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In real-life decision problems, the preference statements elicited from a decision maker are bound to be 

somewhat imprecise. Most traditional decision analytic tools do not take this impreciseness into 

account explicitly. It is well-known that neural networks have been used successfully for solving 

pattern recognition problems in the presence of incomplete, fuzzy or imprecise information. 

Recognizing that preference structures can be viewed as patterns, this paper introduces two different 

neural network representations for predicting a decision maker's ratio-scale preference ratings from 

matrices of pairwise preference jugdgments, and compares the accuracy of these predicted ratings with 

that of the power method used in AHP, a widely used discrete alternative multicriteria method for 

rating alternatives in the presence of qualitative criteria. A limited simulation experiment shows that, 

in the presence of imprecise preference information, feed-forward neural network models can indeed 

provide more accurate ratings than the power method. As the neural network approach to predicting 

ratings can easily be embedded in any software implementation of the AHP, the findings of this paper 

appear to represent a promising contribution to the practice of decision making. 



ARTIFICIAL NEURAL NETWORK REPRESENTATIONS FOR 
HIERARCHICAL PREFERENCE STRUCTURES 

ABSTRACT 

In this paper, we introduce two artificial neural network formulations that can be used to 

predict the preference ratings from the pairwise comparison matrices of the Analytic Hierarchy Process 

(AHP). First, we introduce a modified Hopfield network that can be used to  exactly determine the 

vector of preference ratings associated with a positive reciprocal comparison matrix. The dynamics of 

this network are mathematically equivalent to the power method, a widely used numerical method for 

computing the principal eigenvectors of square matrices. However, we show that the Hopfield network 

representation is incapable of generalizing the preference patterns, and consequently is not suitable for 

approximating the preference ratings if the preference information is imprecise. Then we present a 

feed-forward neural network formulation that does have the ability to  accurately approximate the 

preference ratings. A simulation experiment is used to  verify the robustness of the feed-forward neural 

network formulation with respect to  imprecise pairwise judgments. From the results of this 

experiment, we conclude that the feed-forward neural network formulation appears to  be a powerful 

tool for analyzing discrete alternative multicriteria decision problems with imprecise or fuzzy ratio-scale 

preference judgments. 

Keywords: Decision Analysis, Multicriteria Decision Making, Artificial Neural Networks, Analytic 

Hierarchy Process. 



ARTIFICIAL NEURAL NETWORK REPRESENTATIONS FOR 
HIERARCHICAL PREFERENCE STRUCTURES 

1. INTRODUCTION 
In this paper, we introduce two artificial neural network (ANN) representations of hierarchical 

preference structures, in particular as these relate to the Analytic Hierarchy Process (AHP) (Saaty 

1988). An ANN is a set of processing units or computational elements, called nodes, connected with 

links, called arcs, with connectivity weights representing the strength of connections. We first show 

that the dynamics of a modified Hopfield neural network formulation are identical to the power 

method of computing the principal eigenvalues and principal eigenvectors of square matrices, and hence 

to the calculation of the vector of preference ratings of the AHP. Since this ANN representation cannot 

generalize preference information, it cannot produce accurate results when used for approximating 

preference structures where the decision maker's (DM'S) preference judgments are imprecise. Next, we 

introduce a feed-forward ANN formulation that is capable, in the presence of imprecise judgments, of 

approximating the mapping from any positive reciprocal pairwise comparison matrix to its preference 

rating vector more accurately than the principal eigenvector. Through a simulation experiment, we 

verify that the trained feed-forward ANNs yield preference ratings that are robust with respect to 

perturbations in the pairwise preference judgments. Thus, the feed-forward ANN formulation is a 

powerful tool for analyzing discrete alternative multicriteria problems, in particular if the pairwise 

preference judgments are imprecise. 

This paper is organized as follows. Section 2 gives a brief review of the AHP and a summary 

of the power method. In Section 3 we show how a modified Hopfield artificial neural network can be 

used to exactly determine the principal eigenvectors of the pairwise comparison matrices, in the same 

way as the power method does. In Section 4, we introduce a feed-forward ANN formulation that can 

be used to approximate AHP preference ratings, describe how the ANNs were trained, and provide 

information regarding ANN architecture. Section 5 details the results of a simulation study that 

illustrates the generalizing ability of the feed-forward ANN formulation, rendering it very suitable for 

approximating the AHP preference ratings if the pairwise preference information provided by the DM is 

imprecise. The paper concludes with final remarks in Section 6. 



2. THE ANALYTIC HIERARCHY PROCESS 
2.1. Background and Concepts 

The AHP (Saaty 1988) is a widely used method for analyzing complex discrete alternative 

decision problems with multiple qualitative criteria. In the AHP, the decision problem is decomposed 

into a tree-like hierarchical structure, with the overall goal on the top and the discrete alternatives a t  

the bottom. The intermediate levels of the hierarchy represent lower level criteria that contribute to 

the overall goal. 

A rationale of the AHP is that decomposing a complex decision problem into more easily 

managed smaller-scale sub-problems, and sequentially evaluating the trade-offs between alternatives for 

these sub-problems, facilitates a meaningful analysis of the overall problem. At each level of the 

hierarchy, the DM evaluates the relative importance or attractiveness of each pair of elements 

(alternatives or criteria) with respect to elements (criteria) a t  the next higher level of the hierarchy. 

The process of eliciting preference judgments proceeds in a top-down fashion, one level a t  a time, from 

the overall goal to the lowest level of the hierarchy, and results in a set of positive reciprocal pairwise 

comparison matrices. The top-down preference elicitation requires the DM'S direct involvement a t  

every stage. The principal eigenvalues and the principal eigenvectors of these reciprocal comparison 

matrices are then computed. The AHP is based on the premise that the principal eigenvector of a 

matrix of pairwise comparisons is an  accurate measure of the relative importance or attractiveness of 

the elements (alternatives or criteria) with respect to an element a t  the next higher level, and interprets 

the normalized principal eigenvector components as preference ratings of the elements (Saaty 1977, 

1988). Saaty also uses the principal eigenvalue to develop a measure of consistency of the DM'S 

pairwise comparison judgments (Saaty 1988). 

