the monotonicity 
criteria (3.14), (3.15) remain true provided x(t)  > x,(t) (recall the notation [.I+ in (1.2)). 
LVe shall use these facts in our analysis. 



In this section the inequality (1.13) is assumed to be satisfied. Note that this inequality 
yields that 

X (  > x n ( t )  (4 .1)  

(see (1.26),  (3 .8 ) ) .  

4.2 A nonexistence domain 

We start with specifying positions 

preventing x ( t )  to satisfy (3.6). In this subsection we point out pairs ( x o ,  to) such that 
corresponding x ( t )  breaks (3.6) by crossing x n ( t ) .  Namely, we shall state now that if 

and 
( c B  + ~ 1 x 0  + cBhyoo(o - 1 < 0 , 

then 

where 
tl,, = i n f { ~  2 0 : x ( t )  5 x n ( t ) )  . 

Let us assume (4 .3 ) ,  (4.4),  and prove (4.5). By (4.4) and (3.4) we have 

Hence for certain positive Po and c 

Due to (4 .3)  
x ( c )  < xt  - a ,  a = P o € .  

Referring to (3.15), we conclude that 

for a certain positive K .  Let 

Then by (3 .4)  

i ( t )  5 b x ( t )  + a (c 5 t < t*)  

where 
B b = c  + p  



By (4.4)) (4.8), and the definition of t* we have 

From (4.10) follows 

Using again (4.10)) and taking into account (4.1 1))  we get 

This in combination with (4.7) gives 

i ( t )  5 -p, (0 5 t < t*) 

where 
P = min(D0, PI) 

Thus, in order to reach (4.5), it is sufficient to show that 

Suppose, to the contrary, that 
t * < m .  

Then, as follows from the definition of t*, for an arbitrary v > 0 there is a t, E [t*, t* + v ]  
such that 

i(t.1 > o . (4.13) 

For v sufficiently small (4.3) and (4.12) imply 

By (3.15) this contradicts (4.13). The contradiction completes the proof of (4.5). 
Let us prove (4.6). Obviously, we have 

This, due to the fact that nB(t l ln)  = 0, implies that 

Now recall (4.2) and make use of the statement of subsection 2.6 putting to = tl,,. Thus 
we straightforwardly obtain (4.6). 



4.3 Lower bound trajectory 

Fix a to > 0  satisfying 
(cB + p)x< + cB6ymt0 - 1 < 0  

(i.e. (4.4) with xo = xe) .  Consider a solution 

( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  = ( n A - ( t ) ,  n B - ( t ) ,  v B - ( t ) )  

to (1.1) - (1.3) such that x ( t ) ,  [ ( t )  defined by (3.1) satisfy 

For these variables we use the notations 

x ( t )  = x - ( t ) ,  [ ( t )  = [ - ( I )  

By x ; ( t )  we denote x n ( t )  (see (3 .8 ) )  corresponding to the above solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) ) .  
Assumption (4.14) means that conditions (4.3) and (4.4) of the previous subsection are 
satisfied. Therefore (4.5),  (4.6) hold; using the above notations rewrite these properties 
as 

x - ( t )  crosses xe and x,(t)  (4.15) 

x - ( t )  < xt  after crossing xe and before crossing x n ( t )  

x,(t) 5 x,(t)  after crossing x n ( t )  . 

The last two properties and (1.27) imply that 

x - ( t )  5 xt  after crossing xe . (4.16) 

In this section we shall call x - ( t )  the lower bound trajectory (for intermediate trajectories). 

4.4 Specificat ion of parameters 

Specify 
v f -  = vB- (0 )  

so as to ensure 
A t  = O  

(see (1.24)) for all solutions ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  with initial states 

where xo varies in the interval [xe, x,]. More precisely, assume v t -  to satisfy 

(recall that x ,  > xe; see (3.13)).  This property will allow us to apply the result of 
subsection 2.6 to a solution with a particular initial state (4.17). 

As it was noticed in subsection 1.3, property (4.18) takes place for a sufficiently small 
I ! : - ,  since, as follows from (4.17), we have 



4.5 Definition of a trajectory 

In this subsection we define a particular solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) ) ;  in the next subsec- 
tions it will be proved that this solution is an intermediate trajectory. 

