
Working Paper
A New Method for Structural

Sirnulat ion

Carlos Domingo, Marta Sananes,
Giorgio Tonella, Fernanda Sarmiento

TVP-95-54
June 1995

-1lASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

2.d: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

A New Method for Structural
Sirnulat ion

Carlos Domingo, Marta Sananes,
Giorgio Tonella, Fernanda Sarmiento

WP-95-54
June 1995

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

iQi 11 ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

:hi: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: in fo~i iasa.ac.at

Abstract

In this paper structural change is defined and a tool to simulate structural changes is
introduced which consists of a new simulation language which allows to deal separately
with quantitative changes and structural qualitative changes. Two strategies of structural
simulation are described. In the first one, the user defines the possible structures and
conditions of change. In this case, the simulation process finds the structural paths
through successive structures. In the second strategy, the structures are generated by
the simulation process based on the model of creative thinking proposed by Poincark and
Hadamard. A1 and genetic programming techniques are used to implement the model. A
simple example is given to illlistrate tlie method of the second strategy.

Keywords: simulation, structural simulation, artificial intelligence, simulation language,
variable structure.

A New Method for Structural
Simulat ion1

Carlos ~ o r n i n ~ o ? Marta ~ a n a n e s ?
Giorgio on el lag Fernanda S a n i e n t o 4

Creativity occurs not just upward from the bottom,
with new forms arising from less complex systems by spontaneous jumps;
it also proceeds downward from top,
through the creat,ive activit,y of higher level fields.

Rupert Sllelgrake. The Rebirth of Nature.

1 Structural Simulation through Predefined Struc-
tures

An important class of problelns may be solved or explored by simulation. However,
when the system to be simulated untlergoes structural changes, the simulation is still
possible but, unless the changes are trivial ones, the difficulties of implementation cause
confusion in the design and the simlilation becomes a complex problem. In this case,
it is necessary to develop new methocls, such as the ones presented in this paper. The
basic idea of this new approach is to adopt a clear definition of structural changes and
to develop programming techniques to deal separately with the quantitative changes of
the variables, usually found in common simulation, and the qualitative changes which are
managed by structural simulation.

The structure of a system is determined by:

The components of the system (subsystems) and their connections (information
interchanges).

The parameters that determine the behavior of the components and their connec-
tions.

'A preliminary version of this working paper under the title Problem Solving by Structural Simulation
was sent to the IASTED International Conference Modelling and Simulation held in Pittsburgh, USA,
27-29 April 1995.

'Institute de Estadistica Aplicada y Computaci6n, FACES, ULA, MCrida, Venezuela; email:
carlosd@faces.ula.ve

3Centro de Simulaci6n y Modelos, Fac~rlt,ad de Ingenieria, ULA, MCrida, Venezuela: email:
tonella@ing.ula.ve; at IIASA on sal~l~atical leave.

4CDCHT Training Program Universitlad de 10s Andes, MCrida, Venezuela

A structural change is any change involving adding or removing of components, changing
their connections or changing the values of the parameters that alter the behavior [6] [7].

There are many ways to manage the simulation of structural changes [12] [16]. However,
none of them keep usual simulation separate from structural simulation. GLIDER is
a new simulation language developed at the Universidad de 10s Andes for common and
structural simulation, and is used in this research as the basic tool for simulating structural
change. In this language [3] [5], the system components are represented by objects called
nodes which have data and methods to describe the information processing capabilities
of the subsystems represented. The algorithms and data description are coded into a
basic general purpose language enriched by a set of simulation facilitating instructions,
procedures and functions. The nodes may relate not only through common (global) data
structures and files (as is typical in objects and procedures) but also by messages that the
nodes can send to one another. Messages are objects that carry information through all
types of variables and references to the procedures. They may, among other things, act
as transactions or traveling entities such as those used in classical simulation languages.
The nodes and their relations constitute a network or oriented graph which represents the
system structure. A node may be activated by itself or by other nodes.

Although the programmer has the freedom to program the nodes, she or he can use
some predefined nodes that have built-in facilities to handle messages and particular
ways of being activated. They are suited to simulate different processes and subsystem
types: generation and destruction of messages, gates, resources, selection and routing of
messages, continuous processes, and discrete event processes.

The language is able to handle messages, and it has the graphical and statistical facilities
included in most simulation languages. It has been tested in many practical applications
and teaching courses in siml~lation [4].