After preference elicitation, a bottom-up approach is used to aggregate (combine) the 

eigenvectors of the pairwise comparison matrices into composite preference ratings of the alternatives, 

starting with an aggregation of their relative attractiveness with respect to the lowest level criteria. In 

contrast with the top-down process of eliciting preferences, the bottom-up preference aggregation is 

purely mechanical, and does not involve the DM'S participation. The sequential aggregation of the 

normalized principal eigenvectors a t  all levels of the hierarchy results in global preference ratings of the 

alternatives with respect to the overall objective. Clearly, the major numerical effort in the AHP 

involves computing the principal eigenvectors and the principal eigenvalues of the pairwise comparison 

matrices. We refer the reader to Saaty (1988) for the computational details. 

In the remainder of this paper, we will assume that the decision problem has one criterion 

level. This assumption merely simplifies the notation, and does not represent any limitation to the 

methodology outlined below. In the case of multiple criterion levels, the sub-problems are to be 



aggregated sequentially across the levels of the hierarchy. 

In the literature, there has been considerable criticism of this original AHP scale, in terms of 

its range, as well the choice of discrete points within the range, and the relevance and interpretation of 

the scale itself (Dyer 1990; Poyhonen, Hamalainen and Salo 1994; Schoner and Wedley 1989; Winkler 

1990). The use of the principal eigenvector as a measure of relative preference has been questioned as 

well (Barzilai, Cook and Golani 1987). Even though these are interesting research topics, these issues 

fall outside the scope of this paper, and we will not discuss them in detail. 

We will adopt the following notation. Denote the relative pairwise preference of alternative i 

over alternative j with respect to  criterion m by aij,. In the AHP, the range of values of aijm is limited 

to  [1/9, 91. The reciprocity assumption of the AHP implies that  aijm = l/ajim, for all i, j. Among 

others, this implies that a;,, = 1, for all i. Define the matrix of pairwise comparisons with respect to  

criterion m by Am = (aijm). T o  simplify the notation, we will omit the subscript m, so that aijm = aij, 

and A, = A. 

2.2. T h e  Power Method for Computing the Principal Eigenvector and the Principal Eigenvalue 

Let X1, ..., A, and vl, ..., v, be the eigenvalues and eigenvectors, respectively, of an n x n 

matrix A, with IX1l 2 ... 2 IXnl. An analytical solution of the eigenvalues of A requires the 

determination of the n roots of the characteristic polynomial [A - XI1 = 0. The  eigenvector v j  

corresponding to  X j  is then found by solving Avj = Xjvj. If n is large, the analytical method is 

computationally prohibitive, and numerical methods are used instead. Many applications, including 

the AHP (Saaty 1977, 1988), require only the principal eigenvalue X1 and the principal eigenvector vl. 

In such cases, the power method (Burden and Faires 1989; Cohen and el al. 1973) can be used to  

numerically compute X1 and vl. 

For any eigenvalue X j  and associated eigenvector v j  of A, Avj  = Xjvj holds, so that 

~~v~ = X:vj, for any 1 5 j 5 n and for any positive integer k. Since the v j  are linearly independent, 

any arbitrary vector v(O) E !Rn can be written as  a linear combination of vl, ..., v,: 

where not all scalars a .  are equal to  zero. Pre-multiplying both sides of (2.1) by yields (2.2), 
3 

If lXl l  > IX2J, then lim = 0, for j = 2, ..., n, so that the limit of (2.2) as k tends to  cm can 
k + m  



be written as (2.3), 

lim Akv(0) = lim alXfvl. 
k + m  k-m 

For meaningful results, the limit of (2.3) should be finite, but not zero. Hence, the vector 

A~v(O) in (2.2) should be normalized for proper convergence (Burden and Faires 1989). This is 

achieved by computing the vector nef(k) in (2.4) a t  each iteration k: 

and normalizing nef(k) t o  obtain a new vector v ( ~ )  with, depending on whether the L1- or La-norm is 

used in the normalization, the components v!,? or v l , t  in (2.5): 

If A, exists, J k )  converges to  vl = (vli, ..., vln)T, and C;= l n e t y )  or mgr {lnet(*)l} converges to  X1 
l L j < n  3 

as  k increases (Cohen and et al. 1973; Burden and Faires 1989). 

The  power method starts with an arbitrary vector v(O) E !Rn, with al # 0, and alternately 

applies (2.4) and (2.5), until either v ( ~ )  stabilizes within a pre-specified tolerance level or a pre-specified 

number of iterations has been performed. In the latter case, vl and X1 may not exist. 

Denote the normalized principal eigenvector by r, where ri = vli/C;, lvlj. Saaty (1988) poses 

that,  if the aij values indeed represent the true preference structure, the ratio ri/rj exactly equals the 

"true" relative preference of alternatives i and j, i.e., a j j  = r , / r  ., so that the vector r is interpreted as a 
3 

measure of the true preference rating vector, and r, represents the rating of alternative i. We will 

adopt this interpretation throughout this paper, and - unless stated otherwise - will refer to  the 

normalized principal eigenvector r as  the "true" rating vector. However, it is important to  keep in 

mind that in practice the aij will be approximate, and within the AHP framework r will be a proxy for 

the true preference ratings. The fact that elicited preferences are usually approximate was a major 

motivation for using ANNs t o  represent these structures. 