Clome ba.ck to solution ( n A - ( t ) ,  n B - ( t ) ,  v B - ( t ) ) ,  defined in subsection 4.3. In accor- 
dance wit11 notations (3.1), we have 

For every 
xo E [ x ( ,  xu] 

there exists the single 
n f  = n:[xo] E [x[/v,B-,  xu/v,B-] 

such that 
xo = n f [ x o ] v B - ( 0 )  . 

Solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  to (1  . l )  - (1.3) determined by the initial conditions (4.17) 
will be said to correspond to s o ;  making it explicit that variables x ( t ) ,  [ ( t )  (3.1) determined 
by the above solution depend on xo, we shall write 

Obviously 
x ( t  1 x ( )  = x - ( t )  . 

Note also that 
i ( 0  I x,) > 0 .  

Indeed, for the solution ( n A ( i ) ,  n B ( t ) ,  v B ( t ) )  corresponding to x ,  by (3.3) we have 

where r ( t )  = r ( t  I x u ) .  By (2.7),  (1.27) 

(3 .7) ,  (3 .1)  imply 

hence by (2.10) 

These relations yield (4.20). 
According to (4.15),  (4.16) 

x-  ( 2 )  = x ( t  I x ~ )  crosses x ~  and x,(t) (4.21) 

x - ( t )  = x ( t  ( x ~ )  < xt after crossing xt . 

Die supplement these conditions by 

maxl.2:-(t) : 0  < t  5 t ; )  < 0; t; is the time of first crossing xt . (4.23) 

The latter holds automatically by the statement of subsection 4.2, as long as t ;  = 0. 



Introduce the set X of all xo E [x t , xv ]  such that 

sa,tisfyies the sirnilar conditions, that is, 

x ( t )  crosses xt and x,(t) (4.24) 

x ( t )  5 xt after crossing xt (4.25) 

max{x(t) : 0 5 t 5 t o  < 0; tt is the time of first crossing xt . (4.26) 

iFrom the definition (4.19) of x - ( t )  and (4.21), (4.22), (4.23) follows 

From (4.20) we get 

xu$-. 

Therefore for 
x* = sup X 

we have 

x* E [q, xu) 

From now on, let solution ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  correspond to to x,. In what follows 

x ( t )  = x ( t  I x* )  . (4.29) 

In the next subsections we shall show that ( n A ( t ) ,  n B ( t ) , v B ( t ) )  is an intermediate tra- 
jectory, or, equivalently (see subsection 3.2), x ( t )  satisfies inequalities (3.6) with to  = 0. 
This will prove Proposition 1.9. 

4.6 Monotonicity before crossing xt 

The proof co~nprises several statements. In this subsection the following is established: 
either 

x ( t )  is strictly decreasing on [0, oo) and does not cross xt , (4.30) 

or s ( t )  satisies (4.26). 
Assume that the statement is untrue. Then there is a t l  2 0 such that 

~ ( t l )  L xt 

i ( t 1 )  > 0 . 
Then by the last statement of subsection 3.4 

for some positive E, a*. By the definition of x ,  (see (4.27)) there exists a sequence 



uniformly on [0, tl + €1. Take i so large that 

As follows from the definition of X (see (4.25) and (4.26) where x( t )  is replaced by x;(t)),  
it holds that 

(we have also utilized (4.31), (4.32)); this contradicts to (4.34). The contradiction com- 
pletes the proof. 

If (4.30) takes place, then in accordance with (4.29)) (4.28), 

and in view of (1.27), we have the desired inequality (3.6) (with t o  = 0). Thus, in what 
follows we shall study the case where x(t) crosses xt, and (4.26) is satisfied. 

