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, *
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* K
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Abstract

It is shown that the EVM in structural form is iden-
tifiable if serial correlation is present in the indepen-
dent variables. Least Squares, Instrumental Variable and
Maximum Likelihood techniques for the identification and
estimation of serial correlations and other EVM parameters
are given. The techniques used are based on State Vector
Models, Kalman Filtering and Innovation representations.
Generalizations to EVM involving multiple regressions and
randomly time-varying coefficients are also discussed.

Introduction

The Error-In-Variables Model (EVM) is a regression model
in which the independent variables are only measured with
errors. It has been investigated extensively in the statisti-
cal and the econometric literature for over thirty years (({1-10];
for further references see the recent paper by Florens et al.

[10] ). However, as some of these authors point out, the proposed
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solutions to the problem are still far from satisfactory and
require specification of data that may not be readily avail-
able in practice.

The two basic assumptions of EVM in Structural Form are
normality and independence (or serial uncorrelatedness) of the
explanatory variables. The consequences of relaxing normality
were analyzed by Reiersgl [11] who showed that the EVM is
identifiable for non—normal distributions. In this paper, we
examine the assumption of independence and show that relaxation
of this assumption makes the EVM identifiable for normal dis-
tributions. This may seem paradoxical at first sight, since
one is introducing extra correlation parameters into the
problem which may be expected to worsen the identifiability
problem. But we show, in this paper, that the introduction of
a correlation structure between the independent variables gives
extra equations that allow one to identify all the parameters
associated with the independent variables without using EVM.
This solves the basic identifiability problem of EVM in struc-
tural form.

The organization of the paper is as follows. In Section 2,
we outline the identifiability problem of EVM. The estimation
of the covariance and correlation parameters associated with
the independent variable using a first order correlation
model is discussed in Section 3. The complete identification
and estimation of the EVM model is discussed in Sections 4 and
5. Extensions of the EVM to multiple regression and to ran-

domly time-varying coefficients is discussed in Section 6.



2. Error-In-Variables Model, Structural Form

Consider a simplified linear regression model [8],

where o and B are constant unknown parameters, X5 and y; are
respectively the independent and the dependent variables and
uy is an error variable, normally distributed, white, zero

, 2 . . .
mean and variance ou. The variable Xy is measured with error

where A is normally distributed, white, zero mean, and

variance 05. We assume that Vi and uj are independent for

all i, j. Notice that Uy includes both the model error in
(1) and the measurement error in Y- In the structural form
of EVM, it is further assumed that X i=1,...,N are in-

dependent (of each other and of vy and ui) znd normally
distributed with mean u and variance Oy~

The unknown parameters in the above model are o, R, 05, oi,
u and oi. It is intuitively clear that the maximum likeli-
hood estimates of these six parameters, if they exist, can

be obtained by equating the sample mean and covariance of

the pair (yi,zi) to their theoretical values, i.e.

E(zi) = U (3)




E(yi) = o + Bu (4)
oi = oi + 02 (5)
oi = 8%62 + 52 (6)
and
= go? (7)
Ozy - BOX .

The five equations (3)-(7) can be solved for only five of the
six unknown parameters, thus creating an identifiability
problem.* It has been suggested in the literature [l—lQ]

that either oi or the ratio oi/oi should be assumed to re-
solve the identifiability problem.** However, such information
is generally not available in practice and it would be desir-
able to devise alternative techniques. An extensive analysis
by Zellner [8] shows that the use of Bayesian techniques in-
corporating a priori information in a less rigid form than

the exact specification of 03 or oi/oi is possible, but the

effect of the prior information remains strong for all sample

sizes, as pointed out by Florens et al. [10]. Also a recent

robustness study by Brown [32] reveals the extreme sensitivity

*

In terms of the likelihood function, this implies
that no maximum exists in the admissible range of the
parameters [8].

* %
Let X\ = 03/03 and solve Equations (5) and (6) for
2

O - Then using Equation (7), the following quadratic equation

for B 1is obtained:
2 - )

=g
2y o2__>\02
vy A



of the classical estimator to the assumed value of Oi/oi.

