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Abstract 

Integrals of optimal values of random linear programming problems depending on a finite 
dimensional parameter are approximated by using empirical distributions instead of the 
original measure. Uniform convergence of the approximations is proved under fairly broad 
conditions allowing non-convex or discontinuous dependence on the parameter value and 
random size of the linear programming problem. 
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1 Introduction 
Real-world decision problems are usually associated with high uncertainty due to un- 
availability or inaccuracy of some data, forecasting errors, changing environment, etc. 
There are many ways to deal with uncertainty; one that proved successful in practice is 
to  describe uncertain quantities by random variables. 

Using the probabilistic description of uncertainty within optimization problems leads 
to stochastic programming models. There is a large variety of such models, depending 
on the nature of information about the random quantitites and on the form of objective 
and constraints. One of the most popular models, which found numerous applications in 
operations research practice, is the two-stage problem. In its simplest linear form, it can 
be formulated as follows: 

min XEX [crx + 1 f (x, w) ~ ( d w ) ]  , (1.1) 

where X c IRnz is the first stage feasible set and f : IRn" x R H R denotes the recourse 
function dependent on x and on an elementary event in some probability space (52,  C, P). 
The recourse function is defined as the optimal value of the second stage problem 

Here, the vector y E R n y  is the second stage decision (which may, in general, depend on x 
and w), q(w) is a random vector in IR"Y, W(w) is a random matrix of dimension my x n, 
and b : lRnr x 52 H RmY is a measurable function. 

There is a vast literature devoted to properties of the two-stage problem (1.1)-(1.2) 
and to solution methods (see [7, 111 and the references therein). It is usually assumed 
that W is a deterministic matrix and 

For example, h(w) may be interpreted as a random demand/supply and T(w) as a cer- 
tain "technology matrix" associated with the first stage decisions. Then b(x,w) is the 



discrepancy between the technology input /output requirements and the demand/supply 
observed, and some corrective action y has to be undertaken to account for this discrep- 
ancy. 

However, in some long-term planning problems in a highly uncertain environment, it 
is the data referring to the future that are random. For example, in long-term investment 
planning, where x denotes the investment decisions to  be made now, while y represents 
future actions, the costs q and the technological characteristics W of the future invest- 
ments are usually uncertain. Moreover, new technologies may appear that may increase 
our recourse capabilitites. Therefore we focus on the random recourse case in a general- 
ized sense, i.e. a situation when besides W and q also the number of columns of W is 
random. 

Next, our model allows much more general relations between the first stage variables 
and the second stage problem than the linear relation (1.3). In (1.2) we allow, for example, 
nonlinear and random technologies T(x,  w); moreover, the supply/demand vector may be 
dependent on both x and w. Apart from a broader class of potential applications, such a 
model appears to be interesting in its own right. 

The fundamental question that will be analysed in this paper is the problem of ap- 
proximation. Namely, given a sample s = {s,}:, E OM = ON, we consider for n E IN the 
empirical measures 

where 5,, denotes point mass at s;. An empirical measure can be employed to approximate 
the expected recourse function 

by the empirical mean 

The main question is the following: can uniform convergence of Fn to F take place for 
almost all s (with respect to the product probability P" on Om)? We shall show that a 
positive answer to this question can be given for a very broad class of functions b(x, w) in 
(1.2). To this end we shall use some results on the Glivenko-Cantelli problem developed 
in [9, 25, 261. 

Compared with related contributions to the stability of two-stage stochastic programs, 
the scope of the present paper is novel in two respects: we allow recourse matrices with 
random entries and random size, and we are able to  treat discontinuous and non-convex 
integrands in the expected recourse function. The tools from probability theory that we 
use here lead to uniform convergence. The approaches in [5, 10, 181 utilize milder types 
of convergence (such as epigraphical convergence), and hence they can handle extended- 
real-valued functions. As in the present paper, the accent in [14] is on convergence of 
expected recourse functions in the context of empirical measures. The authors obtain 
consisitency results that cover convex stochastic programs with a fixed recourse matrix W. 