4.7 Staying under xt after crossing 

Let us show that if x ( t 0  = xt (tE 2 0), then 

By the last a,ssumption of the previous subsection, (4.26) is fulfilled. Hence 

for all v > t( sufficiently close to tE. Take a v satisfying 

with an arbitrarily small 6 .  Define x;(t) like in the previous subsection (see (4.33), (4.34)). 
Note that convergence (4.34) is uniform at every bounded interval. In view of (4.36), for 
large i 

xi(v) < XE ; 

Then by the definition of X (replace in (4.25) x( t )  by xi(t)) 

This together with (4.34) give 

Since v is arbitrarily close to tt ,  we conclude that 

Now to prove (4.35) it is sufficient to verify that there does not exist a t > tE such that 



Suppose that  such a t exists; let t l  be the minimum of all such t. We have 

Hence, as one can easily see, 
4 t l )  2 0 

Observing the last two relations and exploiting the last statement of subsection 3.4, we 
derive that 

x( t )  > q + a *  (t  2 t l  + c )  

for some positive t ,  a*. This contradicts to (4.37). The proof is completed by contradic- 
tion. 

4.8 Staying under x,(t) after crossing 

State the following. If x(t)  crosses x,(t) at  time t, 2 0, then 

So far as 
~ ( t )  > xn( t )  (0 5 t < i n ) ,  ~ ( t n )  = xn(tn) 

we have by (3.S), (3.1) 

Hence conditions (2.15), (2.32) of subsection 2.6 are satisfied for to = t, (recall that in 
subsection 4.4 we guaranteed that tA = 0 ). By the statement of subsection 2.6 inequality 
(2.34) holds with to = t,. Multiplying it by nB( t ) ,  we get (4.38) (see (3.1), (3.8)). 

4.9 Staying between barriers 

This subsection finalizes the proof. Namely, we shall show that inequalities (3.6) (with 
to = 0) hold. 

Suppose, to  the contrary, that (3.6) (to = 0) is violated. Property (4.26) (subsection 
4.6), the statement of subsection 4.7, and the inequality x(0) = x, < xu (4.28) imply 

Then as follows from the relations 

(see (4.28) and (4.1.)) we have 
x(t*) = x,(t*) 

for a, certain t, 2 0. Obtain a contradiction. Namely, state that 

for all sufficiently small positive 6. This indeed contradicts to the definition of x, (see 
(4.27)). Let 

xc( t )  = x( t  I x * +  c), c > 0 . 



From (4.26) follows that for small E, x,(t) crosses xt ,  and 

max{i,(t)  : 0 I t < tt,,) < 0; tt,, is the time of first crossing xt . (4.40) 

The statement of subsection 4.8 yields that 

(recall that x ( t )  crosses xn( t )  a t  t,). Hence for small E,  we have 

here and in what follows xn,,(t) is the analogue of xn(t)  for the solution (n? ( t ) ,  n:(t), v,B ( t ) )  
corresponding to x, + E, that is, xn,,(t) is given by (3.8) where nA(t ) ,  nB(t)  are replaced 
by n:(t), n:(t). Thus x,(t) crosses xn,,(t), and, consequently, xt: 

x,(t) crosses xt and xn,,(t) . (4.41) 

Moreover, for the time t,,, of the first crossing with xn,,(t), we obviously have 

n = n n )  in , ,  I tn + 1 (4.42) 

From (4.40), (4.26) follows that for small E, tt,, is arbitrarily close to t t ,  and 

where ,B > 0 and a > 0 do not depend on c. Combining this with (4.35), (4.42), we obtain 

for small E. From here we deduce, like in subsection 4.8 (replacing x(t)  by z ,( t ) ) ,  that  

x,(t) < xn,,(t) ( t  > in,,) . 

This together with (4.43) yield that 

x,(t) 5 xt after crossing xt . (4.44) 

LVe see that (4.41), (4.44), (4.40) prove (4.39). The desired contradiction is obtained. The 
inequalities (3.6) characterizing an intermediate trajectory are proved. 

5 Existence of Catching Up and Overtaking Inter- 
mediate Trajectories 

5.1 Introductory comments 

In this section we justify Propositions 1.7 and 1.10, which provide conditions sufficient for 
a solution (nA(t) ,  nB( t ) ,  vB(t)) to have the intermediate asymptotics (that is, to  satisfy 
(3.6)) and, simultaneously, be catching up or overtaking. Recall that in subsection 1.3 
we called a solution catching up if the corresponding ratio r ( t )  is strictly increasing, and 
overtaking if it is catching up and r ( t )  grows from r(0) < 1 to r, > 1. As it was noted 
in subsection 1.3, Proposition 1.10 implies Proposition 1.7. Therefore we shall prove 
Proposition 1.10 only. 



