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Abstract

A particular tri-trophic (resource, prey, predator) metapopulation model with dispersal of preys
and predators is considered in this paper. The analysis is carried out numerically, by finding
the bifurcations of the equilibria and of the limit cycles with respect to prey and predator body
sizes. Two routes to chaos are identified. One is characterized by an intriguing cascade of flip
and tangent bifurcations of limit cycles, while the other corresponds to the crisis of a strange
attractor. The results are summarized by partitioning the space of body sizes in eight subregions,
each one of which is associated to a different asymptotic behavior of the system. Emphasis is
put on the possibility of having different modes of coexistence (stationary, cyclic, and chaotic)

and/or extinction of the predator population.
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1. Introduction

A particular tri-trophic (resource, prey, predator) metapopulation model composed by five ODEs
is discussed in this paper. The first three equations describe the dynamics of the resource patches
which are, respectively, free, colonized by preys, or by preys and predators. The two remaining
equations on the contrary, describe the dynamics of the densities of prey and predator dispersed
in the environment. Models of this kind have been first proposed by Levins (1969, 1970) to
analyze the role played by spatial inhomogeneity of populations without making use of partial
differential equations. The reader interested in more details can refer to Diekmann et al. (1988)
for the derivation and interpretation of such kind of models and to Taylor (1990) for a critical
review on the role of dispersal.

The model studied in this paper is a natural extension of those discussed in Sabelis et
al. (1991), Jansen and Sabelis (1992), and Jansen (1995). The aim is to establish the role
played by prey and predator body sizes in determining the asymptotic behavior of the system.
Bifurcation curves are produced numerically in the two-dimensional parameter space of body
sizes, in order to identify the regions where stationary, cyclic, or chaotic coexistence is possible.
Hopf bifurcations of equilibria, as well as tangent, flip, and transcritical bifurcations of limit
cycles and catastrophic bifurcations of strange attractors (Arnold, 1983; Guckenheimer and
Holmes, 1983) are detected. They prove that alternative regimes of coexistence are possible
for suitable combinations of the body sizes, while for other combinations the extinction of the
predator is guaranteed. Actually, such a region of extinction is surrounded by a region of chaotic
coexistence, By varying the body sizes one can enter the region of chaotic regime in two distinct
ways: through an infinite cascade of local bifurcations or suddenly, i.e., without any warning in
terms of bifurcations. Nevertheless, it is interesting to note that these two routes to chaos are
only two different aspects of the same bifurcation structure (a complex cascade of intersecting
flip and tangent bifurcation curves).

The paper is organized as follows. In the next section the model is briefly described, while
in Sections 3 and 4 its equilibrium and limit cycles are discussed in some detail with emphasis
on their bifurcations. Then, in Section 5, the two possible routes to chaos are pointed out and
the region of extinction of the predator population is identified.

A summary and some interpretations of the results conclude the paper.

2. The Model

The tri-trophic metapopulation model we analyze in this paper is composed of patches of re-

source, preys, and predators. With the capital letters X,Y, and Z we indicate, in suitable units,




Iligure 1. A symbolic sketch of the system: white, gray, and black leaves are free (X), prey
(Y7), and predator (Z) patches; empty circles and black triangles are prey (y) and predator (z)

dispersers.

the number of free patches, the number of patches occupied only be preys (called prey patches)
and the number of patches occupied by preys and predators (called predator patches). Typical
examples of such systems are populations of parasites and insects living patchly on plants. Fig-
ure | shows a symbolic sketch of the system where free, prey, and predator patches are white,
gray, and black leaves, while prey dispersers and pl'edator dispersers (indicated in the following
with the lower case letters y and z) are represented by empty circles and black triangles.