In fact, if the assumed value of Ui/ci is in error by more than
25%, the ordinary least-squares estimator, even though biased,
turns out to have a lower mean square error compared with the

classical EVM estimator.

Since the estimation and identification of the EVM seems
so out of proportion with its simplicity, one is inclined to
ask the question: Is there something missing in the model?
Clearly, any model is an idealization of reality and one

should make sure that the simplifying assumptions do not make

the model degenerate. In the next section, we examine
critically the assumption of independence of xi's and show
that a relaxation of this assumption makes EVM identifiable.
In most of the practical applications, some form of correla-
tion either already exists or may be caused to exist between
the independent variables, so that the above assumption is
useful not only from a mathematical standpoint but also bene-

ficial from a practical standpoint.

3. EVM with Correlated Independent Variables

In this section we analyze a particular correlation
structure having a Gauss-Markov or state-vector representation
[12]. This structure has been used for Time-Series Analysis
and System Identification with great success [13,14,15].

In some applications of EVM, the assumption of this type of
correlation structure may not be completely valid and one
may use some other structure more suited to the particular

application. However, for those applications where the




independent variables come from time series (e.g. in fore-
casting problems) and for illustrative purposes, we consider
the following first order Gauss-Markov model for the in-
dependent variables X - (A more general model will be

considered in the next section.)

i+l

where O <|4¢|< 1 and w, is a sequence of zero mean* Gaussian
uncorrelated variables with variance 03. We have excluded

the cases ¢ = O and |¢| 2 1 since the former leads to EVM
with uncorrelated xi's and the latter leads to a nonstationary
sequence. The steady state or stationary covariance of (8)

satisfies [13],

o2 - ¢202 + 52
X Y
or
2 2 2
O, = Gw/(l ") - (10)

If we choose x,. to be normally distributed with zero mean and

0
. 2 ,
variance ox, then the sequences (Xi’zi)’ i=1,2,..., generated
by Equations (8)-(9) are stationary. Nlow we estimate ¢, 05

and 03 from the sample correlation of the observed sequence

Z. i=1,2,....
ll ’ 1

* . ..
For simplicity, we have assumed E(x{) = u = 0. In the

general case, one should take E(wi) = u(l-9).



Let

c(k) = E(z ’ k=20,1,2,3,....

i%i+x)

A consistent estimator of c(k} is & (k) where

c(0) = og = oi + 02
c(l) = ¢oi
c(2) = ¢2oi

In general,

c(k) = ¢ko ’ k=1,2,3,....

_ c(2)
¢ = ()
2
2 _ cT (1)
9% T c(2) :

From equation (12),

2
2 _ _c (1)
v T c(0) c(2) '

and from equation (10),

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)




_ 2 2
2 _ _c (2)) cT (1) _ 1 2 _ 2

It is easily shown that if &(k) is used for c(k) in
2

Equations (16)-(19), the corresponding estimates of ¢, Ot
2 . , . . .

o, are consistent [13]. Using these estimates in Equations
(6)-(7), one can obtain consistent estimates of B and oi

The estimation of o and p is done from the sample means Y

and z; using Eguations (3) and (4). Thus the EVM with the

correlation structure of equation (8) and ¢ # O is identifiable.
Of course, the accuracy of estimates would depend on ¢, with
smaller values of ¢ tending to give larger standard deviations
of the parameter estimates. In the limit as ¢ > O, equations
(13)-(15) do not provide any information about oi and one has
the problem of determining both oi and 03 from equation (12)
alone. This gives rise to the identifiability problem of the
classical EVM. Theoretically, thus, the EVM is identifiable
for nonzero ¢, however small. Furthermore, if correlation is
present, its inclusion in the model would, in general, improve
the results.

In the next section, we consider estimation of the EVM
with a more general Gauss-Markov correlation structure. From
here on, we assume that the independent variable has some
correlation. Unless there are strong physical reasons to
believe that the independent variable is completely uncorrelated,
the above assumption is justified in practice. The procedure
to be outlined in the next section may, in fact, be used to

test correlatedness.