Principally, we follow the logic of section 4. However the requirement that r ( t )  in- 
creases implies some modifications. The main modification consists in setting (in sub- 
section 5.5) the initial value x, for the variable x(t) corresponding to an intermediate 
trajectory to be not greater (like in subsection 4.5) but smaller than the critical value xt. 
This analytic pattern requires Condition 1.1 (not needed in section 4), which claims that 
x( t )  cannot be constant at any interval. 

Thus, in this section the condtions of Proposition 1.10 are assumed to hold. Namely 
we assume inequalities (1.13), (1.18) and (everywhere with the exception of subsection 
5.9) Condition 1.1. Using notations (3.1) we rewrite this Condition in the following 
equivalent form: for every time interval [tl , t2] of nonzero length such that solution 
(nA(t ) ,  7zB(t), vB(t)) is such that x(t)  (3.1) satisfies x,(t) < x( t )  < xu for t E [ t l ,  tall 
the function x( t )  cannot be constant on [tl, t2]. We shall utilize this in subsection 5.6. In 
subsection 5.9 we shall show that this condition is fulfilled if Condition 1.2 holds (thus 
proving Proposition 1.6). 

5.2 A nonexistence domain 

We start with specifying positions 

preventing x( t )  to satisfy (3.6) with to = 0. In this subsection we point out pairs (xo, to) 
such that the corresponding x(t) breaks (3.6) by crossing xu. Namely, we shall state now 
that if 

xo 2 xt (5.1) 

and 
(cB + P)XO + cB6y(n:)to - 1 > 0 , 

then 

where 
tl,, = inf{r 2 0 : x(t) 2 xu) . 

Note that (5.3) implies obviously 
tl,U < 

As long as 
x(t1,v) = xu 

or, equivalently, (see (3.7), (3.1)) 

we have the case considered in subsections 2.3, 2.4 (with to replaced by tl,,). As it was 
proved in subsection 2.3, (2.19), (2.20) hold. Hence x(t) crosses x,. Consequently (3.6) 
is violated. 

Let us assume (5.1), (5.2) and prove (5.3). By (5.2) and (3.4) we have 



Hence for some positive Po and c 

I11 accordance with (5.1) 
~ ( 6 )  > XE + €1, €1 = PO€ . 

Referring to (3.14), we conclude that 

for a certain positive K. Let 

t* = sup{ T > c : [(t) > JO + 612 (c 5 t 5 T) ) . 

Then by (3.4) 
i ( t )  2 bx(t) + u ( c  5 t < t*) 

where 
B b = c  + p  

u = inf{ cBsr(nB(t))[(t) - 1 : c 5 t 5 t* ) 

By (5.2), (5.6) and the definition of t* we have 

From (5.8) follows 

u 
= exp(b(t - c)) (x(c) + t) - (c 5 t < 1') - 

Using again (5.8), and taking into account (5.9), we get 

i ( t )  > exp(b(t - c))(bx(c) + u )  > P1 ( c  < t < t*) 

This in combillation with (5.5) gives 

i ( t )  > p (0 5 t < t*) 

where 
P = min{Po, PI) . 

Thus, in order to reach (5.3), it is sufficient to show that 

Suppose, to the contrary, that 
t * < 0 0 .  

Then, as follows from the definition of t*, for an arbitrary v > 0 there is a t, E [t*, t* + v ]  
such that 

((t.) < 0 . (5.11) 

If v is sufficiently small, then, as follows from (5.1) and (5. lo),  

This together with (3.14) contradict to (5.11). The contradiction completes the proof of 
(5.3). 