The dynamic behavior of the system is described by the following five differential equations:

X =rx(0) (1= 3) — o Z G0 (1)
V(1) = ar g u(t) = Y (1) - az i (1) (2)
2(1) = agiths2(t) = d2 (1) (3)
9(t) = o= (Y (1) = myy(1)) (4)
2(1) = £ (d22(1) — maz(t)) ()

where the 12 parameters, oy,0.,7, K, a;,b;,d;,m;,t = 1,2, are assumed to be constant (i.e.,
seasonalities are not taken into account).

The first term on the right-hand side of equation (1) says that in the absence of prey dispersers
(y = 0) the free patches grow logistically (r is the net growth rate per capita, and K is the
carrying capacity), while the second term is the rate at which free patches are invaded and
transformed into prey patches [see first term of equation (2)]. The rate of invasion is proportional
to the abundance of prey dispersers and to the probability that a disperser comes across a free

patch. Such a probability, obviously, increases from zero to one with the density of free patches.




Many functional forms could be given to this probability, but the one which has been chosen
here, namely the Monod form X/(b, + X), is particularly convenient, as shown below, because
it allows one to link model (1-5) with the most classical food chain model (characterized by
Holling type-II functional responses). Similar considerations hold for the rate at which prey
patches are invaded by predator dispersers z and thus transformed into predator patches [see
third term of equation (2) and first term of equation (3)]. The second terms of equations (2) and
(3) are the death rates of occupied patches: they simply say that, in the absence of dispersion,
occupied patches would be consumed exponentially with average life time equal to 1/d;. Since
the time needed by a colony of prey to consume the resource of a patch is smaller when such a
colony is not controlled by its predator, we will consider, in the following, systems with d; > d.
Finally, equation (4) [equation (5)] describes the dynamics of prey [predator] dispersers: it is
the balance between the inflow rate due to the release of preys [predators] into the environment
from a consumed prey [predator] patch and the mortality rate due to starvation (predation is
possible only on patches).

Model (1-5) differs from the models discussed in Sabelis ef al. (1991), Jansen and Sabelis
(1992), and Jansen (1995) for two reasons: first, because both species are dispersed at the same
time and second, and most important, because the rates of invasion of free an prey patches do
not increase indefinitely with the number of such patches. On the contrary, the models discussed
in the above-mentioned papers are characterized by rates of invasion proportional to the number
of invadable patches. This means that in these models the term a; X/(b; + X ) in equation (1)
is substituted by its linear approximation at low values of X, namely a; X /b;. This is somehow
justified if the carrying capacity of the resource is small compared to by, i.e., if k' << by, because
the inequality X (#) < A implies X(¢) << b;. But in the opposite case, the saturation of the
invasion rate with respect to X plays an important role. In order to stress this role, we will
consider metapopulations with K > b;.

In the following, all possible asymptotic modes of behavior of system (1-5) will be classified for
all positive values of the parameters o and o, keeping all other parameters fixed at a reference
value specified below. It is therefore convenient to give a simple biological interpretation of o,
and o,. For this, assume that each time the resource of a prey patch is exhausted, there is a
release in the environment of N, preys and that this number is negatively correlated with the
body size s, of the prey, ie., N, = 1/s,. But it is also fair to assume that the mortality of a
prey disperser is inversely proportional to its body size, i.e., M, = 1/s,, so that

y(t) = diY ()N, — Myy(t) = N, (dIY(t) — %y(t})

By introducing the new parameters o, and m;, this equation can be written in the form (4)

y(t) = i (drY () — myy(t))




with o, proportional to body size and m, independent upon body size. The same argument
applies to predator dispersers, and the conclusion is that the two parameters o, and o, can be
considered to be a measure of the body sizes of the individuals of the two species. Very small
values of such parameters correspond to the case of very small parasites and insects which are
very quickly dispersed into the environment. In the limit case (o, — 0,0, — 0) (instantaneous
dispersion) we can use the singular perturbation argument to conclude that
y) =Sy 1) = L2

i.e., densities of preys and predators dispersed in the environment are proportional to the abun-
dance of prey and predator patches. Substituting these relationships into equations (1-3) we

obtain the reduced metapopulation model

B A patae A 0
() = 61 b1+A c2b—+()t,)—} Y(t) (7)