4. Consistent Estimation and Identification of the

Correlated EVM

Since the details of some of the techniques to be de-
scribed here are also covered elsewhere [13,14,15] we will
only sketch these techniques here. The new or special aspects

of the EVM will be described in detail.

Consider again the EVM, equations (1)-(2) with scalar
X - We now generalize the first order correlation structure
of equation (8) to an nth order correlation structure using a

state-vector model, i.e.

Siy1 = ¢si + Fwi (20)
X, = hsi (21)
z; = hsi + vy ’ (22)

where Sy is nx1 state vector; ¢ (nxn), I'(nxl) and h(lxn) are respec-
tively a constant matrix and vectors with unknown parameters. By a
basis change, the matrices ¢, T and h can always be put into

the following canonical form [13,14,15]:

O 1 0=--0 o
Y1
0 1--0
o = : P , h=[1,0,...,0]
O 0 ---1
“¢; ¢ - - ¢ Y
L 1 2 n | i nJ
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Furthermore, wi can be taken to be of unit variance so
that the model (20)-(22) has a total of (2n+l) parameters.
Generalizations of the technique discussed in Section 3 to
this case are given in Reference [13]. The relevant equations

are (23)-(25) below.

N c(l) . . . c(n) L [c(n+1)
= - (23)
¢n c(n) c(2n-1) c(2n)
where c(k)'s are estimated by Eguation (11):
n
2 1 . =
% =% jzo 054163+ by =1 (24)
c(l)
o2 = ho t (25)
X
c(n)

It should be montioned that a model equivalent to
Equations (20)-(22) is the following 'Innovation' or 'Kalman

Filter' model [13,14,15],

= . + . 26
§l+l|l Ql:glli_l k\)l] ( )
= 2
Zl h§l| . + \)i ’ ( 7)
i-1
where 8§, denotes the conditional mean estimate of si+l

i+l
i
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given {zl,...,zi},and Vi denotes the sequence of one-step-
ahead prediction errors or innovations [13], since from

kquation (27)

Vi =z - ﬁi'. . (28)

It is known that [13] v, is a zero mean Gaussian white
noise sequence with variance oi = oi/(l—hk). The Kalman
gain k(nx1l) is a constant vector of gains related to 03 and
oi (cf. Equations (31)-(32)).

The interesting property of the model (26)-(27), besides
the whiteness of the sequence Vi is the uncorrelatedness of
}

21 with v since ﬁi is a function of {zl,...,z.

’i—l i-1 i-1
only. This fact is useful in constructing an instrumental
variable [16] for estimating g as follows.

Consider EVM (1l)-(2) combined into a single equation
y. = o + Bzi - Bv., + u, . (29)

Using ﬁil as instrumental variable (IV) [16],

=
TN
L
'.l
N>
|.-l
'.J
|
'_l
~—
]
W
=
‘ N
'.J.
[N
'_J.
|—l
|
'_l
~——

or

B = . (30)




Equation (3) can be used to obtain a consistent IV
estimator for B by replacing the theoretical correlations by

their sample values. The sequence ﬁi = h§i is
i-1 i-1

generated using Equations (26)-(27). The matrix ¢ is

estimated from the correlations of zi's using equation (23),

and k is obtained from the estimates of T and 03, as follows.*

o
Il

-1
MhT(thT + oi) (31)

where

=
i

-1
@[ - MhT(thT + 03) hM]@T + Tt (32)

Other methods for direct and more efficient estimation
of k exist and are described in References [13,14,15]. 1In
practice, however, the Maximum Likelihood method seems to
give the best results, and it may be used for the simultaneous

estimation of all the parameters, denoted collectively as
© = [B/0, 10 byreeerd oY v T
lulvlll‘lnlll""n .
In the next section, we describe a Maximum Likelihood (ML)

Estimator, keeping in mind that the above correlation procedure

is to be used to obtain a consistent estimator @O which will

* , “ )
To maintain the uncorrelatedness of 2. with {zi’zi+l’
i-1

zi+2,...}, the estimates of & and k used in the Kalman Filter
are based on the past data, viz. {zi_l,zi_z,...}. These
estimates are computed on-line by using a recursive form of

Equation (23) [13].
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be required to start the ML estimation iterative procedure.
But first we discuss the problem of determining the order

n of the system.