The language is well suited to represent the structures defined above: subsystems are rep-
resented by nodes; global variables and messages describe the relationships. The network
of nodes and some parameters define a structure. Different structures may coexist in the
same program as disjointed or overlapping parts of the total network. These parts may be
activated one after the other when the conditions of structural change are fulfilled. Nodes
of similar types may be introduced during the simulation by means of object creation or
by use of subscripted nodes. Some nodes can take charge of structural changes by pe-
riodically monitoring the conditions for structural change and, if the change is required,
they can activate new nodes, deactivate others and change parameter values. With this
design the structural changes are s ep ra t ed from ordinary quantitative changes in the
program because the latter changes the task of different nodes. When used by enterprises
or institutions the nodes for the two types of changes are usually designed by people from
two different levels of management.

The problem of structural simulation was solved using two different strategies. The first
uses predefined structures. In this strategy the situation may be depicted as a tree of
alternatives (see Figure 1) t11a.t the user defines in the simulation program:

The structures that could appear in the course of simulation: sets of nodes, inter-
connections and values of the parameters defining structures.

The set of conditions to change from one structure to another.

E7 u End
E6

Figure 1 : Simulation Tree Using Predefined Structures

The arrows E, represent the structures. Each node of the tree Cj represents a set of
conditions to change a structure to one or more successive structures. The node I is an
initial node that represents the initial structure. When more than one structure follow, it
is necessary to indicate how to select tlie one that will be processed next. This selection
can be made by the conditions of structural change or using predefined heuristics (which
may include goal seeking as in heuristic programming) or by indicating a given order
of selection so that the system can explore the whole tree, and all possible structural
paths are simulated. The programming language has facilities to indicate structures, to
specify sets of conditioils of structural clia.nge, and to store the actual state of the system
to simulate new alternatives in the case of a complete searching of the tree. A criteria
supplied by the user may be used to compare the performance of different structural
paths.

This strategy of predefined structures wa,s a.pplied to the scenario analysis of an expanding
firm that grows by adding storehouses and factories in a series of cities. Details of this
strategy are described elsewhere [15] .

2 Structural Simulation through Generation of Struc-
t ures

In the second strategy the conlputer system creates possible structures and tries different
structural paths generated by a controlled random process. This solution was suggested
in several methods and theories of creative thinking [:I.] [2], but it was specially inspired in
the model by the mathematicians H. Poincarb [14] and J. Hadamard [l I.]. This model was
based on the experience of Poincarb. His observations were later confirmed by inquiries
made by Hadamard. They observed that , in many cases, after a problem is posed and an
unsuccessful attempt a t the solution is made, the work is discontinued. Days or weeks
afterwards a solution may come to mind where the mathematician is not thinking about
the problem. The model suggested divides the creation process into three stages:

1. The problem is defined, tlie elements of the problem are distinguished and the
conditions that the solution has to fill are set.

2. A conscious effort is made to find a solution based on previous knowledge and logical
reasoning. This is ma.i~ily a top-down thinking process. If the solution is found the
process is finished, but in some cases no solution is obtained. During this effort

some conditions and restrictions are imposed on the pursuit of the solution or on
the combinations of elements in the problem.

3. An unconscious process is triggered by the previous stages. In this stage a random
combinatorial handling of the elements of the problem takes place until a suitable
solution is found and by a process that is not well understood, this structure is
brought to the conscious level. It is essentially a bottom-up constructive process.
Poincark emphasized the aesthetic value of the found structure and he thought that
the mind of a good mathematician is particularly sensitive to this aesthetic appeal.

Perhaps a fourth stage may be added in which by a conscious process the emerging solution
is tested, details are refined and an intelligeable form is given to it.

This schema was adopted in this research method of solving problems that requires gen-
eration of structures without any claim about psychological soundness, which has been
questioned by some scholars [13].

The first stage is strongly prol~lem dependent on the problem and the method assumed
by the user. Expert systems in the problem area may play an important role. But usually
the user defines the elements of the problem, possible relationships and general standards
to evaluate the behavior of the structural paths.

The second stage may also be problem dependent but it is possible to use techniques
that apply to a large class of problems. The analysis of A1 may be well suited during
this deductive stage. The possil~le structures are found and perhaps some restrictions to
structural changes may be set.

The third stage is a mecl~anical one, using random generation of structural paths and
testing them with the conditions set in the first stage. It is also possible to generate
whole trees of possible structl~ral paths at random. When a satisfactory solution is found
(as measured by the standartls and conditions fixed at stage l) , it is adopted and the
process is stopped. At this stage a small set of the best solutions are worth considering.