3. A MODIFIED HOPFIELD NETWORK FORMULATION FOR THE AHP: 
EXACT PREFERENCE RATINGS 

3.1. The Hopfield Neural Network 

We will only describe the Hopfield network to  the extent needed to  explore its relationship 

with the power method, as applied to  the AHP. In a Hopfield net, all artificial neurons (also called 

nodes or units) are fully connected by bi-directional arcs (artificial synapses) (Hopfield 1982, 1984). 

Denote the connectivity weight of the arc from node j to node i by wjj, and the matrix of connectivity 

weights by W = (wjj). Let netik) and vik)  represent the input and output of neuron i a t  iteration k, 

respectively. The state of an n-neuron Hopfield network a t  iteration k is defined as the output vector 

v(~) = (vlk), ..., ~ ( n ~ ) ) ~  t In the original Hopfield network, wii = 0, the off-diagonal entries are 

symmetrical, i.e., wij = wj,, for all i and j, and the network outputs are discrete (Hopfield 1982, 1984). 

Recently, more general Hopfield network formulations with w,, # 0 and continuous-valued outputs have 

been developed (Hopfield 1984; Hopfield and Tank 1985). At iteration k, the input to neuron i is 

obtained by: 

Each neuron has a transfer (activation) function which converts the neuron's input netik) to  

output v!". Initially, Hopfield proposed the use of the McCulloch-Pitts neurons (Hopfield 1982), also 

called threshold logic neurons. In these neurons, the synaptic input netik) in (3.1) is compared with the 

neuron's threshold 0, and transformed to  an output of the form (3.2). 

More recently, Hopfield (1984) proposed the use of a continuous-valued sigmoidal activation 

function of the type in (3.3), where P controls the slope of the function. Often, T = 1/P  is called the 

temperature of the function. Of course, other types of activation functions are possible as  well. 

The output of the network a t  one iteration serves as input a t  the next iteration. This process 

is repeated dynamically until either the network converges t o  a stable state or a pre-specified number of 

iterations has been performed. In the latter case, the network may be unstable. The  dynamic 



convergence to a stable state minimizes an "energy function" which measures the overall difference 

between the network outputs of consecutive iterations. A network converges to a stable state when it 

reaches a local or global minimum energy point. For the mathematical details we refer the readers to 

Hopfield (1982, 1984). 

3.2. A Modified Hopfield Network for Determining the AHP Preference Ratings 

We will next show how a Hopfield network formulation with a customized activation function 

can be used to compute the principal eigenvector of the reciprocal comparison matrix, i.e. the 

preference weights in the AHP, and how the dynamics of this Hopfield network formulation are 

equivalent to the power method, as long as the n x n matrix A of pairwise preference judgments is fully 

specified. 

In contrast with the symmetric weights of the original Hopfield network, this modified Hopfield 

network formulation has reciprocal weights (wij = aij = l/wji = l/aji), so that the connectivity weight 

matrix W = A is asymmetric. Moreover, we set wii = 1. The output values of the network a t  each 

iteration represent the estimates of the principal eigenvector components. Since A is positive 

irreducible, the Hopfield network is the irreducible graph of AT. Rather than selecting activation 

functions that have traditionally been used for Hopfield networks, such as threshold and sigmoidal 

functions in (3.2) and (3.3), we customize the transformation of the inputs net!" to outputs vik) ,  

according to (2.5). Hence, the input to the neurons is defined by net(k) = AV(~- ' ) ,  which corresponds 

exactly to equation (2.4) of the power method, and the neuron output equals v ( ~ ) ,  normalized using 

either the L1- or L,-norm as in (2.5). 

Since each step of the power method is identical to one iteration of this modified Hopfield 

network formulation, the computational aspects of the two methods are equivalent. Thus, the 

modified Hopfield network with reciprocal connectivity weights and the node activation functions in 

(2.5) will converge to a stable (optimal) state which is identical to the solution obtained using the 

power method, and the conditions under which both methods will converge to a finite nonzero solution 

are the same. While the power method converges to  the principal eigenvector, the Hopfield network 

memorizes exactly one vector, the principal eigenvector of the connectivity matrix. 



4. FEED-FORWARD NEURAL NETWORK FORMULATION FOR THE AHP 
4.1. Feed-Forward ANN 

A feed-forward ANN is an ANN where the nodes are organized into layers, and the directed 

and weighted arcs from a node are only linked to nodes in the next higher layer (Rumelhart, Hinton 

and Williams 1986; Wasserman 1989). Nodes in the input layer accept input from the outside world 

and nodes in the output layer generate output to the outside world. The input nodes are used to 

distribute inputs only, and do not serve any processing or computational function. The output of the 

output layer is the output of the feed-forward ANN. Nodes in layers between the input layer and the 

output layer are called hidden nodes, and the corresponding layers are the hidden layers. Hidden layers 

enable a feed-forward ANN to represent complex mappings. 

Denote the connectivity weight from node r in layer a -  1 to node k in layer i by wiT. Each 

node, except for the input nodes, has a node bias or threshold. Denote the node bias of node k in layer 

i by 6;. Further, denote the set of connectivity weights and node biases by W =  {wiry 6;). The 

components of W  are usually determined throughout the training process. 

A feed-forward ANN maps from the input space gnI to the output space gn0, that is, for any 

given input vector a €  gnl, the network computes an output vector o E  gn0. The mapping is a 

dynamic process, in which node inputs and outputs are computed sequentially from the input layer to 

the output layer. For i > 0, the input to node k in layer i, denoted by net;, is the weighted sum of the 

outputs of all nodes directly connected to it in layer i -  1 plus 6;, i.e., 

where 0:- l is the output of node r in layer i - 1, and ni - is the number of nodes in layer i - 1. Each 

node has an activation function which computes the node's output based on its input. The most 

frequently used activation function is the sigmoidal function, as in (4.2), 

Feed-forward ANNs have been applied to many non-trivial numerical tasks (Lippmann 1987) 

and real world problems, notably to classification and pattern recognition problems   iss son and Wang 

1990; Zahedi 1991). Recently, feed-forward ANNs have also been proposed for solving multicriteria 

decision problems (Wang and Malakooti 1992; Malakooti and Zhou 1994). Sanger (1989) proposed an 

unsupervised learning algorithm in a single layer feed-forward ANN that is similar conceptually to 

algorithms in principal components analysis and factor analysis. The mathematics of these statistical 

techniques are similar conceptually to those underlying the approximation of the principal eigenvector. 