Perturbations going beyond empirical measures are studied in [lo,  181 for fixed-recourse 
problems with continuous integrands. Stochastic programs with discontinuous integrands 
are treated in [ l ,  211 and in [22], which contains a section on estimation via empirical 
measures in problems with mixed integer recourse. Further related work concerns various 
quantitative aspects for stochastic programs involving empirical measures, such as [5, 6, 
12, 13, 19, 23, 241. Because of that, the settings in these papers are more specific than 
here. 

Let us finally mention that the probabilistic analysis of combinatorial optimization 
problems is another field in mathematical programming, where results developed in the 
context of the Glivenko-Cantelli problem can be utilized (see, e.g., [8, 15, 161). 

2 The Glivenko-Cantelli problem 

Before passing to the main object of our study, we briefly restate the main definitions 
and results regarding the general Glivenko-Cantelli problem that will be used later. The 
probability measure P is assumed to be fixed. 

Definition 2.1. A class of integrable functions cp, : R H IR, x E X, is called a 
P-uniformity class if 

for P"-almost all s. 

So, our problem of uniform convergence of (1.6) to (1.5) can be reformulated as the prob- 
lem of determining whether the family of functions w H f(x,w),  x E X, is a P-uniformity 
class. 

From now on, having in mind application to stochastic programming, we shall restrict 
our attention to functions which are measurable with respect to both arguments (x, w). 
This will allow us to  avoid serious technical difficulties associated with non-measurability 
of sets defined with the use of the existence quantifier. 

Following [25], with the simplification mentioned above, we introduce the following 
definition. 

Definition 2.2. Let cp : X x R H IR be measurable in both arguments. The class of 
functions w H ~ ( x , w ) ,  x E X, is called P-stable if for each a < P and each set A E C 
with P (A)  > 0 there exists n > 0 such that 

The main result of [25] reads. 



Theorem 2.3. ([25], Theorem 2). Assume that the function cp(x,w) : X x R H JR is 
measurable in both arguments. Then the following statements are equivalent: 

(a) the class of functions w H cp(x, w),  x E X, is a P-uniformity class and J ~ ( x ,  w)P(dw), 
x E X ,  is bounded; 

(b) the class of functions w H v(x,w), x E X, is P-stable and there exists v with 
J v(w)P(dw) < m such that, for all x E X, Icp(x, w)l 5 v(w) a.s. 

Since we shall use this result arguing by contradiction, it is convenient to  restate the 
definition of stability. 

Remark 2.4. ([25], Proposition 4). Let cp : X x R H JR be measurable in both arguments. 
The class of functions w H cp(x,w), x E X, fails to be P-stable if and only if there 
exist cr < ,B and A E C with P ( A )  > 0 such that for each n E IN and almost each 
( s ~ , .  . . , s,) E An, for each subset I of (1,. . . , n} there is x E X with 

V(X, si) < 0 for i E I 

and 

~ ( x , s i )  > p for i 4 I. 
Stability conditions turn out to be a rather powerful tool for proving various laws of large 
numbers. As an example, we can consider one of the basic results in the theory of uniform 
convergence (see, e.g., [20]) 

Theorem 2.5. Let b(x, w) be jointly measurable on X x 0, where X is a compact metric 
space and (0, t3, P )  is a probability space. If x H b(x, w) is continuous for almost all w 
and there is an integrable function g(w) such that 

sup Ib(x,w)l 5 g(w) a. s,, 
xEX 

then 
sup 1 J b(x,w)~,(s)(dw) - J b(x, w ) ~ ( d w ) l  + o a. s. 
xEX 

For the direct proof of this result, see [20]. Alternatively, one may use the argument that  
the family of functions w H b(x, w), x E X, is P-stable. In fact, owing to the compactness 
of X, for each E > 0 there is a finite number of open sets Wi covering X, such that 

sup b(y,w) - inf b(y,w) J YEW, 

for all i. This, however, implies the validity of the Blum-DeHardt conditions for unifor- 
mity, which - in turn - entail the stability of the family w H b(x, w), x E X (see [25], p. 
839). 

Let us use the stability condition to prove some technical lemmas, which will be useful 
for further considerations. 