To implement the third stage various alternative random combinatorial processes may be
used. The one used here is l~ased on genetic algorithms [9]. These are convenient for
several reasons:

A structural path can be easily represented by a chromosome, its genes being the
elements of a vector of the successive structures and vectors of parameters values
for each structure.

A fairly thorough expanded search of the possible structural paths is spanned.

An organized generation of structural paths is accomplished, and the best ones are
selected. Less obvious ones are also generated and allowed to catch unexpected
optima.

It is easy to make parallel processing (however, this has not been tried yet) because
in the simple version of genetic algorithms there are no interactions between indi-
viduals beyond mating. Parallel processing (which some attribute to subconscious
~rocesses) may ~ a r t i a l l y l~alance tlie long period, that is spent in the execution of
random combinations.

Some further experiments may be made with the solution obtained to refine details and
to test its adequacy in other contexts. This activity covers the fourth stage mentioned
above.

3 A Simple Example

The problem is to find an adequate succession of structures in a processing system in which
random parts are submitted to successive processes A and B. Units perform process A ,
process B, or the succession of processes A and B. In the simulation model there are three
types of processing nodes for the A, B, and AB processes. Queues may be formed at
these nodes. The queues are lists introduced by the system for these nodes and are called
entry lists. Also the enter node (INP) generates parts (messages), and the exit node (E)
destroys them. The connection rules of these elements (or subsystems) of the problem
are given in Figure 2; in this case, multiple connections from A or to B are forbidden.

INP + A INP +AB A t INP +A
AB t I N P + A A B t I N P + A B A + B
B + E AB + E

Figure 2: Possible Co~~,nection,s, Example System of Processing Parts

It is possible to program all the different structures (in this case five) as disjoint networks.
A more compact program may be obtained by programming only one network using sub-
scripted nodes and by changing some parameter values to produce the different structures
during the process. These values are determined by a logical process based on some rules
for finding the structures.

Using the GLIDER simulation language, the implementation of this process is the follow-
ing:

An INP node may be represented by:

INP (I):: IT:=EXPO(TBA);
IF CES 1 THEN SENDTO (PROC [JI)

ELSE SENDTO (PROC [K]) ;

where INP is an I (input) node that, when activated, generates a message and
schedules the next activation of itself. The IT (interval time) indicates the next
arrival time. It is cllosen from an exponential distribution with mean TBA. CESl
is a logical parameter, and J and K are integer parameters whose values may be
set by the structural change according to the required successors of INP in the
structure procedure. Thus, the 1nessa.ge generated (the part) may be sent to a
different processing node.

Processing nodes are programmed, for example, with the following:

PROC (R) [I. .6] : : RELEASE IF CES2 THEN SENDTO(PROC [MI)
ELSE SENDTO (E) ;

STAY : =PROCTIME [IN01 ,

where PROC is an R (resource) node that has a subscript. Actually it represents
six independent nodes distinguished by the subscript INO. They are processed with
INO=1,2,3,4,5 and 6:

- PROC[l] PROC[2] perform the process A

- PROC[3] PROC[4] perform the process AB

- PROC[5] PROC[6] perform the process B.

They are distinguished from other nodes by having different processing times and
successors. The STAY instruction defines the processing time, i.e. the time that the
arriving message remains in the node in the internal list. During this time, other
arriving messages are queued in the entry list for the node. This list is introduced
automatically and is called

EL-PROC[sul~scri~t] (entry list of the node PROC[subscript])

When the message is released the RELEASE part is executed and the message is
routed to another processing node or to the exit node E.

The two above codes and the exit node E are enough to represent (with adequate
values for CES1, CES2, J , K , and M), all the possible structures for this simple case
of nodes with no more than two successors. So in this case the code is very compact.

To simulate the structure given in Figure 3, in which parts may be processed by machines
AB or machines A and later machines B, the variables must have the following values:

/ AB -\
I N P

\ A - B

Figure 3: A Possible Structure

CESl = LL(EL-PROC[J]) 5 LL(EL-PROC[Ii']); J = 1; Ii' = 3;

if I N 0 = 1 then M = 5, C E S 2 = T R U E ;
if I N 0 = 3 then C E S 2 = F A L S E

where, LL is a function that gives the length of the queue. This assignment of values to
CES1 , CES2 , J, Ii' and h/l makes the INP node send the message to the smaller queue
and the processing PROC node send the message to process B or to the exit E node. The
parameters are the processing times at each processing node. They are random values
taken from a uniform distribution between two given limits.

