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A b s t r a c t  

Given a n  i n t e g e r  programming problem, a  c o n s t r u c t i v e  
p rocedure  i s  p r e s e n t e d  f o r  g e n e r a t i n g  a  f i n i t e  sequence of 
i n c r e a s i n g l y  s t r o n g e r  d u a l  problems t o  t h e  g i v e n  problem. 
The l a s t  d u a l  problem i n  t h e  sequence y i e l d s  a n  o p t i m a l  
s o l u t i o n  t o  t h e  g i v e n  i n t e g e r  programming problem. I t  i s  
shown t h a t  t h i s  d u a l  problem approximates  t h e  convex h u l l  
of  t h e  f e a s i b l e  i n t e g e r  s o l u t i o n s  i n  a  neighborhood of t h e  
o p t i m a l  s o l u t i o n  it f i n d s .  The t h e o r y  i s  a p p l i c a b l e  t o  any 
bounded i n t e g e r  programming problem w i t h  r a t i o n a l  d a t a .  

T h i s  paper  p r e s e n t s  a  complete d u a l i t y  f o r  t h e  zero-one 

i n t e g e r  programming problem 

v  = min c x  

where A i s  an  m x n  m a t r i x ,  and t h e  c o e f f i c i e n t s  of  A and b  

a r e  i n t e g e r s .  W e  l e t  a  d e n o t e  a column A,  c d e n o t e  t h e  
j j 

c o s t  c o e f f i c i e n t  of  t h i s  column, and bi d e n o t e  t h e  i t h  compon- 

e n t  of  b.  

F i s h e r  and S h a p i r o  [51 g i v e  a  ma themat ica l  programming 

problem which i s  a  d u a l  t o  ( I P )  and which may s o l v e  it. I n  

a l l  c a s e s ,  t h e i r  I P  d u a l  problem p r o v i d e s  lower bounds t o  v ,  

t h e  minimal o b j e c t i v e  f u n c t i o n  v a l u e  i n  ( I P ) .  The g r e a t e s t  

lower bound i s  shown t o  be a t  l e a s t  a s  g r e a t  a s  t h e  lower bound 

a t t a i n a b l e  by s o l v i n g  t h e  l i n e a r  programming r e l a x a t i o n  of ( I P )  

(0 < x j  < I ) ,  add ing  a l l  Gomory c u t s ,  and t h e n  s o l v i n g  t h e  rest- 

r i c t e d  l i n e a r  programming r e l a x a t i o n .  

The s t a t e m e n t  of  t h e  i n t e g e r  programming problem i n  [5]  i s  

more g e n e r a l  t h a n  ( I P )  because  t h e  v a r i a b l e s  a r e  a l lowed  t o  t a k e  
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on any non-negative integer values. We have chosen to express 

the constraints here in equality form for expositional conven- 

ience; the theory developed here generalizes without difficulty 

to any bounded integer programming problem with inequality as 

well as equality constraints. Since the essence of integer 

programming is the selection of small integer values for the 

decision variables, the assumption of boundedness of the vari- 

ables is not a serious one. 

Bell [1,2] gives a constructive method for resolving dual- 

ity gaps if they appear in the IP dual problem of Fisher and 

Shapiro. Bell's method involves the construction of a sequence 

of groups of increasing size, called supergroups, and correspond- 

ing IP dual problems. In this paper, we give a different but 

related method for constructing a finite sequence of supergroups 

and IP dual problems terminating with one which yields an optimal 

solution to (IP). The more direct construction is due in part 

to the absence of technical difficulties presented by infinite 

sets and sums, and also due to the fact that we do not rely on 

basic representations of linear programming relations of (IP). 

Although IP dual problems are actually large scale linear prog- 

ramming problems, they can be solved, at least approximately, 

without great reliance on the simplex method. 

For future reference, we define the set 

We allow the possibility that F is empty. It is well known that 

(IP) can be solved in theory by solving the linear programming 

problem 

min cx (2) 

where [ ] denotes convex hull. That is because the simplex 

method applied to (2) will yield an optimal extreme point x* 



of [Fl which implies x* E F, and therefore,  that^ it is an 
optimal solution to (IP) . Tbe difficulty with (2) is that [F] 
is generally difficult if not impossible to characterize. One 

of the interpretations of the duality theory presented here is 

that it approximates [Fl in the neighborhood of an optimal 

solution to (IP). 