2(t) = |ea w dg] 2(t) (8)
where ¢; = a;d;/m;,1 = 1,2. Such a model is the classical Rosenzweig-McArthur food chain

model which has been extensively studied during the last few years through singular perturba-
tion analysis (Muratori, 1991; Muratori and Rinaldi, 1991, 1992; Rinaldi and Muratori, 1992;
Kuznetsov et al., 1995) simulation (Hastings and Powell, 1991; Scheffer, 1991; Abrams and Roth,
1994a, 1994b; McCann and Yodsiz, 1994) and bifurcation analysis (I{lebanoff and Hastings, 1994;
McCann and Yodsiz, 1995a; Kuznetsov and Rinaldi, 1995). It has a very rich bifurcation struc-
ture showing that stable coexistence of the three species can be stationary, cyclic, or chaotic.
There are multiple attractors and in some cases there are even alternative stable regimes of co-
existence. In many regions of the parameter space a degenerate attractor corresponding to the
extinction of the top predator (Z) is present together with a strictly positive attractor (coexis-
tence), thus meaning that the long-term survival of the top predator population can be critically
related to the timing and amplitude of the disturbances acting on the system.

Since model (1-5) is an extension of model (6-8), one should expect for model (1-5) a bi-
furcation structure at least as complex as that pointed out in Klebanoff and Hastings (1994),
McCann and Yodsiz (1995a), Kuznetsov and Rinaldi (1995). Here, in order to avoid paramount
analyses of the bifurcations of model (1-5), only the parameters o, and o, [which do not appear
in model (6-8)] will be varied. For this reason, the remaining parameters of model (1-5) have
been fixed to the following reference values

r=1 NL=1
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which satisfy the conditions ' > b; and d; > dy pointed out earlier. TFor these values of the
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Figure 2. A three-dimensional view of the “tea-cup” strange attractor A of the reduced model

(6-8).

parameters the reduced model (6-8) has a unique attractor which is a strange attractor indicated
by A and known as a tea-cup strange attractor (Hasting and Powell, 1991); see Figure 2. This
means that the metapopulation model (1-5) with very small values of o, and o, i.e., with almost
instantaneous dispersion, has only one asymptotic mode of behavior, corresponding to chaotic
coexistence. The analysis will point out the effects of body size on this mode of behavior and
therefore show how dispersion can stabilize chaos. It is important to stress, however, that the
conclusions are valid for the particular parameter setting which has been selected. It might easily
be that for other parameter settings, interpreting, for example, specific biological communities,

the effects of dispersion would be different.

3. Equilibria

In this section the equilibria of system (1-5) (which do not depend upon ¢, and ¢.) are analyzed
and their stability is discussed with respect to o, and o,. The analysis is quite standard and
based mainly on the Jacobian of system (1-5). For this reason the main properties are stated
without proof.

There are at most six constant solutions of system (1-5) but one of them is biologically
not meaningful because some of the state variables are negative for all combinations of the
parameters. Three of the remaining equilibria, namely

Ey =(0,0,0,0,0)

FEy = (K,0,0,0,0)
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are trivial equilibria characterized by the absence of the predator (Z = z = 0). For the reference
parameter setting, E, is positive and all three equilibria are saddles (Eg and E; have only one
positive eigenvalue, while E, has three positive eigenvalues). Moreover, it can be shown, by
analyzing the Jacobian of the system restricted to equations (1, 2, 4) with Z = z = 0, that the
equilibria Eg, E;, and E; are saddles also in R* = (X,Y,y). This implies that if free patches
are at their carrying capacity K and there are no preys and predators, after a generic injection
of preys the system will tend toward a cycle or a strange attractor in R® = (X,Y,y) because
the solutions of (1-5) are, in any case, bounded.