The structural paths in this example is confined to three successive structures a t most.
The condition of structural change is a predefined degree of system crowding given by

the joint length L of all queues. The performance is given by the function: F = (aL +
bC - 15)-2 where a , b are constants and C is the cost of the processing structures for each
part processed. It is different for different configurations of the nodes and increases for
shorter processing times. The form of the function warrants a good separation of different
performances.

More sophisticated and realistic fitness functions could be designed, but this explanation
is enough for the present demonstration purpose. All of these conditions and coding are
given to the computer system by the user and they should be strongly dependent on the
problem. They correspond to stage 1 of the process.

The objective of the second stage is to find the possible structures. They result from the
connection rules. The elements may be coded as follows:

I NP 0

PROC[l] (A) 1
PROCC21 (A) 2
PROC [3] (AB) 3
PROC[4] (AB) 4
PROC[5] (B) 5
PROC[6] (B) 6
E 7

The structure may be represented by a 5 x 7 ~ 7 array G, in which Gn;j equals 1 if there is
a connection from element i to j in the structure n, and 0 otherwise. For instance, if the
structure given in the above is numbered 4, then the elements of the array G that are
different from 0 are:

A straightforward algorithm is required to obtain from the given connection rules the
matrix structure for each feasible structure. Five structures (models of the processing
system) are generated with these mapping rules.

The following procedure is used to rnap a structure into the parameters of the above
nodes.

If there is only one Gnoj = 1, set: CESl = T R U E , J = j.

If there are two Gnoj = GnOk = 1, set:
CESl = LL(EL-PROC[J]) 5 LL(EL-PROC[It']), J = j, It' = k.

For node PROC[INO] I N 0 = 1,2,3,4,5,6:
If rows 1, and 2 do not contain a 1 then set C E S 2 = F A L S E (only one pass
processing)
otherwise:
If I N O = l , and 2 and GtLlk = 1 or Gn2k = 1 set: C E S 2 = T R U E , M = k;
If INO=3,4,5, and 6 set: C E S 2 = F A L S E .

These rules are also valid for other sets of structures. This completes the second stage
which is governed by rules that may be applied to different sets of elements giving different
structures.

The third stage of the Poincarb and Hadamard creativity model was programmed in the
following way. The structural path in this example is made of a series of three of the five
E; structures given in stage 2. They are generated randomly by taking a sample with
replacement of the set 1,2,3,4,5 of structures. For each of the three processing elements
the parameters Pj (that is J , I;, M) are generated by taking a value a t random from a
uniform distribution within the limits given in stage 1.

One structure is coded in a cl~romosome with the genes for the structures and param-
eters as a record of fields (see Figure 4): A field F to store the computed fitness was

Figure 4: The Chromosom,e of the Processing Parts Example

added for convenience. It is not subject to mutations or cross-overs. At the beginning a
population of cl~romosomes is generated randomly from the values of the structures and
the parameters. The F is estimated by running the model with the given structural path
and parameters (gene LLexpression") for each chromosome and computing the given fitness
function. During this process, the structural changes are made according to conditions
given in stage 1. The cross-over is made separately in the structural succession part and
in the parameter part of the cl~romosome. Two parents are chosen from the population,
a point of division is taken a t random (1, 2 or 3), and from this point onwards genes are
interchanged.

This process generates two new cl~romosomes corresponding to new structural paths.
Mutations are randomly iiltroduced (with low probability) replacing one of the structures
in the path by another one, chose11 randomly from the possible paths. The same procedure
occurs for the parameters. The pair of parents are chosen with a probability proportional
to their F value, so that better-fit iildividuals have a greater chance of transmitting their
gene schemata to descendants. Pairs of offsprings are generated by this mating process
until a new population that is the same size as the old one is generated. After the
evaluation of F for all individuals a search is made to see if some individual's satisfy
the criteria given in stage 1. In the ahove case a minimum level for F is required. If a
satisfactory individual is not found a new generation is produced. The process continues
until a solution is found or a maximum prefixed number of generations are processed.
This completes stage 3.