4.1 Order Determination: The state vector model (26)-(27)

along with canonical forms for ¢ and H may be written in

input-output form as [13,14]

n
Zitn * .z $4Zi49-1 =

n
Vo, o+t ) cLv. L
521 i+n 321 J i+j-1

Equations (26)-(27) and Equation (33) are related by

their transfer functions, viz.

n . -1
- -1 n
h(ql - @) Yok + I = (qn ) ¢jq3 ) (q +
J=1

where q is a forward shift operator, i.e.

as; | = §i+l . and qz; = z;,.; (35)

Equation (33) is an Autoregressive Moving Average (ARMA)
model of order (n,n) [17]. Let us successively multiply and

take expectations on both sides of Equation (33) by 2i| '
i-1
Z . R where 2. . = E{z, .|z ,...,z._l}
i+l i-1 i+n|; 5 43143 i+3'71 i

is a function of (zl,...,zi_l)

for k < i-1 and for j > O, we get

only. Then since E{vi+jzk} =0
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n
E(Zi+n2i+k'i_l * jZl 95254k i_lzi+j-l) -0 (36)
k =0,1, Aol
This may be written in matrix form as
_2. zZ., , 2. z, ] rqb ]
1\1_1 i lll—l i+n ¢l
A 2
Zi+l’i_lzi""’21+l|i_lzi+n .
E 3 =0 . (37)
%
Z, Z.,e00,2, Z,
1+n' e 1+n‘i_l i+n 1
L - L
w v 4
Ca2

Using the linearity property of Gaussian conditional

expectations, we can write

2 A (38)

i+2|i_l -
For practical purposes, one approximates Equation (38) by

s M - m

Z, = o A ’ (39)
S P -

t,2%t
where m < i is chosen as the least integer value that essen-
From Equation

tially achieves the minimum prediction error.

(39)

i-1
m _ m .
E(zi+j2i+2‘i_l> = . Z at’QC(1+J—t)



Also from equation (39) and the orthogonality property,

a satisfy the equations

t,k

Equation (37) shows that if the order of the system 1is
n, then the matrix of correlations C22 has rank (n-1) and the
eigenvector corresponding to the zero eigenvalue 1is Ebl,...,¢n,£].

An estimate of ng may be obtained by computing sample

~

correlations C(L), & = O,...,m (of Equation (1l1l)) and by

solving Equation (41) using an efficient recursive algorithm
based on the work of Levinson [18], Durbin [19] and Wiggins
and Robinson [2@]. The algorithm can be made recursive both
in the order m of lags and and in the lead variable j > O as shown
in Reference [2q. Notice that only the smallest eigenvalue
of C22 needs to be computed for different values of n to
decide on the model order.

Another procedure proposed by Akaike [22] is to use the
method of canonical correlations between the sets of
variables £ = ;2. . e, 2. and n = {zi_l,...,z. }

if. " i+n |
'1-1 i-1

for m sufficiently large. 1In this method, correlations be-~
tween all normalized linear combinations of £ and n viz Ag
and Bn, with |[|Ag|| = [|Bn|| = 1 are checked, and the combina-
tions with the least correlation are tested for uncorrelated-

ness. In essence, a Singular Value Decomposition [?3] of




the matrix E{gnT} is performed and the lowest characteristic
value is checked for significance. The test has been found
useful in practical problems but seems to involve more

computation than the method proposed above.

Remark: 1. Akaike [22] has shown that the state vector of the

system may be defined as

i
s, = | : i1 :
'1—1
2i+n—l|i_l
Then §i| represents all the information from the past
i-1

needed to predict the future outputs of the system. Thus for

an nth order, 2 will be linearly dependent on Qi ’

i-1 i-1

which also follows from Equation (37).

i+n.