The two remaining equilibria, if they exist, are non-trivial and differ only in the first com-
ponent (X). Both of them can be strictly positive, but for the reference parameter setting only

one of them, namely

= (4+\134 1 50v/34-115 1 50\/34—115)
== 18 18

12 ’87 787

is such. The determinant of the Jacobian evaluated at point F is equal to —1.73-10_5/%0;
(easy to check) and is therefore negative for all values of ¢, and o,. This implies that E cannot
undergo saddle-node, pitchfork, and transcritical bifurcations, while Hopf bifurcations are not
excluded. Indeed, by applying the Hurwitz criterion to the coefficients of the characteristic
polynomial of the Jacobian one can determine the Hopf bifurcation curve shown in Figure 3.
Further analysis is needed to establish if this Hopf bifurcation is subecritical or supercritical
(as expected for biological reasons). This has been done by means of LOCBIF, a specialized
software for the analysis of local bifurcations (Khibnik et al., 1993) and the result is that the
Hopf bifurcation is indeed supercritical. Thus, in the vicinity of curve H and below it, the
equilibrium F is asymptotically stable, while above that curve the equilibrium is a saddle and

there exists a strictly positive stable cycle C'in R”.

4. Cycles

In the previous section it has been shown that above curve H of Figure 3 there exists a stable
limit cycle C' which is strictly positive (cyclic coexistence). Examples of this cycle are shown
in Figure 4 for increasing values of predator body size (¢,). The geometry of these cycles is
rather similar to that of the strange attractor A of the reduced model (see Figure 2). This is an
obvious sign (but not a proof) that A is obtained from C' through a series of bifurcations. Such
bifurcations are described in the next section because they represent one of the two routes to
chaos of system (1-5).

Let us then describe the cycles of system (1-5) which cannot be obtained from C through
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Figure 3. The Hopf bifurcation curve H of the positive equilibrium E. Below the curve F is

stable, while above it is unstable (saddle). The closed orbit is a symbolic representation of the

positive stable cycle C.
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I'igure 4. Two-dimensional projection of the positive stable cycle C for oy = 5 and (a) o, = 0.5,

1, (¢) o, = 5. For increasing values of predator body size the cycle becomes a “tea-cup”
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cvcle (compare with Figure 2).
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I'igure 5. Tangent (T') and transcritical (7;) bifurcations of cycles. The heavy cycles C* and
C are positive cycles (corresponding to cyclic coexistence of all species). The light cycle Cis
a degenerate cycle characterized by predator extinction (Z = z = 0). The dashed cycles are

saddle cycles, while the others are stable.

bifurcation. For this, let us make reference to I'igure 5 where these cycles are symbolically shown
in three different regions of the parameter space. Some of them (heavy lines) are strictly positive
cycles (coexistence), while the others (light lines) are in R3 (predator extinction). Moreover,
the dashed cycles are saddles (in %) while the others are stable (there are no repelling cycles).
The two curves indicated by T and T, are, respectively, tangent and transcritical bifurcations
of cycles. They have been obtained by “continuation” using a version of LOCBIF oriented to
local bifurcations of limit cycles. In the left region of Figure 5 there is only one cycle denoted
by C, which is stable in R* = (X,Y,y) but unstable in R5. There are no other attractors in
Ri (recall that the three equilibria Eg, Eq, E are saddles). The cycle C becomes stable when
the transcritical curve T, is crossed from the left. Indeed, approaching this curve, a stable and
strictly positive cycle ' gets closer and closer to €' and finally collides with it on T¢ and leaves
the positive octant R%. On the left boundary of the central region (tangent bifurcation curve
T) the cycle C disappears by colliding with a strictly positive saddle cycle C*. This saddle cycle
C~ is always present on the right side of curve T and is responsible of the “crisis” of strange
attractors, as pointed out in the next section.