4.2. The Feed-Forward ANN Formulation and Training 

A feed-forward ANN is usually trained to represent an unknown mapping. The purpose of 

training is to  determine the values of the components of W such that the network closely represents the 

unknown mapping. In the training process, the network learns from training patterns in the training 

set, which is a collection of paired input and output vectors observed from the unknown mapping. 

Once a feed-forward ANN has been trained, the knowledge of the unknown mapping is stored in the 

components of W. 

The training of a feed-forward ANN is accomplished by applying input vectors from the 

training set to the network, mapping the input vectors to the computed output vectors, and then 

comparing the computed output vectors with the desired or target output vectors in the training set, 

after which the values of the components of W are adjusted to reduce the differences between the 

computed and desired output vectors. After a number of training iterations, the components of W will 

converge to a set of values that minimize the difference between the computed and desired output 

vectors, and the network will organize itself internally, constructing a model to represent the unknown 

mapping from ?Rnr to ?RnO. A well-trained ANN is able to generalize to patterns it has never seen 

before. Any new input vector presented to an appropriately trained network will yield an output 

similar to the one which would have been given by the actual mapping. 

Given their generalizing capability, feed-forward ANNs are used to approximate the mapping 

from a reciprocal comparison matrix in the AHP to the associated preference ratings of the DM. The 

preference information provided by the DM through the n x  n pairwise comparison matrix A serves as 

the input to the feed-forward neural network. Let a E ?Rn(" -')I2 be the vector consisting of the 

elements of A above the main diagonal, i . e . ,  those aij for which i < j, ordered such that a = (al2, ..., 
alnl a23, ..., a2n1 ..., an-l,n)T. Since A is reciprocal, a contains all relevant preference information in 

A, and is used as the input to the feed-forward ANN. Thus, the neural network will have 

n j  = n(n-1)/2 input nodes. The desired output vector consists of the n-dimensional true preference 

rating vector r of the DM, so that the number of output nodes is no = n. The compound vector (aT, 

rT) represents one training pattern in the training set. The number of hidden layers and the number of 

hidden nodes in each hidden layer depends on the complexity of the mapping. In this paper, we limit 

ourselves to pairwise comparison matrices of sizes 3 x 3, 4 x 4, 5 x 5 and 6 x 6. 

The software Neuralworks Professional II/Plus (Neuralware 1993a) was used to train separate 

neural nets for each matrix size. For the problems analyzed in this paper, networks with two hidden 

layers provided good results. After experimenting with a number of alternative network configurations, 

training set sizes and network parameter settings, we found the network configurations in Table 1 to 



yield tolerable errors and to converge within reasonable time. The number of training patterns P in 

the training set used for these different matrix sizes is given in Table 1. During the training process, 

the learning rates were gradually decreased from between 0.8-0.9 to 0.1, and the momentum factors 

from 0.6-0.7 to 0.05. Other network parameters not mentioned in Table 1 were kept a t  the default 

values of the Neuralworks software package. Larger problems (5 x 5 and 6 x 6) are more complicated 

than smaller ones (3  x 3 and 4 x 4), and consequently require more nodes in the hidden layers and more 

training patterns in the training set to represent the mapping. The network in Figure 1 is a graphical 

representation of a feed-forward ANN for the 3 x 3 pairwise comparison matrices, with 10 nodes in the 

first hidden layer and 6 in the second. 

Figure 1 and Table 1 About Here 

In this study, the components of the network output vector o = (ol, ..., oJT are normalized to 

sum to unity. Denoting training pattern t by (a:, r:), and the corresponding normalized output of the 

ANN by ot, the network error associated with training pattern t is measured by the root mean square 

error (RMSE,) (NeuralWare 1993b) given in (4.3): 

The network error associated with all P patterns in the training set is measured by RMSE as in (4.4). 

1 RMSE = - C RMSE, 
pt = 1 

In the training process, RMSE is minimized. In order to avoid pattern memorization or 

network paralysis due to overtraining, throughout the training process the progress of training was 

monitored by calculating RMSE for 200 randomly generated verification patterns that were not part of 

the training set. Each network was trained either until RMSE < 0.001 for these 200 patterns in the 

verification set, or until it appeared that the RMSE of the training set could not be improved further. 

The computational effort of training the ANNs is considerable, but not prohibitive. A typical training 

session using the NeuralWare software package (1993a, 1993b) on a compatible 486 PC, 25 MHz, took 

several hours. This computational time is reasonable, since only one network needs to be trained for 

each matrix size. Once trained, this ANN can be used to predict the ratings for any pairwise 

comparison matrix of that size. 



5. EXPERIMENTAL RESULTS 
At this point, we need to distinguish between two issues: (1) whether a feed-forward ANN is 

able to closely approximate the mapping from a pairwise comparison matrix to its principal 

eigenvector, and (2) whether a feed-forward ANN representation is more accurate than the power 

method in estimating the preference ratings if the preference information is imprecise. The former issue 

is addressed in Section 5.1, while the latter is analyzed in Section 5.2. 