Lemma 2.6. Assume that f : X x f l  I+ R is measurable in both arguments and the class 
of functions w H f ( x ,  w ) ,  x E X ,  f ( x ,  .), x E X ,  is P-stable. Then for every measurable 
function g : R H R the class of functions w H g(w) f ( x ,  w ) ,  x E X ,  is P-stable. 

Proof. Let us use Remark 2.4. Suppose that the set of functions h ( x ,  .) = g ( . )  f ( x ,  .), 
x E X ,  is not P-stable. Then there exist a < P and A E C with P ( A )  > 0 such that for 
each n and almost each ( s l ,  . . . , s,) E An, for each subset I of (1 , .  . . , n )  there is x E X 
with 

h ( x ,  s,) < a for i E I, (2.1) 

h ( x , s i )  > p for i $ I .  (2.2) 

With no loss of generality we can assume that a > 0. Define q = (1 + P / a ) / 2  and consider 
the sets 

At least one of them has a positive probability. Let it be Bk+ for some k (the proof in the 
case of B; is similar). Since Bk+ c A and P(Bk+) > 0,  for almost all ( s l ,  . . . , s,) E (Bk+)n 
and all possible I ,  inequalities (2.1) and (2.2) hold. If i E I then 

If i 6 I then 
P 

- P I .  f ( x , s d  > - 

Since P I  - at = ( p  - a)/(2qk+')  > 0,  conditions of Remark 2.4 hold for the family f ( a ,  -), 
x E X .  But then this family cannot be P-stable, a contradiction. 

Lemma 2.7. Assume that the following conditions are satisfied: 

(i) the functions f : X x f l  H R and g : X x R H R are measurable in both arguments; 

(ii) the families of functions w H f ( x , w ) ,  x E X ,  and w H g(x ,w) ,  x E X ,  are 
P-uniformity classes; 

(iii) the expectations J f ( x ,  w)P(dw)  and J g ( x ,  w)P(dw)  are bounded for x E X .  

Then the family of functions 

is a P-uniformity class and there exists v E ,C1(fl, P )  such that I max [ f  ( x ,  w ) ,  g ( x ,  w ) ]  I 5 
V ( W )  a.s.. 



Proof. At first let us observe that by Theorem 2.3, in particular, there exists v E L1 (R, P) 
such that max [ I f  (x,  w)l, Ig(x, w)l] 5 v(w) a s . ,  so our second assertion is true. Let us now 
pass to  the P-uniformity assertion. Directly from Definition 2.1 we see that the set of 
functions 

cp(., .) = g(x, .) - f ( x ,  9, x E X,  

is a P-uniformity class. By Theorem 2.3 it is P-stable. Suppose that the family of 
functions 

cp+(x, -) = max [O, cp(x, .)I , x E X, (2.3) 

is not P-stable. Then, by Remark 2.4, there exist cr < /3 and A E C with P ( A )  > 0 such 
that for each n and almost each (sl, . . . , s,) E An, for each subset I of (1,.  . . , n )  there is 
x E X with 

cp+(x,s;) < a for i E I 

and 
cp+(x,s;) > p  for i 6 I .  

Since cp+(x, s;) >_ 0, then a > 0, hence p > 0, too. Thus the above inequalities hold 
with cp+ replaced by cp. Then, by virtue of Remark 2.4, the class cp(x, .), x E X, cannot 
be P-stable, a contradiction. Consequently, the family (2.3) is P-stable, and, in view of 
Theorem 2.3, it is a P-uniformity class. Using the representation 

directly from Definition 2.1 we obtain the desired result. 

Lemma 2.8. The family of functions 

where f : R H IR is measurable, g : X ++ JR and @ : IR H IR is monotone, is P-stable. 

Proof. Let us assume that the assertion is false. Then there exist cr < P and A E C with 
P(A)  > 0 such that for each n and almost each (sl,. . . , s,) E An, for each subset I of 
(1,.  . . , n )  there is x E X with 

~ ( x , s i )  < cr for i E I, (2-4) 

cp(x,s;) > p  for i $ I .  