5.3 Upper bound trajectory 

Fix a too > 0 and a nto > 0 satisfying 

(cB  + p)x[  + cB67(n:)to - 1 > 0 for all n: 2 n:o, to  2 too (5.13) 

(see (5 .2)  where x0 = xr ). Such too and nto exist due to assumption (1.18); the latter 
shows that it is sufficient to take too and nto so that 

is smaller than cr being sufficiently close to it. In what follows t,, > too (see (5 .12))  is 
determined by 

cBy(nfo)S[ , ,  = a . 
Consider the solution 

to (1 .1)  - (1 .3)  with the initial state 

where 
t o  E [too, t**) - 

Pa.rticular values for to and v:+ will be specified in the next subsection. For the variables 
x ( t ) ,  ( ( t )  (3 .1)  corresponding to  this solution we shall write x + ( t ) ,  t + ( t ) .  According to the 
previous subsection, (5.3),  (5.4) hold; using the above notations, rewrite these properties 
as 

~ ' ( 0 )  = x t ,  i S ( 0 )  > 0 ,  x S ( t )  crosses x, . (5.16) 

The latter implies that the above solution is not an intermediate trajectory. Let us call 
it the upper. bound trajectory. 

5.4 Specification of parameters 

Fix an n t -  > 0. Recall that by the definition of nt+ 

We set 

Note that the fact that to < t., (see (5.14),  (5.15))  implies that v:+ > 0. We let to (5.15) 
be sufficiently close to t.. . Observe that as &, approaches t.. from below, v t +  (5.18) 
approaches zero. Assume to to be so close to t,, that 



Note that (5.18) implies 

(see (1.20)).  Indeed transform (5.18) as follows: 

Dividing the right hand side through v f f ,  we get (5.20). 
Introduce the solution 

with the initial state 

Call it the lower bound trajectory. For the corresponding variables x ( t ) ,  t ( t )  defined by 
(3.1) we shall write x - ( t ) ,  t-(t).  

Let us show that choosing to sufficiently close to t,, (5.14), we can ensure that for the 
lower bound trajectory ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  = (nA- ( t ) ,  nB- ( t ) ,  v B - ( t ) )  it holds that 

It  will be important for us that (5.20) and (5.22) (together with the equality n B - ( 0 )  = 0  
gua.ranteec1 by (5.20)) imply 

for the lower bound trajectory ( n A ( t ) ,  n B ( t ) ,  v B ( t ) )  = (nA-( t ) ,  n B - ( t ) ,  v B - ( t ) )  (see (2 .2)) .  
We justify (5.22) as follows. As it was stated in subsection 2.1, 

Hence by (1.3) 



We have 

The left hand side of (5.24) takes the form 
I 

a-cBy(n,B-)6to 1 - a  
~ ~ ( 0 )  - in [O] = p ~ , B +  1 $ "" ) 

.Bnf- 
-- ( r(n:-)6t0 n f -  

If to is sufficiently close to t,,, or a - cBy(nt-)6to is sufficiently small, then the first 
term on the right is arbitrarily small, and we have (5.22). Namely, it is sufficient to let 

Note that equality (5.17) has the equivalent form l 

(see (5.18)), or 

hence in order to satisfy (5.19) it is sufficient to require 

In what follows, (5.18) (equivalent to (5.20)) is assumed, and to is specified as above (see 
(5.25), (5.26)). 

Thus we specified to and vft so that for the lower bound trajectory (nA (t) ,  nB(t),  vB ( t ) )  = 

(nA- ( t ) ,  nB-(t),  vB-(t)) we have the relations (5.23). 

5.5 Definition of a trajectory i 
In this subsection we define a particular solution (nA(t ) ,  nB(t) ,  vB(t)); in the next subsec- 
tioils it will be proved that this solution is an intermediate tra,jectory with r ( t )  strictly 
increasing (that is, (nA(t ) ,  nB(t) ,  vB(t)) is catching up). 

Come back to the upper bound trajectory (nA(t) ,  nB(t),  vB(t)) = (iaA+(t), nB+(t ) ,  vB+(t)). 
In accordance with the notations (3.1), we have 



Let 
- B- B+ x0 = no v0 = n:-vB+(0) . 