Although the cycle C indicates a possible stable mode of cyclic coexistence, it plays a minor
role in the dynamic behavior of system (1-5), because the central region of Figure 5 is rather
narrow (compare with Figure 3). Of course, it might be that for different parameter settings

this region is larger. In any case, the cycle C is quite close to the cycle C, with which it collides
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Figure 6. Time series of free patches (X') and prey patches (Y') associated to the two possible
modes of cyclic coexistence: (a) the cycle C for oy = 0.12,0, = 0.1; (b) the cycle C for
o, =5,0.=1.

on T,. This means that the coexistence corresponding to C is characterized by low numbers
of predators so that the oscillations of prey patches are much more relevant than for the cycle
C discussed at the beginning of this section. Figure 6 reports the oscillations of free and prey
patches in the two possible modes of cyclic coexistence. Notice that the cycle C is characterized
by lower peaks of prey patches and by relatively long periods of time during which free patches
are almost at their carrying capacity and prey patches are almost absent. This is obviously a

more desirable behavior if the prey is actually a pest.
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Figure 7. The annular chaotic region (in gray). In the internal white closed region the predator

population is doomed to extinction.
5. Routes to Chaos and Strange Attractors

As already said, the reduced-order system (6-8) has a unique strictly positive attractor which is
the tea-cup strange attractor shown in I'igure 2. By continuity, one can therefore expect that
systemn (1-5) has also a strange attractor for small values of o, and o,. Indeed, the analysis
confirms this fact and shows that strange attractors are confined into the annular region shown
in Figure 7. In the closed region delimited by the internal boundary of the chaotic region there is
only one attractor, namely the stable cycle C (compare with Figure 5). This means that in this
region the extinction of the predator is guaranteed, while in the surrounding region all species
can coexist in a chaotic regime. Figure 7 shows that there are two distinct routes to chaos: one
through the external boundary and one through the internal boundary of the annular region.
The first route to chaos, namely the one through the external boundary, has to do with a
rather complex cascade of flip and tangent bifurcations of the stable limit cycle C. Figure 8 shows
the first flip (F') and tangent (7T') bifurcation curves of this cascade in a region corresponding
to a very thin horizontal band of Figure 7. The flip curves are intersecting one another and a
horn delimited by two tangent bifurcation curves emerges between any pair of flip curves. Let
us isolate one of these flip curves and the two adjacent tangent horns, as done in Figure 9a and
let us decrease o, keeping o, constant along line (a). Approaching from the right the lowest
tangent horn, the cycle ' smootlly varies its shape and its period 7, as indicated in Figure
9Db. Tor parameter values inside the horn there exist three limit cycles: two are stable (C and
C3) and one is a saddle (C75). Leaving this horn through the branch 7}, the cycles C and C?

collide and disappear, so that only one attractor remains, namely Cz. Decreasing o, further,

10
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Figure 8. The first flip (F) and tangent (7") bifurcation curves of the positive cycle C' and the

chaotic region (in gray). Notice the difference in scale with respect to Figure 7.

the cycle Cy undergoes a flip bifurcation on Fj giving rise to a stable cycle of double period C?2
(not indicated in Figure 9b) and to a saddle cycle €5, which, in turn, undergoes a reverse flip
bifurcation on the flip curve I. At this point, C3 is transformed into a stable cycle C3, which
later disappears by colliding with the saddle cycle C§ on T3. The cycle 3 collides also with a
stable cycle Cy on the right branch Ty of the highest horn. And the story continues like this
indefinitely through an alternation of flip and tangent bifurcations. The analysis shows that
the stable cycle C originates a sequence of stable cycles Cy,C3,Cy,... . Moreover, every even
element of this sequence, namely C,,Cy,.. ., undergoes a flip bifurcation giving rise to a stable
cycle of double period C2,C2,.... But the story is endless, because each one of these cycles is
the origin of a new cascade of flip and tangent bifurcations. Figure 10 shows, for example, the
first flip and tangent bifurcation curves of the cycle C2. Going into the limit, the tangent horns
become infinitely many and infinitely thin and form the external boundary of the chaotic region.
In practice, the process of accumulation of the flip and tangent curves is very strong and the
boundary of the chaotic region can be fairly well approximated by stopping the computations at
the third flip (as done for producing Figure 7). In conclusion, approaching the annular chaotic
region from outside, one goes through a cascade of catastrophic transitions associated to the
tangent horns alternated with non-catastrophic period doublings. This route to chaos is very
similar to that discussed in detail in Kuznetsov and Rinaldi (1995) for the reduced-order system
(6-8).

