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Abstract 

As is well known from the classical applications in 
the electrical and mechanical sciences, energy is a suit- 
able Liapunov function; thus, by analogy, all energy 
functions proposed in ecology are potential Liapunov 
functions. In this paper, a generalized Lotka-Volterra 
model is considered and the stability properties of its 
non-trivial equilibrium are studied by means of an energy 
function first proposed by Volterra in the context of 
conservative ecosystems. The advantage of this Liapunov 
function with respect to the one that can be induced 
through linearization is also illustrated. 

1. Introduction 

One of the classical problems in mathematical ecology is the 
stability analysis of equilibria and, in particular, the deter- 
mination of the region of attraction associated with any 
asymptotically stable equilibrium point. It is also known that 
the best way of obtaining an approximation of such regions is 
La Salle's extension of the Liapunov method [ 2 1  , [ 4 ]  . 

Nevertheless, this approach has not been very popular among 
ecologists, the main reason being that Liapunov functions (i.e. 
functions that satisfy the conditions of the Liapunov method) are 
in general difficult to devise. One straightforward, but often 
not very effective, way of overcoming this difficulty is through 
linearization as shown in Section 3, while a more fruitful way 
consists in considering as candidates for Liapunov functions any 
functions that are analogous to the internal energy of the system. 
This is the approach that is, for example, commonly followed by 
engineers in the analysis of mechanical systems or in the study 
of nonlinear electrical networks. The reason why the Liapunov 
method has not been widely used in ecology possibly resides in the 
lack of a definition of an energy function in the context of eco- 
logical systems. One major exception is represented by the 
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pioneering work of Volterra and the more recent work of Kernex 
[ T I  who discussed the analogy between ecological and mechani- 
cal systems in terms of energy. Nevertheless, these works are 
limited to conservative ecosystems, a case that seems to be 
very peculiar indeed. 

The aim of this paper is to show how the energy function 
proposed by Volterra (from now on called Volterra function) 
quite often turns out to be a Liapunov function even for non- 
conservative ecosystems. In order to avoid complexity in 
notation and proofs, the only case that is dealt with in the 
following is the one of second order (predator-prey) systems, 
but the authors strongly conjecture that the results presented 
in this paper cou1.d be easily generalized to more complex 
ecological models. 

2. The Volterra Function 

Consider the simple Lotka-Volterra model 

= y (-c + dx) 

where x and y are prey and predator populations and (a,b,c,d) 
are strictly positive constants. This system has a non-trivial - - 
equilibrium (E,y) given by (x,y) = (c/d, a/b) which is simply 
stable in the sense of Liapunov. Moreover, any initial state 
in the positive quadrant gives rise to a periodic motion. 
This can easily be pivved by means of the energy function 
proposed by Volterra, 

= (xi; - 109 X I ; )  + p(y/y - log y/y) - (1 + p), (2) 

where 

since this function is constant along any trajectory and its 
contour lines are closed lines in the positive quadrant. In 
other words, the Volterra function (2) is a Liapunov function 
because it is positive definite and its derivative dV/dt is 
negative semidefinite (identically zero). 



In the following, the Volterra function will be used in 
relation with non-conservative ecosystems of the form: 

where f and g are continuously differentiable functions. More- 
over, we assume that there exists a non-trivial equilibrium 

> 0 and that the positive quadrant is an invariant set 
for system (3) so that it can be identified from now on with 
the state set of the system. 

3. Linearization and the Liapunov Equation 

Liapunov functions can, of course, be constructed by 
solving the so-called Liapunov equation. This procedure is 
now briefly described so that the advantage of the Volterra 
function can be better appreciated in the next sections. Let 

be the variations of - prey - and predator populations with respect 
to the equilibrium (x,y). Then the linearized system associ- 
ated with this equilibrium is given by 

- - - -  
where (fxIfyIgx ,gy) are the partial derivatives of f and g 

- - 
evaluated for (x,y) = (x,y) . Now, assume that the matrix F 
has eigenvalues with negative real parts, which implies that 
the equilibrium is asymptotically stable (recall that the 
converse is not true). Under this assumption Liapunov's 
equation (matrix equation) 



has one and only one solution in the unknown matrix P for any 
positive definite matrix Q. Moreover, the matrix P is positive 
definite and the function 

is a Liapunov function because its derivative 

is negative definite. In conclusion, the Liapunov function 
(6) can be very easily determined by solving equation (5) 
with F given as in equation (4) and with Q positive definite 
(e.g. Q = identity matrix). The only limitation to the appli- 
cability of this method is the assumption on the eigenvalues 
of the matrix F: for example, the Lotka-Volterra model (1) 
cannot be discussed in this way, since the F matrix has purely 
imaginary eigenvalues. Nevertheless, even when this method 
can be applied, the results are not in general as satisfactory 
as the ones that can be obtained by means of the Volterra 
function as shown in the next section. 

4. The Volterra Function as a Liapunov Function 

Consider the generalized Lotka-Volterra model ( 3 )  and the 
Volterra function V given by equation (2). Then, the derivative 
of the Volterra function along trajectories is given by 

In order to study dV/dt in a neighborhood of the equilibrium 
( x , y ) ,  it is possible to expand this function in ~aylor series 
up to the second order terms, i.e. 