The following section contains the iterative supergroup 

and IP dual procedure and the proof of convergence. Section 2 

contains a short discussion about the relation of the IP dual 

problems to the set [Fl. A numerical example is presented in 

Section 3. There are two appendices containing the relevant 

group theoretic constructs. 

1. Supergroup Construction and Convergence Proof 

The overall strategy presented here for solving (IP) is 

to construct a sequence of IP dual problems, each one strictly 

stronger than the previous one, until an optimal solution to 

(IP) is found, or it is proven infeasible. We show how this 

is done by: 1) constructing an IP dual problem from a given 

abelian group; 2) stating the algorithmic principles for solving 

it; 3) discussing the conditions under which it finds an optimal 

solution to (IP) ; and if an optimal solution to (IP) is not 

found, 4) constructing a supergroup and a stronger IP dual 

problem. Our development is self-contained and treats only 

briefly a number of considerations relating the IP dual 

methods to other IP methods anu its practical use in solving 

IP problems. These considerations are discussed in a series 

of remarks. 

Consider the abelian group 

where the qi are positive integers and Z is the cyclic group 
9 : 
I 0  of order qi. Except for an initial group G = Z1 , the qi will 

be greater than one. Clearly, the order of GI denoted by [GI, 



- r 
i s  ii qi. L e t  E ~ , . . . , E ~  be  any e lements  of  G I  and f o r  any 

i= 1 

i n t e g e r  m-vector s ,  l e t  $ ( s )  be t h e  e lement  o f  G g iven  by 

The mapping $ i s  used t o  c o n s t r u c t  t h e  mathemat ica l  programming 

problem 

V '  = min cx  

s.t.  Ax = b 

x E X 

where 

and a = $ ( a . ) ,  8 = $ ( b ) .  We u s e  "5" t o  deno t e  group equa l -  
j I 

i t y  ; f o r  t h e  groups  i n  t h i s  paper ,  t h e  e q u a t i o n s  a r e  sys tems 

of congruences .  

Lemma 1 :  Problem ( 3 )  and ( I P )  a r e  e q u i v a l e n t  i n  t h e  s ense  t h a t  

t h a t  i s ,  t h e y  have t h e  same s o l u t i o n  sets and t h e r e f o r e  t h e  

same minimal o b j e c t i v e  f u n c t i o n  va lue s .  

P roof :  The proof  t h a t  F 2 {xlAx = b )  n X i s  t r i v i a l  g iven  t h e  

zero-one c o n s t r a i n t s  i n  X.  Thus, it s u f f i c e s  t o  show 

F C IxlAx = b )  n X.  To t h i s  end, l e t  x be any s o l u t i o n  i n  F. 

6 . 3 ~  have x = 0 o r  1 f o r  a l l  j and 
j 

Mu l t i p ly ing  each  row i by E i  and summing g i v e s  u s  



But the order of summation can be interchanged yielding 

which implies x E X by the definition of $. I I 
Although (3) and (IP) are equivalent problems, the reform- 

ulation (3) permits greater resolution when the following IP 

dual is constructed. For any u E Rm, define the Lagrangean 

function 

If X is empty, then (IP) is infeasible and we can take 

L(u) = +m. Otherwise, it is well known and easily shown that 

L(u) < v and L is a concave continuous function (Rockafellar 
[22]). The IP dual problem is constructed by finding the best 

lower bound 

w = max L(u) 

Although L(u) may be finite for any u, it may be that the maxi- 

mum in (D) is +a in which case (IP) is once again infeasible. 

The relationship between the IP dual problem (D) and (IP) 

that we seek, but may not find, is summarized by the following. 

Optimality Conditions: The pair (x*, u*) with x* E X is 

said to satisfy the optimality conditions if 

It is easily shown that if x* and u* satisfy the optimality 

conditions, then they are optimal in (IP) and (D), respectively, 



and w = v. Thus, our strategy in trying to solve (IP) is to 

compute an optimal solution u* to the concave unconstrained 

maximization problem (D) in the hope that we will find an 

x* E X satisfying 1) and 2) to complement it. 

To see how (D) can be optimized we rely on the fact 

that it is equivalent to the large scale linear programming 

problem 

w = max v 

t s.t. v - < ub + (c - uA)x , t = 1, ..., T 
V E R  1 

P E R m .  

1 T n where X = (x ,..., x since there can be at most 2 feasible 

solutions to (IP). For any u E Rm, we can see that the object- 

ive function in (5) is 

v(u) = ub + min (c - uA)x t 
t=1,. . . ,T 

which is simply L(u). Thus (Dl and (5) are equivalent problems. 