5.1. Approximation of the Principal Eigenvector Using Feed-Forward Neural Networks 

In this section, we only compare the output vector of a trained ANN with the actual principal 

eigenvector obtained with the power method, and do not consider the issue of imprecise preference 

judgments. In order to verify that feed-forward ANNs are indeed capable of yielding close 

approximations of the principal eigenvectors, we trained separate networks for two separate types of 

problem settings: (1) the pairwise comparison matrix A of each training pattern is perfectly consistent, 

and (2) A is moderately inconsistent (Saaty 1988). Thus, 8 different neural networks were trained for 

the purpose of the analysis in this section (4 problem sizes and 2 problem settings). As the goal is to 

verify if the output of the trained network can approximate the principal eigenvector of A, we used the 

normalized principal eigenvector of A (either consistent or inconsistent) obtained with the power 

method as the desired output in the training process. 

Saaty (1988) argues that few DMs are fully consistent in their pairwise preference judgments, 

and inconsistency indices of less than 0.1 are reasonable in practice. Accordingly, we randomly 

generated the matrices of inconsistent judgments such that their inconsistency index did not exceed 0.1. 

We decided against including matrices with inconsistency indices exceeding 0.1, as in such cases there 

may be a fundamental flaw in the elicited preference information, in which case Saaty (1988) 

recommends re-evaluating and double-checking the judgments, rather than proceeding with the 

preference analysis. 

Given the desired output vector rt and the predicted output vector ot of pattern t, the angle yt 

(in degrees) between rt and ot is determined by (5.1) and the maximum bit error (MBEt), i.e. the 

largest absolute error among all output nodes, is defined in (5.2): 

5 otjrt j  
360 Ot ' rt - 360 a,ccos j = 1  yt = - arccos - 2 7r I ot I I rt I 2~ (5.1) 

j = 1  j = 1 



In network training, the RMSE of (4.3) was used as a measure of network error. In model 

validation, we used not only RMSE, but also two alternative error measures, the average angle 7 and 
- 

the average maximum bit error MBE of all validation patterns, as defined in (5.3) and (5.4), 

respectively: 

We use the symbol P both for the size of the training and validation sets, but this should not 
- 

cause any confusion. Obviously, smaller values of 7 and MBE (and of RMSE, of course) are indicative 

of higher overall degrees of similarity, and thus of higher predictive accuracy of the ANN models. 
- 

Smaller values of the MBE are indicative of a more favorable worst case accuracy of the neural 

network. 

Tables 2 and 3 About Here 
........................................ 

-- 
Tables 2 and 3 summarize the predictive abilities (RMSE, MBE and 7 )  of the 8 trained ANNs, 

comparing the actual principal eigenvectors with the output vectors of the trained ANNs for 1,000 

independently generated moderately inconsistent and perfectly consistent validation patterns 
-- 

respectively that were not in the training set. From Table 2, we see that the values of RMSE, MBE 

and 7 for the ANNs trained using inconsistent preference information are uniformly lower than the 

corresponding values for the ANNs trained using consistent preference information. For instance, the 
- 

ANN for the 4 x 4 matrices trained with perfect consistency has a RMSE of 0.054, a MBE of 0.083 and 

a 7 of 9.728, whereas the ANN trained using inconsistent 4 x 4 matrices yields values of 0.0 10, 0.010 

and 1.919, respectively. This suggests, as one might expect, that it is better to  predict the preference 

ratings based on moderately inconsistent pairwise comparison matrix using an ANN that was also 

irained on moderately inconsistent preference information, rather than using an ANN trained on 

perfectly consistent preferences. From Table 3 it is clear that, a s  anticipated, those ANNs that were 

trained on consistent data  generally predict rating vectors of consistent pairwise comparison matrices 

more accurately than those trained on inconsistent data. For example, for the ANN for the 6 x 6 
-- 

matrices trained with perfect consistency, the values of RMSE, MBE and 7 are 0.004, 0.007 and 0.913, 

respectively, while the corresponding values for the ANN trained using moderately inconsistent 

matrices are 0.010, 0.018 and 2.840. 



Summarizing, Tables 2 and 3 confirm the notion that the predictive accuracy of the ANN will 

be higher as  the characteristics of the training and validation sets match more closely. Importantly, 
-- 

the low values of RMSE, MBE and 7 in both Table 2 and Table 3 clearly indicate that the trained 

ANNs are capable of closely approximating the principal eigenvectors of the pairwise comparison 

matrices, no matter whether inconsistency is involved. 

5.2. Network Generalization: Predicted Ratings for Imprecise Preference Structures 

In this section, we investigate further the generalization properties and robustness of the feed- 

forward ANNs by comparing their predictive accuracy with that of the power method, in the presence 

of imprecise preference judgments. In the simulation experiments below, we perturbed the components 

of the perfectly consistent pairwise comparison matrices to introduce impreciseness into the preference 

judgments. The  purpose of introducing impreciseness is to simulate actual decision making situations. 

Although there are many ways to  introduce impreciseness in a systematic simulation experiment, none 

of which will correspond exactly with a n  actual decision situation, the limited simulation discussed in 

this section appears sufficient for the purpose of assessing the viability of estimating preference ratings 

using ANN models. However, this study does not intend to  provide a comprehensive investigation of 

the conditions under which such models perform best. 

For the purpose of this study, we assume that the DM'S true preference structure is perfectly 

consistent and known, but the elicited pairwise comparison matrix is moderately inconsistent, reflecting 

the fact that the DM may provide somewhat imprecise preference information. Accordingly, we 

constructed the training set in the following way. First we generated perfectly consistent pairwise 

comparison matrices A with normalized principal eigenvectors r, and then perturbed the components of 

A to  obtain moderately inconsistent matrices B according to (5.5), 

where U is a uniformly distributed random variate over the interval [-I, + 11 and q is a constant. 