2. In deriving Equation (37) from Equation (33),

<ﬁi+k| , k = O,...,n) were used as instrumental variables.
i-1

If one uses, instead, lagged values of z,viz.(zi_l,zi_z,,,,)
as instruments, Modified Yule-Walker Equations are obtained

[13]. The advantage of using ﬁi+k 's as instruments is

i-1
an improvement in efficiency of estimating (¢l,...,¢n) since
the resulting equations have a structure similar to the
Maximum Likelihood estimator discussed below. It is important
for order determination that the estimates of (¢l,...,¢n) be as

efficient as possible within the constraints of the computa-

tion burden.
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5. Maximum Likelihood Estimation of the Correlated EVM

The EVM described by Equations (1) and (20)-(22) may be

written in state-vector form as

si+l = ®si + Pwi (20)

Y = Bhsl * bt (23)*
z = hs, + v (22)
i i

Equations (22) and (23) may be combined into a vector equation

mi = HSi + ni ' (24)

. . u.
where m, = (yj.)ls 2 X 1 vector of measurements, n, = ( i )
Z v

i
is 2 x 1 vector of noises with covariance matrix

R = ’ (25)

H = [ P ]}1 . (26)
1

Let 6((2n + 3) x 1) be the vector of all unknown parameters

in the above model, i.e.

- ~ T
6 = [B,Ou,uvrd)l,...,¢n,yl,...,yn] . (27)

It is assumed at o = 0 or equivalently the mean value
of Y has been subtracted already.




We have shown in Section 4 that 6 is identifiable as long
as 61,...,6n are not identically zero and the roots of 6 lie
inside the unit circle. Thus the maximum likelihood estimate
of 6 would be expected to be consistent. In fact, stronger
results can be proved, viz. that under the above conditions,
the MLE is asympotically unbiased, efficient, normal and
strongly consistent [24,25). We describe here only the pro-
cedure for obtaining MLE of 6. For further computational details

the reader may refer to [26,27].

The log-likelihood function is

L(6) = 109 p(Yyyre--r¥yr Zyr-e-r2y|0)
= log p(ml,...,mN|6)
N
= ‘il log p(myimy,...,my_q,6) . (28)
J
The conditional density p(mj|ml,...,mj_l,6) is normal with
* ”~N
mean and covariance denoted respectively by mjlj-l and lej—l'

As is well known, these quantities can be computed recursively

using a Kalman Filter [12] of the following form:

~

~
~ ~

= os.. . 29
Si+1] 3 5315 (29)
<. , = . . + K. . — Hs. R 30

ili =T Sjli-1 5 (m3 $313-1) (30)

T T

. = 6P.,. 9T + TIT (31)

Py+1]3 i3

* . o
Double hats are used for estimates conditional on the
joint set of measurements {ml,...,mj_l}. Thus

gjl]"l = E{Sj|ml,...,mj_l,9} = E{Sj-'j_l'yl,-.-,yj_l,e}.



T T -1
K. = P. ._, H (H P.,. + R
K j|3-1 ( j13-1 H ) (32)

P. (I - K. H) P.

il j jli-1 (33)

The initial conditions are specified from a priori know-

ledge as s s, and P = P.. If no a priori information

olo = ®o oo 0

is available, one may use the Information Form of the Kalman
Filter [28] that propagates P;}j—l and PSTj starting from an
initial value of zero. Another method often used in practice
is to set Po to a very large value which essentially eliminates
the dependence of the Kalman filter on initial values.