Since 

eq. (7) becomes 

dv - 1 [Ax &y] 
- 2  f 

Y - + -  
2; ad: dz 



There fore  t h e  second o r d e r  approximat ion of  dV/dt t u r n s  o u t  t o  
be a  homogeneous q u a d r a t i c  form; by s t u d y i n g  t h e  n e g a t i v e  o r  
p o s i t i v e  d e f i n i t e n e s s  o f  such a  form, it i s  p o s s i b l e  t o  d e r i v e  
s u f f i c i e n t  c o n d i t i o n s  f o r  t h e  V o l t e r r a  f u n c t i o n  t o  be a  
Liapunov f u n c t i o n .  More p r e c i s e l y ,  by app ly ing  t h e  well-known 
S y l v e s t e r  c o n d i t i o n s  and performing e a s y  computa t ions ,  w e  o b t a i n  

i - 2  dV p o s i t i v e  d e f i n i t e  . ( l o )  d t  
(bqx + d z  ) > 4bdF g' 

Y x  Y 

Not ice  t h a t  t h e s e  c o n d i t i o n s  a r e  on ly  s u f f i c i e n t  f o r  Liapunov 
methods t o  be a p p l i c a b l e ;  t h u s ,  even i f  t h e s e  c o n d i t i o n s  a r e  
n o t  s a t i s f i e d ,  it i s  p o s s i b l e  t h a t  t h e  V o l t e r r a  f u n c t i o n  t u r n s  
o u t  t o  be a  Liapunov f u n c t i o n  ( s e e  Example 2 ) .  

A s  f a r  a s  t h e  s t u d y  o f  s t a b i l i t y  p r o p e r t i e s  i n  t h e  l a r g e  
i s  concerned,  t h e  V o l t e r r a  f u n c t i o n  i s  d e f i n i t e l y  advantageous  
w i th  r e s p e c t  t o  t h e  q u a d r a t i c  forms d e r i v e d  by means o f  
L iapunov ' s  e q u a t i o n  ( 5 )  . T h i s  i s  a p p a r e n t  i n  t h e  c a s e  o f  
g l o b a l  s t a b i l i t y ;  i n  facL, g l o b a l  s t a b i l i t y  c an  be i n f e r r e d  
by means o f  V o l t e r r a  f u n c t i o n ,  whose c o n t o u r  l i n e s  i n  t h e  
s t a t e  se t  a r e  c l o s e d ,  w h i l e  t h i s  i s  never  p o s s i b l e  by means 
o f  a  p o s i t i v e  d e f i n i t e  q u a d r a t i c  form of t h e  k ind  ( 6 ) ,  s i n c e  
t h e  con tou r  l i n e s  a r e  n o t  c l o s e d  (see Examples 1 and 2 ) .  

5 .  Examples 

T h i s  s e c t i o n  i s  devo t ed  t o  c l a r i f y i n g  by means of some 
examples what h a s  been d i s c u s s e d  above,  w i t h  p a r t i c u l a r  
emphasis  on t h e  t r a d e - o f f s  between t h e  V o l t e r r a  f u n c t i o n  and 
t h e  q u a d r a t i c  Liapunov f u n c t i o n  t h a t  c an  be  o b t a i n e d  by 
s o l v i n g  t h e  Liapunov e q u a t i o n .  

Example 1 

The f i r s t  example i s  a  s imple  symmetric compe t i t i on  
model f o r  two s p e c i e s  d e s c r i b e d  by t h e  fo l l owing  e q u a t i o n s  
(see May [ 3 1 )  : 



a =  y ( k 2  - y  - a x ) ,  
d t  

where k l l k 2  and a  are p o s i t i v e  pa ramete r s .  

Provided. t h a t  

- - 
a n o n - t r i v i a l  e q u i l i b r i u m  ( x , y )  e x i s t s  and i s  g i v e n  by 

Thus, t h e  m a t r i x  F o f  t h e  l i n e a r i z e d  sys tem i s  g i v e n  by 

and i t s  e i g e n v a l u e s  have n e g a t i v e  r e a l  p a r t s ,  p r o v i d e d  t h a t  
i t s  trace i s  s t r i c t l y  n e g a t i v e  and i t s  d e t e r m i n a n t  is  strict- 
l y  p o s i t i v e .  These c o n d i t i o n s  are o b v i o u s l y  s a t i s f i e d  i f  
a < 1 .  On t h e  o t h e r  hand,  a l s o  t h e  s u f f i c i e n t  c o n d i t i o n s  
g i v e n  by e q .  ( 9 )  work w e l l .  I n  f a c t  

and 

p rov ided  t h a t  a < 1 .  



However, the Volterra function guarantees the global 
stability of the equilibrium. This can be easily under- 
stood when taking into account that there is no error in 
the Taylor expansion (7), because the functions f and g 
are linear. Thus, dV/dt is negative definite in the state 
set and global stability follows from La Salle's conditions. 