For every 

xo E [ x i ,  xt1 

there exists the single 

such that 
B B+ 

xo = no [xolv,, . 
Solution ( n A ( t  ), n B ( t ) ,  v B ( t ) )  determined by the initial conditions 

will be said to correspond to xo; making it explicit that variables x ( t ) ,  [ ( t )  (3.1) determined 
by the above solution depend on xo, we shall write 

Obviously 

x ( t  1 x ~ )  = x + ( t ) ,  x ( t  I x,) = x - ( t ) .  

In view of (5.16), for xo < xt sufficiently close to xt we have 

x ( t  ( so) crosses xt (5.29) 

s ( t  I z o )  is strictly increasing on [O,tt);  t t  is the time of first crossing s t  . (5.30) 

Consider the set X of all xo E [ x i ,  x t ]  such that x ( t )  = x ( t  I x o )  satisfyies the similar 
conditions: 

x ( t )  crosses xt (5.31) 

x ( t )  is strictly increasing on [0, t o ;  t t  is the time of first crossing xt . (5.32) 

iFr0n1 (5.25),  (5.29), (5.30) follows that for xo < xt sufficiently close to x t ,  we have 

From (.5.28), (5.23) follows 
- 

xo = xn(0)  @ X 
where x n ( t )  corresponds to x ( t )  = x - ( t )  = x ( t  I x i ) .  Therefore for 

x ,  = inf X (5.33) 

it holds that 

x* E ( x , , x t )  C ( xn (O) , x t )  . 
Here and in the sequel we set 

x ( t )  = x ( t  1 5,) 

and a.ssume ( i a A ( t ) , n B ( t ) , v B ( t ) )  to correspond to x,. The ratio r ( t )  is as usual defined 
by (1.6).  



5.6 Monotonicity before crossing XE 

In this subsection the following is established: either 

x ( t )  is strictly increasing on [0,  ca) and does not cross x( (5.36) 

or x ( t )  satisies (5.32). 
Assume that the statement is untrue. Then there are t z  > t l  > 0 such that either 

or 
x ( t )  = b =  const < x( on [ t l , t z ]  . (5.38) 

By assumption (see subsection 5.1) (5.38) is not the case. Thus (5.37) holds. By definition 
(5.33) of x,, there exists a sequence 

Hence 

x i ( t )  = x ( t  I xo;) + x ( t )  (5.40) 

uniformly on [0,  t z  + €1  with a certain > 0. For large i, t z  is smaller than the time of the 
first crossing of x( by x ; ( t ) .  So far as x ; ( t )  is increasing on [0,  t z ] ,  we get a contradiction 
with (5.37). 

5.7 Strict monotonicity in a neighborhood of x~ 

Let us prove that if x ( t 0  = X E  for a certain t E  > 0 ,  then 

Suppose that (5.41) is untrue, and obtain a contradiction. Observe that from (5.32) 
follows 

i ( t ( )  > 0 . 
Hence 

i ( t 0  = 0 

Note also that in view of (3.14)) (3.15) 

The differentiation of i ( t )  with the usage of (3.4) gives 

Since 

x ( t 0  = XE E ( x n ( t 0 ,  xu) 

(which follows from (1 .13)) ,  we have 7iB( tE)  > 0. Hence 



Consequently 

for all t > t t  - t with certain positive 6 .  Note that in view of x, < z t  (see (5.34)), tt > 0. 
With no loss of generality assume t t  - > 0. By (5.32) 

therefore 
i ( t 0  > 0 . 

We obtained a contradiction with (5.42). Thus (5.41) is proved. 

5.8 Staying between barriers 

This subsection finalizes the proof of Proposition 1.10. Let us obtain the first statement 
of the Proposition. Namely, verify that inequalities (3.6) with to = 0 hold, and r ( t )  is 
strictly increasing. 

Show that (3.6) is true with to = 0. prove first that the upper bound in (3.6) holds, 
that is, 

x( t)  < x, (t 2 0) . (5.43) 

So far as x, > xt (see (3.13)) and x(0) = x, < xt (see (5.34)) it is sufficient to show that 
z ( t )  does not cross x t ,  i.e. 