The log-likelihood function (28) may now be written as

N A T P -1 A
L{g) = - X .= ) HP., . _H  + R m. — mM.,.
+ log!HPj|j_lHT + R|} + constants . (34)

We now maximize L(6) with respect to 6 € 0 subject to the
constraints of Egs.(29)-(33). Since this is a nonlinear pro-
gramming problem, a comnonly used method is modified Gauss-
Newton, the details of which are given in [27]. The basic

iteration is

gd*l - ¢3 4 pM#('ej)(a—L.--) , (35)

where 67 is the value of 0 during the jth iteration, O < p < 1
is a step-size parameter, M(6J) is an estimate of the Fisher

Information Matrix at 93 defined as




. 2 T
%L, oL\ / 9L
90 g3 3
and M#yis a modified inverse of M obtained by setting eigen-

values of M below a certain threshold (such as lO_8 times the
largest eigenvalue) to larger positive values. Most of the
computation in this a}gorithm is involved in calculating the
partial derivatives %§j|j—l and %%j|j—l from a set of linear
recursive equations. As indicated in Ref. [26,27], simplifi-
cations to these computations are possible in practice. Notice
that M_l(a) evaluated at the MLE 6 is the Cramer-Rao lower
bound. For large samples, it gives a good estimate of the
covariance of the ML estimates.

Remarks: 1. Since the log-likelihood function may be multi-
modal, it is important to have a good starting estimate 6069
of the parameters. The Innovation Correlation - Instrumental
Variable technique described in Section 4 is recommended for
this purpose. 1In the small sample case, even the order n may
have to be rechecked using MLE along with an F-test or Infor-
mation criterion [22].

2. It is also possible to develop a maximum like-
lihood estimator using the alternative model (26)-(27). This
formulation leads to some simplifications and is also useful
in the Multiple Regression case to be discussed in the next

section, since in that case, a multivariate version of (26)-(27)

is identified directly. The new set of equations is
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-— 1
Siv1(i = ®[5ipi-1 * K(zg ~ sy )] (20%)
\ — /
v,
~ i
yl = Bh Sl|l_l + Ei ’ (2].')
where €y = B(\)i - Vi) + uy (22")
and o2 =8%% hk + o2 . (23")
€ vV u
Defining
L}
6 = [Byo r0 sdpeeerd s kyseoank I (24')

the log-likelihood function L(6') may be written in terms of

the Kalman Filter,*

A A ~
A

Sivr|s = ®[5)i-1 * (X ~kh) gy ly; = Bh sy ;)
+ k(z; - h si|i_l)] (25")
P = o(I - kh) (I - Bg,h)P (I - kh)T 8T (26")
i+l]|i 9iMTii-1
o T 2 T 22 2. -1
g; = BPi|i—lh (B” h Pi|i—l h™ + 870, hk + o)
(27")
2

L(6') has the same form as Eqg.(34) except that Oy in R

is replaced by (I - hk) 03 and Egs. (25')-(27') are used to

A

j]3-1 and gj]j—l in terms of 6' parameters. Notice

that no matrix inversion is required in Egs. (26')-(27"').

evaluate p

* . . .

The Kalman Filter for Equations (20')-(21') is derived by
regarding Equation (20') as an equation containing no process
noise, viz.

Siy1]. = d(I - kh)si _ + kz. ,
i i-1

where z; is a known sequence.
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6. Extensions

In this section, we consider two extensions:
(i) vector B and vector x case (Multiple Regression EVM), and
(ii) randomly time-varying B.

6.1 Multiple Regression EVM

Let x denote a p x 1 vector of independent variables and

. s *
B be the corresponding vector of regression coefficients.

The EVM is
T
Y; = X5 B + us (36)
z, = X; Y ¥ i=1,...,N . (37)

We now develop a state-vector model for the series {§i},
of the same form as Egs. (20)-(22) except that h is a matrix
(p x n). The identification of this model is more complicated,
but follows the same basic principles as outlined in Sections
4 and 5. The essential differences lie in choosing a canon-

ical form which in the multi-output case depends on p integers

P ~
{nlr...,np} such that izl n; = n. The state vector Si|i—l is
defined as
Zi11-140)
‘
. “i+n |i-11)
L=t = ;i|i-l(2)
(nx1) :
Zi4n,|1-1(2)

-zi+np|i—l(p) .