In addition to the described model, the GLIDER program has nodes to initialize the
population, to control the structural change by periodical inspection of the state of the
system and testing its conditions and to control the decoding and mating of the chromo-
some, as well as a graphical output showing the evolution of mean and maximum F. As
the simulation tiine can be freely manipulated in GLIDER the time starts a t 0 in each
simulation run of the model. A program controlled time variable is maintained for the
population evolution. Many experi~nents with changes in the limits of the parameters are

run. A typical output for maximum and mean F for successive generations is shown in
Figure 5. An interesting result was that some structural paths, such as the paths from

0 10 20 30 40 50 60 70 80 90

G E N

Figure 5: Output of Performance Function (F) of Successive Generations (GEN)

structure 5 to structure 2 and followed again by structure 2 (path 5 2 2) and path 2 1 2,
achieved higher efficiency but only during a few generations as they were more sensitive to
random changes in the parameters. 011 the other hand, other slightly less efficient paths
such as 5 1 2 and 1 2 2, dominated the population most of the time. They were more
robust and could deal with random fluctuations. Therefore, when analyzing the results it
might be necessary to consider not only the best path but also the more abundant paths
if they have a good value of the fitness F. This robust characteristic of genetic solutions
has been stressed in the literature [9]. Structural simulation is a new area and for this
reason analysis of structural simulation results is still an open field for research [8].

4 Problems and Possible Developments

This method can be improved in many ways. As it requires considerable computer time,
parallel processing may be used, especially at the combinatorial stage. Feedback between
the different stages may be considered. If a solution is not found, the conditions fixed in
stage 1 may be relaxed. The cl~romosomes may represent trees of structural chains instead
of simple successions. Competition a.mong the individuals generated may be introduced
(as was made by people working in a-life [lo]) to improve the quality of the solution.
Other random processes may also be tried.

References

[I] Arieti Silvano, Creativity. The Magic Synth,esis. Basic Books. 1976.

[2] Bloomberg Morton, Creativity: Theory an.d Research. Albany: New College and Uni-
versity Press, 1973.

[3] Domingo Carlos, Herndndez Marisela, Sananes Marta, Tonella Giorgio, Lenguaje de
Simulacidn GLIDER: Guia de Referencia, Version 3. IEAC and CESIMO, Universi-
dad de 10s Andes. MCrida, Venezuela, 1994.

[4] Domingo Carlos, Sananes Marta, Tonella Giorgio, The GLIDER Simulation Language.
Report IEAC-CESIMO, Universidad de 10s Andes. MCrida, Venezuela, 1994.

[5] Domingo Carlos, Tonella Giorgio, Herbert Hoeger, Marisela Herndndez, Marta
Sananes, Silva Jose G., Object Oriented Programming Ideas in a New Simulation
Language. J. Schoen (ed.), Proceedings of Summer Computer Simulation Conference,
Boston. July, 1993. The Society of Computer Simulation Corp. San Diego. pp. 137-142.
July 1993.

[6] Domingo Carlos, El Cambio Estructural. Edicion Departamento de Computaci6n, Uni-
versidad Central. Caracas. 1973.

[7] Domingo Carlos, Simulacidn del Cambio Estructural. XVII Conferencia Latinoameri-
cana de Informbtica. Caracas. 1991.

[8] Domingo Carlos, Quir6z Segundo, Terdn Oswaldo, Statistical System for The GLIDER
Simulation Language. I11 Network of the Biometric Society. Caracas, July 1994.

[9] Goldberg David, Genetic Algorithms in Search, Optimization and Machine Learning.
Addison- Wesley, 1989.

[lo] Hillis Daniel, Co-evolving Parasites Improve Simulated Evolution as an Optimization
Procedure. A-Life 11.

[l l] Hadamard Jacques, The Psychology of Invention in the Mathematical Field. Dover
Publications Inc. Mineda. 1954.

[12] Oren T.I. Simulation of Time lfarying Systems. Proceedings of the International
Conference of Cybernetics and Systems. Gordon and Breach. Oxford, 1990. pp. 1229-
1236.

[13] Perkins D.N., The Mind's Best Work. Harvard University Press. Cambridge. 1981

[14] Poincari Henry, Science et Mkthode. Flainmarion, Paris. 1908.

[15] Terbn Oswaldo, Simulation of Structural Change and Scenario Analysis. In Spanish,
M.Sc. Thesis, IEAC, Universidad de 10s Andes. Mirida, Venezuela, 1994.

[16] Zeigler Bernard, Tag Gon Kim and Chilgee Lee. Variable Structure Modelling Method-
ology: An Adaptive Computer Methodology Example, Transactions of the Society for
Computer Simulation. Vol 8(4), December 1990, pp. 291-3 14.