Replacing I with (1, .  . . , n )  \ I, we also have, for some y E X ,  

cp(y,s;) > P for i E I, (2.6) 

cp(y,s;) < cr for i 6 I. (2.7) 

With no loss of generality we can assume that @ is nondecreasing. Define @-'(u) = 
sup{v : @(v) 5 u). From (2.4) we get 



while (2.6) implies 

f (4 + 9(y) > @-'(P), i E 1 

Thus, 

9(y) - 9(x) > @-'(P) - 2 0. 

Likewise, from (2.5) and (2.7) we obtain 

a contradiction. 

3 Approximating the recourse function 

Let us now pass to function (1.5) and its approximation (1.6). We shall make the following 
assumptions. 

( A l )  There exist a measurable function ii : R H IRm and c E C2(R, P) such that a s .  

( w )  E {u : W ( W ) ~ U  5 q(w)) 2 {u : IIuII < c(w)) - 

(A2) The function b : X x R H IRm is measurable in both arguments, there exists 
v E C2(R, P) such that,  for all x E X, ((b(x, w)ll < v(w) as . ,  and the family of 
functions w H b(x,w), x E X, is a P-uniformity class. 

We are now ready to prove the P-uniformity of empirical approximations (1.6). 

Theorem 3.1. Let f : X x R H IR be defined by (1.2) and let conditions ( A l )  and (A2) 
hold. Then the family of functions w H f(x,w),  x E X, is a P-uniformity class and there 
exists v E C1(R, P) such that, for all x E X, 1 1  f (x, W;I 1 1  < v(w) a s . .  

Proof. By ( A l )  we can use duality in linear programming to get 

f (x, w) = max {b(x, W ) ~ U  I W ( W ) ~ U  < q(w)). (3.1) 

The feasible set of the dual program in (3.1) is a.s. a nonempty bounded polyhedron 
having finitely many vertices. Then every vertex of the dual feasible set can be expressed 
as 

u = B(w)-lq~(w),  (3.2) 

where B is a square nonsingular submatrix of W(w) of dimension m, (a basis matrix), 
and qs(w) is the subvector of q(w) that corresponds to the columns in the basis matrix. 

Let us denote all possible square submatrices of W(w) having dimension m, by Bk(w), 

k =  1, ..., K =  . A matrix Bk(w) is a feasible basis matrix if it is nonsingular and 



(3.2) (with B(w) = Bk(w)) yields a feasible point. Now, for each 1 < k < I(, we define 
the function 

B ~ ( w ) - ~ ~ B ~ ( w )  if Bk(w) is a feasible basis matrix, 
vk(w> = otherwise. 

By (Al) ,  vk E L2(52, P) for all k = 1, .  . . , I(. From (3.1) we obtain 

f (x ,  w) = max b ( ~ , w ) ~ v k ( w ) .  
k=1, ..., K 

By (A2), for each j = 1, .  . . ,m,, the expectation J bj(x, w)P(dw) is bounded for x E X. 
Hence, by Theorem 2.3 and (A2), the class bj(x, -) is P-stable, and, by Lemma 2.6, the 
products bj(x, -)vkj(.) constitute a P-stable class. 

Now, for all x E X, 

and v . vkj E L1 (52, P). Therefore, by Theorem 2.3, the products bj(x, .)vkj(.) form a 
P-uniformity class. Directly from Definition 2.1, b(x, .)Tvk(-), x E X, is a P-uniformity 
class, for every k = 1,. . . , I<. Using Lemma 2.7, we conclude that (3.3) is a P-uniformity 
class and that J f(x,w)P(dw) is bounded for x E X. Using Theorem 2.3 again we 
additionally conclude that an integrable bound on I f  (x, W;I I must exist. 

Roughly speaking, the question whether the optimal value of a linear program is a 
P-uniformity class has been reduced to the substantially simpler question whether the 
right hand side is a P-uniformity class. The latter can still be analysed via the stability 
conditions, as it has been done for the continuous case in Theorem 2.5, but our framework 
can also handle discontinuous functions. 

Example 

Assume that in (1.2) the right hand side is defined by the operation of rounding to integers, 

where r a l  = min{n E Z : n 2 a), while La] = max{n E Z : n < a).  If T(x)  and b(w) 
are measurable, then, by Lemma 2.8, the family w H b(x, w), x E X, is P-stable. Thus, 
under mild integrability assumptions, b(x,w) satisfies condition (A2). Let us point out 
that the functions b; (., w) are not even lower semicontinuous here. 