*

A bar under a scalar variable denotes a vector and a
bar under a vector denotes a matrix. A bar under a matrix
denotes another matrix of different dimensions.
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A
where 2z,

1+j|i—l(k) denotes the (j+l1)-step-ahead predicted

estimate of the kth component of zi+j' The inteagers
nl,nz,...,np are determined by examining corelations between

the above variables in the order zg i_l(l), zili_l(2),...,

Zi)1-0)r Zaaa i1 e Zian )51 (B r e v Bin 4032y ) where 3
refers to the output variable with the highest value nj.

Thus, n, is determined when z,

1+nl|i~l(l) becomes linearly

correlated to its antecedents. The procedure is quite straight-

forward and is well described in Ref.[22]. The procedure

described in Section 4 using Egs. (36)-(41) is also easily exten-
ded to the vector case using recursive algorithms of Wiggins-

Robinson [20,21]. We now summarize the complete procedure

adding a few more practical details.

1. Compute the sample correlation matrices ;(k), of {gl,...,gn}
after subtracting the mean, for k up tom o N/lo.

2. Determine a state-vector model for §i's using either the
Canonical Correlation Procedure of Akaike [22] or the
procedure of Section 4 extended to the vector case [21].
During this step, the order n, output numbers nl,...,n

p
and matrices (&, k, h) in canonical form are determined:

A

Sigrfi = ®ls5)io1 * k vyl (39)

A

\).=Z.—h

vi T %3 T RSy (40)

3. This step should be performed if, due to small sample
size, the procedure of step 2 is expected to yield in-

efficient estimates that may also affect the correct

* . ..
N/lO 1s an empirical number beyond which the accuracy

of correlations is found to degrade seriously.




determination of (nl,...,np) [22]. During this step,
obtain maximum likelihood estimates of parameters in

¢, k, h and Zvv (covariance matrix of v's), denoted

collectively by vector Y, by maximizing the log-likeli-

hood function,

N
T -1 N
L(p) = -% g vy ZH Vi T3 1n|Z\_)\_)| (41)

~ A

Use x. . = hs. . as instrumental variables with
Zifi-1 iji-1

Egs. (36) and (37) to obtain a consistent estimate of B:

g = [izl (%3)5-1 23] (izl Xi|i-1 Yi) - (42)
From the sum-of-squares of the residuals (yi - zz B),

obtain an estimate of 03 using estimated values of B and

) = (I - hk) } ., covariance of measurement noise v..
¥y -0 RV =i

Steps 1-4 give the model structure and a consistent estimate

of all the unknown parameters, 6 e{B8, Ty oo ®, k, hl.

vy

We now perform final maximum likelihood estimation by

maximizing with respect to 6 € 0,
T .

_ _1 T T T -1 i

L(6) = -% Zl{[ci, r;lH Pi|i_l H™ + ZYV) L }

T
+ ln|H Pi|i—l H + Z‘Z\.’_|} ’

subject to the constraints
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Siq1)i = @[5yps-1 v (T - Ehgy oy v kL) (43)
T "~
ty T ¥y - BB osji (44)
Li =23 - B Si)4-1 (45)
(1 - Cain)p (I - kh) ot (46)
Pi+l|i = ®(I - kh) (I B gi-) iii—l £

T T T 2 T -1 4
9; = Piii—lb g(g h Pili—lb g + Ou + g hk ZVV B) (47)

(r - k) [, (48)

T
£

6.2 EVM with Randomly Time-Varying Coefficients

In this section we propose an approximate technique
based on Extended Kalman Filtering [28,29] for estimation of
EVM with time-varying coefficients. For simplicity, consider
the simple EVM (l)-(2) with a = 0, and B8 a function of i,
which now explicitly refers to time. (This connection with
time is not essential, but helps motivation, since such models

generally arise in forecasting applications where i is a time

variable.)

y; = By Xy + uy (50)

z. = x. + V. (2)
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One way of modeling random changes in Bi that has been used
successfully in practice with ordinary regression models [30]
is

Biyy = 8 By + 4y (51)

where O < § < 1 is a constant unknown parameter and Ay is a
Gaussian white noise sequence* with unknown variance Oi.