The second route to chaos, namely that through the internal boundary of the annular chaotic

11
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Figure 9. (a) a flip bifurcation curve (F, I;) and the two associated tangent horns (77, T3) and
(T5,Ty4); (b) the period r of the stable (continuous line) and saddle (dashed line) limit cycles

obtained from C when moving along the straight line (a) of Figure 9a.
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Figure 10. The first flip (F)) and tangent (T') bifurcation curves of the cycle C%.

region of Figure 7, is not preceded by any local bifurcation. In other words, the strange attractor
appears suddenly without any warning as first noticed by McCann and Yodsiz (1995b) for the
reduced model (6-8). Indeed, the internal boundary of the chaotic region is a catastrophic
bifurcation corresponding to the collision of the strange attractor with a saddle cycle [a so-
called “crisis” (Grebogi, 1983)]. This can be seen by following the strange attractor A and the
saddle cycle C* for different values of ¢, keeping o, constant. IFigure 11 is a neat example of
this sort of numerical experiment: the saddle cycle approaches the strange attractor if o is
decreased from 1.07 to 0.83 and soon after that, for o, = 0.79, the collision takes place and the
strange attractor disappears. The internal boundary of the chaotic region can be systematically
determined by fixing o, and producing a bifurcation diagram with respect to o, like that shown
in Figure 12, where Z,ax is the value of Z on the Poincaré section 7 =0. The points g, and Ty
at which this bifurcation diagram is interrupted are the coordinates at which the saddle cycle
C* collides with the strange attractor. Figure 7 has been produced in this way by systematically
varying o, over the whole range of interest.

Finally it is worthwhile noticing that the flip and tangent bifurcation curves forming the
cascades described above, start outside the chaotic region (as shown in Figure 8) but tend
toward the internal boundary of such a region by spiraling around it. Figure 13 shows one
example of these spirals. The figure is only a qualitative sketch, because it was impossible
to continue the flip bifurcation curves when approaching the internal boundary of the chaotic
region. Nevertheless, the fragments of the curves that have been produced strongly support the

conjecture that the two routes to chaos are different aspects of the same bifurcation structure.
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Figure 11. The crisis of the strange attractor. For decreasing values of g, the saddle cycle C*
approaches the “tea-cup” strange attractor A. Parameter values are o, = 0.3, (a) g, = 1.07,

(b) oy = 0.95, (c) oy = 0.83.
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Figure 12. Bifurcation diagram for o, = 0.3 showing the crisis of the strange attractorat o, = g,
and o, = @,. On the vertical axis Z,,,y represents the value of the variable Z on the Poincaré

section defined by Z = 0 [see equation (3)].
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Figure 13. A qualitative sketch of the flip bifurcation curves (see Figure 8) spiraling around the

internal boundary of the annular chaotic region.
6. Summary and Conclusions

The very high (actually infinite) number of equilibria and cycles involved by the bifurcation
curves of model (1-5) is a serious obstacle for a clear biological interpretation of the dynamic
hehavior of the food chain. Nevertheless, if the final target of the analysis is the classification
of the stable modes of behavior of the system, all saddle equilibria and saddle cycles must be
disregarded, because the attention must only be focused on the attractors. Moreover, if the
altractors present in the very narrow band surrounding the chaotic region are also disregarded,

only five of them remain. They are the following

I, a tri-trophic equilibrium

C, a tri-trophic cycle with quite low predator densities and high frequency and high amplitude

prey oscillations (see Figure 6a)

C, atri-trophic cycle characterized by high predator densities and relatively low prey densities

(see Figure 6b)
A, a tri-trophic strange attractor [in general a “tea-cup” strange attractor (see Figure 2)]

(', a di-trophic cycle characterized by the absence of the predator population.