4 Problems with random size 
Let us now consider the case when f(x,w) is the optimal value of the infinite linear 
programming problem: 



We assume that the infinite sequence ((w) = ((1 (w), t2(w), . . .) with elements (,(w) = - 
(q,(w), w;(w)), i = 1,2 . . . , is a random variable in the space = of sequences of (my + 1)- 
dimensional vectors; E is equipped with the a-algebra A generated by sets of the form 
{( : (6,. . . , Jk)  E B) for all Bore1 sets B E I R ( ~ Y + ' ) ~  and all k. We shall denote the 
optimal value of (4.1) by f(x,w) = cp(x,((w)). 

Next, we define in E the projection operators IIk, k = 1,2, .  . . by 

They are, clearly, measurable. For any ( E E, let 

(we take the convention that inf 0 = 00). We make the following assumptions about the 
distribution of (. 

(A4) for all k > j > 1 

where L( . ,  A) denotes the conditional probability law under A. 

The following two lemmas provide more insight into the nature of our randomly-sized 
problem. 

Lemma 4.1. If ( satisfies conditions (A3) and (A4) then there exists a random variable - z with values in L and such that P{zj = 0) = 0, j = 1,2, .  . ., and an integer random 
variable N, independent on z ,  such that ( and IINz have the same distribution. 

Proof. Let vj be the conditional distribution of the first j components of J ,  given that 
J(() 2 j. By (A4), vj is the distribution of the first j components of ( under the condition 
J(() 2 k, for every k > j. Therefore the sequence {vj) constitutes a projective family 
and by Kolmogorov theorem (cf., e.g., [4], Proposition 62.3) there exists a probability 
measure v with marginals vj. 

Let T be the distribution of J ( J ) .  Consider the pair (z, N)  such that z E E has 
distribution v, the integer N has distribution T, and they are mutually independent. 
Define (' = IINz. We shall show that J' has the same distribution as J. It is sufficient 



to show that,  for each j, (tl,. . . , tj) and (ti,. . . ,ti) have the same distribution. Since 
P { N  = k) = P{J([) = k), it suffices toshow that 

If k >_ j, both ( t l , .  . . ,tj) and (ti,. . .,ti) have distribution vj. If k < j, their first k 
components have distribution vk, while the remaining components are zero. 

Lemma 4.2. Assume ( A l ) ,  (A2) and (A3). Then there exists v E L1(R, P) such that, 
for all x E X, I f  (x,w)J I v(w) a.s.. 

Proof. By (A3), with probability 1, f (x, w) is defined by the finite dimensional problem 

where ~ ( w ) ~  = [ q l ( ~ )  . . . q ~ ( ~ ) ( w ) ]  and w ( w ) ~  = [wl(w) . . . w~(,)(w)]. By duality in 
linear programming, 

f (x, w) = max{b(x, U ) ~ U  I W ( W ) ~ U  < Q(w)). 

Our assertion follows from the square integrability of c(w) and of the uniform upper bound 

on I)b(x, 411. 

Let us observe that the above result implies that the expected value F (x) = J f (x, w) P(dw) 
is well-defined and uniformly bounded for x E X. 

Lemma 4.3. The sequence of functions 

is monotonically decreasing. 

Proof. Removing columns from a linear program may only increase its optimal value, 
so, for every j and every t E Z, 

~ ( x 7  njt) 2 ~ ( x 7  0. 
Therefore, 

~ j + l ( x )  = E{cp(x,t) I J(t) I j + 1) I E{cp(x, nit) I J(5) 2 j + 1). 

Next, by (A4), 

E{cp(x, njt) I J(t) I j + 1) = E{cp(x7t) I J(0 I j) = F3(x) .  

Combining the last two relations we obtain the required result. 



5 Approximating the randomly-sized recourse func- 
t ion 

Let us now return to our main problem: uniform convergence of empirical approximations 
(1.6) to the expected recourse function with the recourse problem (4.1). 

Theorem 5.1. Let f : X x R I+ IR be defined by (4.1) and let conditions (A1)-(A4) hold. 
Then the family of functions w I+ f (x, w ) ,  x E X, is a P-uniformity class. 