Let us assume, again for simplicity, that xi's obey a
first order model (cf Eqg. (8)):

Xip1 = ¢ X5 t Wy . (8)

Regarding (xi, Bi) as the state vectecr, the above four equations
constitute a linear state-vector model with nonlinear measure-
ments since the product of states, Bixi, appears in Ed. (50).
Initial estimation of ¢ and 03 can still be carried out in the

same fashion as before, but to estimate Bi's, we use an Extended

Kalman Filter of the following form [28],

~ ~
~ ~

>»

Xi+4l|d ¢ O %11 23 T Xi|i-1
A = a * Ky 2 . (52)
Bitl|d O 9 |Biji-1 Yi T Bi|i-1%i|i-1
B
_ T T -1
K, = Si|i—l Ai(AiSi|i—l A] + R) (53)
s = D(I - K;A,)S pT + E (54)
i+l|i i%i7Pi]i-1 ’

*
As shown in Zellner [8], the assumption of Gaussian
prior distribution of Bi may lead to inadmissible values. 1In

such cases, we assume that Bi is a transformed variable with

Gaussian density.



where
1 0
A, = “
l A A
Bili-1  *i]i-1 (55)
02 0
v
R =
2
_P Ou (56)
¢ 0
D =
0 8 (57)
2
ow 0
E =
) .
0 oy (58)

The Extended Kalman Filter is not an optimal nonlinear
filter for estimation of B's and x's. Other filters such as the
Iterated Sequential - Extended Kalman Filter [29],which involves
a little more computation, may give better results. The choice
of the filter is dependent qualitatively on the amount of noise
and the extent of nonlinearity in the equations.

Approximate Maximum Likelihood estimation of the unknown
parameters 6 = (ou, ov, S, OA' o ow)T may be performed by

maximizing the following approximate log—-likelihood function

subject to Egs. (52)-(58).
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o T -1 T
= =%
L{8) : i£1 ej(Aysj 1By + R) T ey + InfAys; ;9B + R|
(59)
where

21 T %i|i-1

e, = ~ ~

l A A
Yi T Biji-1*i)i-1 (60)

L(6) is approximate log-likelihood since ey is not exactly
Gaussian and white. Further details of this procedure may be
found in Ref. [31].

Remarks: 1. The above method is extended easily to Multiple
Regression EVM with a general correlation model for the indep-
dent variables.

2. In many forecasting applications where regression
is used, the values of the independent variables also have to
be predicted for the future. If the independent variables
are regarded as serially uncorrelated, this cannot be done.
Our procedure directly gives forecasts of both the independent

and dependent variables via the equations

A _ j_l:

Si+d|i T o Si+l]i (61)
Yi+g|i X

A = I_-l Sl+j|l . (62)
xi+j|i




6. Conclusions

The EVM in structural form is completely identifiable
as long as some serial correlation is present in the independent
variables. Both least squares and maximum likelihood techniques
have been given to identify and estimate the serial correlations
and the EVM parameters. Construction of Bayesian techniques is
also straightforward and will be discussed elsewhere. The
following summariz e what are believed to be the original con-
tributions of the paper:
1. The assumption of no serial correlation of independent
variables is a cause of the identifiability problem. The
assumption is generally not justified in practical applications

such as forecasting where regression models are commonly

used.

2. Consistent estimates of the correlation parameters are
obtained by analyzing the series of independent variables alone.
These estimates are then used along with a new instrumental
variable technique to obtain consistent estimates of the EVM
parameters.

3. In Section 4.1, a computationally efficient technique is
given for model order determination.

4, In Sections 5 and 6, a maximum likelihood technique using
the observations one at a time and incorporating new information
into an 'Innovation' model is described (cf. Egs. (20')-(27")
and (42)-(49)).

5. An EVM with randomly time-varying coefficients is estimated
using Extended Kalman Filtering and Approximate Maximum Like-
lihood Estimation. The technique is applicable to nonlinear

systems, as well.
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