Thus, the mean disturbance factor prlua, ,equals 0, with a standard deviation of aqua, ,  = 0.57735qaij. 
'3 '3 

All matrices in the training set were generated using q = 0.8, so that uou,, = 0.46188aij, implying a 
'3 

mild perturbation. In this study, the average inconsistency indices of the perturbed matrices in the 

training sets were between 0.02 (for the 3 x 3 matrices) and 0.06 (for the 6 x 6 matrices). Any 

perturbed matrix with an inconsistency index exceeding 0.1 was discarded. We ensured that  all 

elements of B were within the range of 119 to 9. Also, we ensured that the direction of the individual 

relative preferences was not reversed during the perturbation process (i.e., bi j  > 1 if aij  > 1, and b i j  < 1 

if aij < 1). Let b represent the vector consisting of the components bi j  of B with i < j, with the 



components ordered in the same way as in a, so that the compound vector (bT, rT) is a training pattern 

in the training set. Other than the fact that the preference patterns in the training set now reflect 

impreciseness, the network training was conducted in the way described in Section 4, using the network 

configurations and number of training and verification patterns as specified in Table 1. By doing so, 

we enabled the ANN to learn how to deal with somewhat imprecise preference judgments. 

Table 4 About Here 

Two types of validation samples were used in model validation, each consisting of 1,000 

independent replications. None of the validation patterns is part of the training set. First, we 

generated each perturbed pairwise comparison matrix C in exactly the same way as we did for B, again 

with 77 = 0.8, i.e., cij = aij + 77 U a  .. We experimented with other values of 77, and obtained similar 
13 

results to those reported in Table 4. Table 4 shows that the average inconsistency index of the 

matrices C for the different matrix sizes varies between 0.025 and 0.055. 

Realizing that the way in which the C were generated might bias the performance in favor of 

the ANN models, we generated doubly perturbed validation matrices D, by first generating perturbed 

matrices in the same way as C above, with 77 = 0.8, and then perturbing these matrices once again with 

a factor 77 = 0.8, so that d . .  = c . .  + qUcij. Again, in generating these matrices, any matrix with an 
13 13 

inconsistency index exceeding 0.1, with elements outside the range of [1/9, 91, or with reversals in the 

preference direction was excluded from the analysis. From Table 4 we see that, depending on the 

matrix size, the average inconsistency of the D matrices varies between 0.058 and 0.071. While of 

course higher than those of C, these figures are well below 0.1. As the ANNs had not been trained 

directly to recognize the kind of impreciseness created by the double perturbation, the matrices D 

provide an additional means of testing the generalizing abilities of the ANN models. 

Since the vector of actual preference ratings, i.e. the principal eigenvector of A, for each 
-- 

validation pattern is known, we can compute RMSE, MBE and 7 separately for the ANN models and 

for the power method and use them to measure the relative performance of the two methods. In order 

to support the conclusions, we used the validation samples to test the null hypothesis that a given 

ANN model did not yield more accurate predicted ratings than the power method, on average, against 

the alternative that it did provide more accurate results, on average. The T-test statistics of difference 
-- 

in means for all three performance measures (RMSE, MBE and 7) are provided in Table 4. 

The results in Table 4 show that without exception the feed-forward ANNs predict the 

preference ratings more accurately than the power method, since all t-values are negative. In each case, 

the difference in mean accuracy is significant a t  the a = 0.05 level. All except one t-values are in fact 



significant a t  the a = 0.01 level. These results hold for all three performance measures, and for the 

once-perturbed, C, as well as for the twice-perturbed, D, matrices. In fact, the t-values associated with 

the once- and twiceperturbed matrices were remarkably similar. 

Even though each trained network converged and proved quite accurate and robust in 

predicting the preference ratings, ANN representations of these mappings are not unique, so that it 

might be possible to obtain results similar to or better than those reported in this paper when 

alternative network configurations are used. Nevertheless, we believe that the robustness of the 

particular networks reported in this section clearly illustrates the effectiveness of using feed-forward 

ANN for modeling AHP-type preference structures, and more accurate ANN architectures would only 

strengthen the conclusions of this study. 

The conclusion from this limited simulation experiment is that - a t  least for the type of 

problems used in this study - ANN representations of ratio-scale pairwise preference structures can 

provide robust estimates of the  DM'S preference ratings. This study clearly provides preliminary but 

compelling results. Further studies evaluating various different ways in which the impreciseness 

phenomenon can play a role in a DM'S assessment of relative preferences should also provide a more 

definite answer to the question to which extent ANN representations of preference structures are viable. 

The feed-forward ANN represent9tions can easily be included in any AHP software package, 

just as the power method for calculating the principal eigenvector. Since a given feed-forward ANN is 

trained to learn and generalize the mapping from any  positive n x n reciprocal comparison matrix to its 

preference rating vector, it can be used to approximate the preference ratings for any decision situation 

involving n alternatives. Hence, implementation of the proposed ANNs merely involves embedding the 

already trained ANNs in the existing software. The user would then have the option to use the ANN 

approach (rather than the power method) if the pairwise comparison values elicited from a given DM 

are likely to be imprecise. 

6. CONCLUSIONS 
There is ample evidence that certain ANN structures are well-suited for accurately identifying 

patterns, if these patterns are imprecise or fuzzy (Kohonen 1984; Kosko 1990; Pao 1989; Wasserman 

1989). In the AHP, the patterns consist of the DM'S preference statements in the form of pairwise 

comparison matrices. In this paper, we investigate two different ANN structures in terms of accurately 

approximating (generalizing) the preference ratings of the alternatives, if some or all of the preference 

judgments are imprecise. 

The dynamics of the modified Hopfield network formulation correspond exactly with the power 

method, but this formulation is inflexible and unable to generalize the resulting ratings. Hence, even 



though the connection between the modified Hopfield network and the AHP is interesting in itself, this 

network formulation appears to be of limited use in practice. However, the feed-forward ANN 

formulation is approximate and is able to generalize the preference structures, yielding robust 

preference ratings when the preference statements are imprecise. 