The first attractor corresponds to stationary coexistence, the second and third to cyclic

coexistence, the fourth to chaotic coexistence, while the fifth corresponds to extinction of the
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Figure 14. The partition of the parameter space into eight regions of different asymptotic

behavior (see Figures 3, 5, and 7).

top population of the food chain. For suitable combinations of prey and predator body sizes
“there is only one attractor, but for others there are two alternative attractors.

Iigure 14 (based on Figures 3, 5, and 7) summarizes all possibilities by partitioning the
parameter space in eight regions. In region 1, containing the origin, there is only one attractor,
namely the tea-cup strange attractor A. This is so because the reference parameter setting
gives rise to a reduced model (6-8) [obtained from (1-5) for body sizes tending to zero| which is
chaotic. In region 2 the attractor (still unique) is the cycle C obtained from A through a reverse
cascade of flip and tangent bifurcations. Thus, in regions 1 and 2 coexistence (either chaotic
or cyclic) is the only possible mode of behavior. This is true also in regions 3 and 4 where,
nevertheless, there are two alternative regimes of coexistence: one chaotic (A) and one cyclic
(C') in region 3 and two cyclic (C and C) in region 4. In regions 5, 7, and 8 both coexistence
[chaotic (A), cyclic (C) or stationary (E)] and predator extinction (C) are possible, while in
region 5 extinction of the top population is the only possible mode of behavior.

Figure 14 can be used to interpret the role played by dispersal in metapopulation systems
(see Taylor, 1990). Moving away from the origin of Figure 14, i.e., increasing continuously the
body sizes of prey and predator individuals, one goes through regions characterized by more and
more regular attractors. For example, moving along the o, axis the strange attractor A becomes
a cycle C, while moving along the o, axis the strange attractor A is first transformed into a cycle
(C) and then into an equilibrium (£). This is in agreement with a conjecture made by Hastings
(1993) on the stabilizing influence of dispersal, bringing to the conclusion that “chaotic dynamics
may be less prevalent than the study of models without spatial structure would indicate”.

Region 6 is of particular importance for interpreting the difficulties often encountered in

practice in trying to control a pest biologically. Indeed, if the prey is a pest feeding on a plant
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of commercial value, one can consider the possibility of introducing a predator in order to keep
the prey in check. But Figure 14 shows that when the body size o, of the pest is in the range
corresponding to region 6, only predators with extreme body sizes (either very small or very
large) can keep the pest under control, while all predators with more reasonable body sizes
cannot perform this task.

It is also interesting to remark that the bifurcation structure of model (1-5) recalls that of
the Rosenzweig—McArthur food chain model (6-8). Indeed, the complex cascade of intersecting
flip and tangent bifurcation curves which gives rise to the outside boundary of the chaotic region
{see Figure 8) is present also in model (6-8) (Klebanoff and Hastings, 1994; McCann and Yodsiz,
1995a; Kuznetsov and Rinaldi, 1995). Also the crisis of the strange attractor A, determining
the boundary of the region of unavoidable predator extinction (region 6 of Figure 14), has been
notice by McCann and Yodsiz (1995b) for the Rosenzweig-McArthur food chain.

Finally, it is important to stress, once more, that the results summarized by Figure 14
are valid only for the particular parameter setting selected for the analysis. Unfortunately, a
paramount effort would be required to establish, through numerical analysis, if these results are
robust. A more reasonable task along this line would be that of repeating the analysis carried out

in this paper for parameter settings interpreting biological communities of particular relevance.
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