Example 2 

Consider the well-known modification obtained from the 
classical Lotka-Volterra model, when assuming, in the absence 
of predation, a logistic growth for the prey: 

3 = y(-c + dx) dt 

If ad > kc a non-trivial equilibrium 

exists, and linearization around it yields 

which has eigenvalues with negative real parts. On the other 
hand, it turns out that 



Therefore eq. (9) is not satisfied. Nevertheless, a direct 
computation yields 

i.e. dV/dt is negative semidefinite. Since the locus dV/dt = 0 
is not a trajectory of the system (easy to check), Krasowskyi 
conditions are met with and asymptotic stability can be in- 
ferred. Moreover, since dV/dt is negative semidefinite in the 
whole state set, global stability can be straightforwardly 
deduced. 

Example 3 

A third example is given to show how a subregion of the 
region of asymptotic stability can be found by means of the 
Volterra function. 

Consider a situation where the prey, in the absence of 
predators, has an asymptotic carrying capacity B and a 
minimum density a, below which successful mating cannot 
overcome the death processes. This model can be described by 

where a, B,y are positive parameters which are supposed to 
satisfy the relations 

It is easy to check that there exists only one non-trivial 
- - 

equilibrium given by (x,y) = (C - a) (c - B )  
Y 



This  e q u i l i b r i u m  i s  n o t  g l o b a l l y  s t a b l e ,  s i n c e  t h e  
o r i g i n  of t h e  s t a t e  space  i s  a l s o  a s y m p t o t i c a l l y  s t a b l e .  
The r eg ions  A and B o f  asympto t ic  s t a b i l i t y  o b t a i n e d  by 
s i m u l a t i o n  f o r  p a r t i c u l a r  v a l u e s  o f  t h e  paramete rs  a r e  
shown i n  F igu re  1 .  I t  i s  p o s s i b l e  t o  de te rmine  an apyxoxi- 
mation of  r e g i o n  A by means o f  t h e  V o l t e r r a  f u n c t i o n .  I n  f a c t ,  

dV - X - - ( - 1) ( ( x  - a )  (x  - B )  - yy) + y (Y - 1) (t-c + X )  
d t  x x Y 

i s  n e g a t i v e  s e m i d e f i n i t e  i n  t h e  r eg ion  

s i n c e  ( a  + 8) /2  4 c.  Moreover t h e  s t r a i g h t  l i n e  x = X, where 
dV/dt = 0, does  n o t  c o n t a i n  any p e r t u r b e d  t r a j e c t o r y .  There- 
f o r e  t h e  r e g i o n  bounded by t h e  con tou r  l i n e  of  t h e  V o l t e r r a  
f u n c t i o n  t h a t  i s  t a n g e n t  t o  t h e  s t r a i g h t  l i n e  x = a  + B - c 
(see F i g u r e  1 )  r e p r e s e n t s  an  e s t i m a t e  of  t h e  r e g i o n  of a t t r a c t i o n ,  
s i n c e  La S a l l e ' s  c o n d i t i o n s  a r e  s a t i s f i e d .  

6 .  Concludina Remarks 

The energy  f u n c t i o n  proposed by V o l t e r r a  has  been used 
i n  t h i s  paper  t o  ana lyze  t h e  asympto t ic  behav io r  of non- 
c o n s e r v a t i v e  ecosystems o f  t h e  p reda tor -p rey  t ype .  The main 
r e s u l t  i s  t h a t  t h e  V o l t e r r a  f u n c t i o n  t u r n s  o u t  t o  be a  
we l l -def ined  Liapunov f u n c t i o n  f o r  a  l a r g e  c l a s s  o f  systems 
and t h e r e f o r e  a l l ows  t h e  d i s c u s s i o n  o f  t h e  l o c a l  and g l o b a l  
s t a b i l i t y  p r o p e r t i e s  o f  such sys tems.  The V o l t e r r a  f u n c t i o n  
d e f i n i t e l y  seems advantageous w i t h  r e s p e c t  t o  t h e  Liapunov 
f u n c t i o n s  t h a t  can  b e  ob t a ined  through l i n e a r i z a t i o n ,  p a r t i -  
c u l a r l y  i n  t h e  c a s e  o f  g l o b a l  s t a b i l i t y .  Moreover, it i s  
worthwhile n o t i n g  t h a t  t h e  V o l t e r r a  f u n c t i o n  i s  a l s o  o f  
i n t e r e s t  when t h e  e q u i l i b r i u m  s t a t e  under d i s c u s s i o n  i s  un- 
s t a b l e .  The r e s u l t s  o b t a i n e d  i n  t h i s  paper  a l low us  t o  prove 
i n  a  ve ry  s imple  form some g e n e r a l  p r o p e r t i e s  such a s  t h e  
fo l lowing :  i f  t h e  f u n c t i o n  f  and g  i n  t h e  g e n e r a l  model ( 3 )  



F i g u r e  1 .  The e s t i m a t i o n  o f  t h e  r e g i o n  A 
o f  a t t r a c t i o n  by means of t h e  
V o l t e r r a  f u n c t i o n .  



are linear and satisfy eq. (9), then the local stability of 
an equilibrium implies its global stability. 
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