Several researchers have recently studied the problem of how the preference ratings of the 

alternatives can be approximated if the preference information is incomplete or imprecise (Harker 1987; 

Salo and Hamalainen 1991, 1992, 1994; Wedley 1993; Wedley, Schoner and Tang 1993). This is an 

important research topic, as in many real life decision problems the preference information elicited from 

the DM is imprecise. In the current study, we have found preliminary but compelling evidence that,  

due to their generalizing abilities, ANN representations can provide robust approximations of a DM'S 

preferences when the preference information a t  hand is imprecise. Hence, it appears that the feed- 

forward ANN formulation, perhaps in conjunction with methodologies aimed a t  reducing the degree of 

impreciseness during the preference elicitation process (Salo and Hamalainen 1991, 1992, 1994), is 

potentially a powerful tool in determining preference ratings for effective decision support. 

The ANN representation appears even more attractive, because once one network has been 

trained for each matrix size, the trained ANNs can easily be embedded in any AHP software package. 

Thus the user does not need to be familiar with ANNs, and is not required to train a network for 

his/her particular application. 

The analysis in this paper is based, directly or indirectly, on the methodology of the 

conventional AHP (Saaty 1988). As alluded to in Section 2, there exist many worthwhile alternative 

ways to analyze and interpret the information contained in pairwise comparison matrices. Most of 

these variants of the AHP (as well as perhaps other preference representation, such as value functions) 

can easily be implemented within an ANN framework. Moreover, impreciseness can be operationalized 

and introduced to the analysis in numerous different ways, and can take on many different 

characteristics that depend on the particular decision situation. It  may also be useful to explore ANN 

paradigms other than Hopfield and feed-forward networks. It  appears that extending the current study 

into these research directions will provide interesting and useful findings, both for the theory and 

practice of decision analysis. 



Barzilai, J., W. D. Cook and B. Golani, "Consistent Weights for Judgment Matrices of the Relative 
Importance of Alternatives," Operations Research Letters, 6, 131-141, 1987. 

Burden, R. L., and J.  D. Faires, Numerical Analysis, Fourth Edition, PWS-KENT, Boston, MA, 1989. 

Cohen, A. M., J .  F. Cutts, R. Fielder, D. E. Jones, J. Ribbans, and E. Stuart, Numerical Analysis, 
Wiley, New York, NY, 1973. 

Dyer, J. S., "Remarks on the Analytic Hierarchy Process," Management Science, 36, 249-258, 1990. 

Harker, P. T., "Incomplete Pairwise Comparisons in the Analytic Hierarchy Process," Mathematical 
Modeling, 9, 837-848, 1987. 

Hopfield, J. J., "Neural Networks and Physical Systems with Emergent Collective Computational 
Abilities", in Proceedings of the National Academy of Science, 79, 2554-2558, 1982. 

Hopfield, J .  J., "Neurons with Graded Response Have Collective Computational Properties like Those 
of Two-State Neurons", in: Proceedings of the National Academy of Science, 81, 3088-3092, 1984. 

Hopfield, J. J .  and D. W. Tank, "Neural Computation of Decisions in Optimization Problems," 
Biological Cybernetics, 52, 141-152, 1985. 

Kohonen, T., Self Organization and Associative Memory, Series in Information Sciences, 8, Springer 
Verlag, New York, NY, 1984. 

Kosko, B., Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs, NJ, 1990. 

Lippmann, R. P., "An Introduction to Computing with Neural Nets," IEEE ASSP Magazine, 4, 4-22, 
1987. 

 iss son, E. and Y. J. Wang, "Introduction to Computation and Learning in Artificial Neural 
Networks," European Journal of Operational Research, 47, 1-28, 1990. 

Malakooti, B. and Y. Zhou, "An Adaptive Feedforward Artificial Neural Network with Application to 
Multiple Criteria Decision Making," Management Science, Forthcoming, 1994. 

NeuralWare, NeuralWorks Professional II/Plus: Reference Guide, NeuralWare, Inc., Pittsburgh, PA, 
1993a. 

NeuralWare, Using Neural Works: A Tutorial for Neural Works Professional II/Plus and Neural Works 
Explorer, NeuralWare, Inc., Pittsburgh, PA, 1993b. 

Pao, Y. H., Adaptive Pattern Recognition and Neural Networks, Addison Wesley, Reading, MA, 1989. 

Poyhonen, M. A., R. P. Hamalainen and A. A. Salo, "An Experiment on the Numerical Modeling of 
Verbal Ratio Statements," Research Report A50, Systems Analysis Laboratory, Helsinki University of 
Technology, 1994. 

Rumelhart, D. E., G. E. Hinton and R. J.  Williams, "Learning Internal Representations by Error 
Propagation," in Parallel Distributed Processing, Volume 1: Foundations, D. E. Rumelhart and J .  L. 
McClelland (Eds.), MIT Press, Cambridge, MA, 318-362, 1986. 



Saaty, T. L., "A Scaling Method for Priorities in Hierarchical Structures," Journal of Mathematical 
Psychology, 15, 237-281, 1977. 

Saaty, T. L., Multicriteria Decision Making: The Analytic Hierarchy Process (Revised Edition), 
University of Pittsburgh, 1988. 

Salo, A. A. and R. P. Hamalainen, "Ambiguous Preference Statements in the Analytic Hierarchy 
Process," Research Report A39, Systems Analysis Laboratory, Helsinki University of Technology, 1991. 

Salo, A. A. and R. P. Hamaliiinen, "Preference Assessment by Imprecise Ratio Statements," 
Operations Research, 40, 1053-1061, 1992. 

Salo, A. A. and R. P. HZm6llinen, "Preference Programming Through Approximate Ratio 
Comparisons," European Journal of Operational Research, Forthcoming, 1994. 

Sanger, T. D., "Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural 
Network," Neural Networks, 2, 459-473, 1989. 

Schoner, B. and W. C. Wedley, "Ambiguous Criteria Weights in AHP: Consequences and Solutions," 
Decision Sciences, 20, 462-475, 1989. 