~ ( t )  < Xt (t 2 0) . (5.44) 

Suppose, to the contrary, that x( t )  crosses xt at some time tE.  Then, as it was stated in 
subsections 5.6 and 5.7, (5.32) and (5.41) hold. Let 

From (5.32) and (5.41) follows easily that for small 6 ,  

x,(t) crosses xt 

and 

x,(t) is strictly increasing on [0, tE,,]; tE,€ is the time of first crossing xt . (5.45) 

Therefore 
x * - € E X  

for all sufficiently small positive 6 .  This contradicts to the definition (5.33) of x,. Thus 
z ( t )  does not cross xt (and consequently (5.43) holds). This fact and the statement of 
subsection 5.6 imply that (5.36) takes place. From (5.34) and 

(see (5.34)) follows that 
~ ( t  ) > xn(0) (t  2 0). 

Since xn( t )  is decreasing (see (3.9)), we have 



From (5.44), (5.46) and (3.13)) we get 

implying (3.6). Thus, (nA(t) ,  nB(t) ,  vB(t)) is an intermediate trajectory. 
Prove that (nA( t ) ,  nB(t) ,  vB(t)) is catching up. From (5.47) and (3.15) we deduce that 

<( t )  is strictly decreasing. This together with (5.36) yield that 

is strictly increasing. 
Finally, pass to the second statement of Proposition 1.10 providing a condition suffi- 

cient for (nA(t) ,  nB(t) ,  vB(t)) to be overtaking. If to is such that 

then 

If, moreover, for the limit of r ( t )  corresponding to the intermediate asymptotics we have 

then the above trajectory is overtaking, that is, r ( t )  grows from a value smaller than 1 to 
a value bigger than 1. Let us assume that 

(see (1.32)). Then (5.48) can be reached by choosing to sufficiently close to t,, (5.14) 
(recall that the latter was assumed in subsection 5.4) Indeed, if to is sufficiently close to 
t,,, then cBy(nf-)St,, is arbitrarily close to a; hence the difference 

is arbitrarily small, and the left hand sides of (5.48) and (5.49) are arbitrarily close to 
each other; thus inequality (5.48) is satisfied. To satisfy (5.45) as outlined above with 
keeping conditions (5.25), (5.26) imposed on to in subsection 5.4 we move to, if necessary, 
closer to t*. . The proof of Proposition 1.10 is completed. 

5.9 Proof of Proposition 1.6 

Prove Proposition 1.6. Suppose that Condition 1.2 is fulfilled, that is, for any interval 
[pl, p2] of nonzero length with pl 2 0 there do not exist positive constants a, ,O such that 

for all p E [pl, p2]. Let us show that Condition 1.1 (in the equivalent formulation of 
subsection 5.1) is true. Consider an arbitrary solution (nA(t) ,  nR( t ) ,  vB(t)) to (1.1) - 



(1.3) such that for x(t) ,  f ( t )  (3.1) it holds that x, < x(t)  < x, for t E [ t l , tz]  with 
t2  > t l  2 0. Prove that x ( t )  cannot be constant on [tl, t2]. 

Assume that 
x( t)nB(t)vB(t)  = b = const ( t  E [tl, t2]) (5.50) 

and obtain a contradiction. From (1.2), (1.3) and (5.50) we get 

B B izB(t) = c (n  ( t )  + r (nB( t ) )6nA(t ) )  - FnB( t )  (5.51) 

where 

Thus 
vB(t) = vf3 exp(-do(t - t l ) )  ; 

here and in what follows tf = vB(tl) ,  t E [ti, t2]. BY (5.50) 

Substituting this and 
nA(t )  = nf exp(gA(t - t l ) )  

where = izA(tl) (see (1 . I ) )  in (5.51), we get 

(lob c r b  
- exp(do(t - t l ) )  = (ce - -) - e x ~ ( d o ( t  - t l ) )  + 
v b V? 

Hence 

or in simpler natations 

r (dl exp(d0t)) = d2 exp((d0 - gA)t )  

where 

The differentia,tion results in 



Introduce the new variable 
p = dl exp(dot) ; 

note that 
p E [pl , pz] = [dl exp(dot11, dl exp(dot2 11 - 

Rewrite (5.52) as 
-/'(PI = 

where 

This holds for all p E [pl,p2], which contradics the initial assumption. 
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