Proof. For the sample t l , .  . . , Fn we define 

and denote by nk the number of elements in Ik. Then we can rewrite (1.6) as 

where 

Let us consider SAfl. For every k the collection {ti, i E Ik) constitutes a sample of 
independent observations drawn from the conditional distribution vk (under the condition 
ITk[ = I). By the strong law of large numbers, for each k 5 1, 

nk 
lim - = P{ITk[  = [) = pk, a. s., 

n+m n 

where pk = P{J([) = k). If pk > 0 then nk 3 KI a. s. and by Theorem 3.1 

uniformly for x E X. So, with probability 1, for every 6 > 0 we can find N1(l, 6) such that 
for all n > Nl(l, 6)  

We shall now estimate SiW(x).  Let us choose ko < 1 and consider the random variables 

Removing columns may only increase the optimal value of (4.1), so ~ ( x ,  [" ) ~ ( x ,  v'). 
Thus 



Again, by the strong law of large numbers, 

lim - - nl+llm - C pk a.s.. 
71-03 n 

k > l  

Next, by (A4) the variables r ) ' ,  i E Uk>[ Ik,  constitute a sample of i.i.d. observations 
drawn from the conditional distribution vg .  Thus, by Theorem 3.1, 

1 
lim - C C y(x,  r)i) = F k o  (I), a.s., 

n-*W nl+l,m k>[ iE Ik  

uniformly for x E X. Putting together (5.4), (5.5) and (5.6) we can conclude that a.s. we 
can find N2(l, c )  such that for all n > N2(l, 6) and all x E X 

On the other hand, by (Al)  and the duality in linear programming, 

Therefore, 

where byx) and f i  are i d .  observations drawn from the distributions of b(x,w) and 
u(w). By (A2),for all x one has ( ( 6 ' ( ~ ) ( ( ~  5 ( v ~ ) ~ ,  where v; are i.i.d. observations from the 
upper bound v. Consequently, by the law of large numbers, 

Using this relation in (5.8), with a look at (5.5), we conclude that a.s. there is N3((l, 6 )  

such that for all n > N3(l, 6) and all x one has 



We can always choose 1 ( c )  so large that for all x E X, 

and 

; (,2€) P k )  " {v2  + ll.,12} 2 6. 

Then, by (5. I) ,  (5.3), (5.7), (5.9), (5.10) and (5.1 I) ,  for each c > 0, a.s. there exists N(c) 
such that for all n > N(c), 

which completes the proof. 

6 Concluding remarks 

From the stability theory of general optimization problems it is well-known that uniform 
convergence of perturbed objective functions can be used as a key ingredient to establish 
continuity properties of perturbed optimal values and optimal solutions. 

Let us assume that F in (1.5) appears in the objective of an optimization problem and 
that we are interested in asymptotic properties of optimal values and optimal solutions, 
when F is replaced by the estimates Fn (cf. (1.6)). Assume further that F and Fn 
(n E I N )  are lower semicontinuous and that the optimization problem involving F has a 
non-empty bounded complete local minimizing set in the sense of [17]. The latter means, 
roughly speaking, that there is a bounded set of local minimizers which, in some sense, 
contains all the nearby local minimizers. Both strict local and global minimizers can be 
treated within this framework (see [17]). Using standard arguments from the stability of 
optimization problems it is then possible to show that (with probability I )  the optimal 
values and the optimal solutions are continuous and upper semicontinuous, respectively, 
as n + oo (see, e.g., [22]). 

Let us also mention that one possibility to guarantee the boundedness of solution sets 
is to impose some growth conditions on F.  They can also be used to to re-scale the 
functions, which may allow obtaining uniform convergence on unbounded sets. 

Finally, it has to be stressed that in the context of stability of optimization problems 
with F appearing in the objective, the framework of uniform convergence is not the only 
one possible; epigraphical convergence (see [2, 31) requires less from the sequence Fn and 
may prove to be more flexible. However, the counterpart to the theory of the Glivenko- 
Cantelli problem has not yet been developed to such an extent as the uniform convergence 
case. 
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