Wang, J. and B. Malakooti, LLA Feedforward Neural Network for Multiple Criteria Decision Making," 
Computers and Operations Research, 19 (2), 151-167, 1992. 

Wasserman, P. D., Neural Computing, Theory and Practice, Van Nostrand Reinhold, New York, NY, 
1989. 

Wedley, W. C., "Consistency Prediction for Incomplete AHP Matrices," Mathematical and Computer 
Modelling, 17 (4/5), 151-161, 1993. 

Wedley, W. C., B. Schoner and T. S. Tang, "Starting rules for Incomplete Comparisons in the 
Analytical Hierarchy Process," Mathematical and Computer Modelling, 17 (4/5), 93-100, 1993. 

Winkler, R. L., "Decision Modeling and Rational Choice: AHP and Utility Theory," Management 
Science, 36, 247-248, 1990. 

Zahedi, F., LLAn Introduction to Neural Networks and a Comparison with Artificial Intelligence and 
Expert Systems," Interfaces, 21 (2), 25-38, 1991. 



Figure 1: Example of a Feed-Forward Neural Network Architecture 
for Pairwise Comparison Matrices of Size 3 x 3 



Table 1: Network Configurations for Various Size Pairwise Comparison Matrices 

1: The verification patterns are not part of the training set, and serve as an  unbiased monitor of the 
training process. 

2: The validation patterns serve as an unbiased ex-post validation sample for measuring network 
accuracy. 

3: These figures represent the number of hidden nodes in the first and second hidden layer, 
respectively. 

Table 2: Prediction Accuracy of Networks for Moderately Inconsistent validation ~ a m ~ l e s '  

Matrix 

Size 

( n  x n) 

3 x 3  

4 x 4  

5 X 5 

6 x 6  

1: All of the training patterns have an inconsistency ratio (Saaty 1988) between 0 and 0.1. 
2: "Std." stands for standard deviation. 

Size of the 

Training Set 

(4 

1,000 

1,000 

3,000 

3,000 

Size of the 

Verification set1 

200 

200 

200 

200 

Matrix 
Size 

3 x 3  

4 x 4  

5 x 5  

6 x 6  

Table 3: Prediction Accuracy of Networks for Perfectly Consistent Validation Samples 

Number of 

Training Epochs 

Cons. Incons. 

1,200 2,400 

1,200 2,400 

490 800 

490 800 

Size of the 

Validation sample2 

1,000 

1,000 

1,000 

1,000 

Number of 

Hidden Layers 

2 

2 

2 

2 

Number of 

Hidden ~ o d e s ~  

10, 6 

20, 8 

25, 8 

30, 10 

Perfectly Consistent Training Sets 

7 (std.12 MBE(std.) RMSE (std.) 

7.976 (5.539) 0.078 (0.051) 0.059 (0.039) 

9.728 (5.686) 0.083 (0.050) 0.054 (0.031) 

11.759 (6.323) 0.088 (0.050) 0.051 (0.028) 

13.081 (5.792) 0.091 (0.044) 0.048 (0.021) 

1: All of the training patterns have an inconsistency ratio (Saaty 1988) between 0 and 0.1. 
2: "Std." stands for standard deviation. 

Moderately Inconsistent Training sets1 

- - 
7 (Std.) MBE (Std.) RMSE (Std.) 

1.103 (0.646) 0.010 (0.006) 0.008 (0.005) 

1.919 (1.151) 0.010 (0.001) 0.010 (0.006) 

2.332 (1.198) 0.017 (0.009) 0.010 (0.005) 

2.906 (1.292) 0.019 (0.009) 0.011 (0.005) 

Matrix 
Size 

3 X 3 

4 x 4  

5 X 5 

6 X 6 

Perfectly Consistent Training Sets 

- 
7 (std.l2 MBE(std.) RMSE (std.1 

0.435 (0.324) 0.005 (0.004) 0.003 (0.003) 

0.428 (0.301) 0.004 (0.003) 0.002 (0.002) 

0.924 (0.608) 0.007 (0.005) 0.004 (0.003) 

0.913 (0.578) 0.007 (0.004) 0.004 (0.002) 

Moderately Inconsistent Training sets1 

- - 
7 (Std.) MBE (Std.) RMSE (Std.) 

0.878 (0.592) 0.009 (0.006) 0.007 (0.004) 

1.759 (1.084) 0.015 (0.009) 0.010 (0.006) 

2.349 (1.232) 0.017 (0.010) 0.010 (0.005) 

2.840 (1.211) 0.018 (0.008) 0.010 (0.004) 



Table 4: Tests of Significant Difference in Mean Predictive Accuracy Between 
Neural Network Models and Power Method, for Perturbed Preference ~atr ices l  

1: Null hypothesis: the A N N  model does not predict the preference weights more accurately than the 
power method; Alternative hypothesis: the A N N  model does predict more accurately. t-values 
below -1.67 and  -2.38 indicate tha t  the null hypothesis is rejected, thus implying tha t  the neural 
network predictions are  significantly better a t  the a = 0.05 a n d  a = 0.01 level, respectively. 

Matrix 
Size 

3 X 3 
4 X 4 
5 X 5 
6 x 6 

Average 

Inconsistency 

Index 

C D 

0.025 0.058 

0.041 0.071 

0.050 0.071 

0.055 0.071 

Once-Perturbed Matrices (C) 

t-Values for 

- - 
MBE RMSE Y 

-5.65 -5.88 -5.58 

-2.26 -2.76 -2.48 

-8.49 -8.52 -8.59 

-7.77 -6.62 -7.38 

Twice-Perturbed Matrices (D) 

t-Values for 

- - 
-I' MBE RMSE 

-4.83 -5.07 -4.70 

-3.00 -3.32 -3.16 

-9.50 -9.26 -9.58 

-6.53 -5.18 -6.18 