The linear programming dual of (5) is 

I t w = min 1 (cx )At 
t=l 

I t s.t. 1 (Ax )At = b 
t=l 

The primal dual simplex algorithm can be used to solve the 

pair of linear programming problems (5) and (6) and implicitly 

gives us the necessary and sufficient conditions for optimality 

of (D) which we now state. 



m 
Consider any u E R , and let 

Then the complementary slackness conditions of LP tell us that 

u* is optimal in (D), equivalently (5), if and only if there is 

a solution to the system 

t 
(Ax )At = b 

~ E T  (u*) 

Algorithmically, the primal-dual ascent algorithm given in 

Fisher and Shapiro [5] proceeds by testing a point u E R~ for 

optimality by trying to establish the conditions (8). If these 

conditions fail to hold, then a direction of increase of L is 

found and the algorithm proceeds to a new point u' such that 

L (u' ) > L (u) . The set T (u) may be large, however, and the 

algorithm in i 5 ]  begins with a subset T1(u) consisting of one 

or two elements and builds up T(u) until u is proven optimal in 

(D) or u' is found such that L(ul) > L(u). 

Suppose the point u* is optimal in (D) and thus the foll- 

owing phase one problem has minimal objective function value 

equal to zero 

m 
min (si+ + Si-) 

i= I 

t + s.t. (Ax )At + Is - 1s- = b 
~ E T  (u*) 

C At = 1 
t&T (u*) 



Let A+*, t E T(u*) , denote an optimal solution to (9). The 
L 

solution 2 = 1 ht*xt satisfies conditions 1) and 2) of 
~ E T  (u*) 

the optimality conditions, and it is an optimal solution to 

(IP) if it is integer. Our concern is what to do if 2 is not 
integer because more than one A * in (9) is positive. t 
Remarks: The computational effort required to do the Lagrangean 

minimization (4) is dependent on ( G I .  The time required is no 

more than a few seconds for ( G I  up to 3,000. Computational 

experience with the primal-dual ascent algorithm on a single 

IP dual problem is given in Gorry [13]. This algorithm can 

spend too much time picking a direction of ascent which is an 

interpretation of the function of problem (9). An alternative 

approach which can be integrated with the primal-dual is sub- 

gradient optimization which generates a sequence of dual sol- 
k a3 utions {u lk=l t to ( D )  by using hk = b - Ax as a direction of 

k ascent for some t E T(u ) .  The new dual solution in this dir- 

ection is uk+' = uk + ekhk and if ek -+ 0+ and lok -+ +a, then 

k 
it can be shown that L(u ) -+ w (Poljak [191). Finite conver- 

gence to any value w < w can be achieved if 

k where 1 lh 1  I  denotes the Euclidean norm and E < pk < - 2 for 
E > 0 (Poljak [211). Subgradient optimization has worked 

very well on large scale linear programming problems similar 

to (5) for approximating discrete optimization problems (Held 

and Karp [ I  51 , Held, Wolfe and Crowder [ I  61 , Marsten, Northup 
and Shapiro [171). A hybrid computational approach is indi- 

cated using subgradient optimization as an opening strategy 

followed by the primal-dual or some other exact algorithm. 

The exactness is required for construction of effective super- 

groups. 

The crucial observation for modifying ( D )  when it fails 
I I 

to solve (IP) is that (IP) is equivalent to another integer 



programming problem 

I t min 1 (CX )At 
t=l 

At - > 0 and integer. 

The linear programming problem (6) is the linear programming 

relaxation of (1 0) , 2 is an optimal solution to (6) , and u* 
is optimal in ( 5 ) ,  the linear programming dual of (6). The 

supergroup is constructed from the optimal (m + 1) x (m + 1) 
basis B for (9) which is optimal in (6) (artificials are at 

zero). By rearranging rows and columns of B, we can write it 

in the fora 
t f 

variables s;..............s,-K A1.................... 



Lemma 2: If only one Ak is positive in the optimal basic 

solution corresponding to B defined in (11), then the corres- 

ponding solution xk is optimal in (IP). On the other hand, 

if more than one Ak is positive,. then all the xk defining B 

are infeasible in (IP). 

Proof: If only one Ak is positive, then Ak = 1 and we have 

 AX^ = b. Since B is an optimal basis for the IP dual problem 
k in the form ( 6 ) ,  we have xk E and L(u*) = u*b + (c - u*A)x . 

Thus, (xk,u*) satisfy the optimality conditions and xk is 

optimal in (IP). - 

In the second case, suppose to the contrary that x 1 

1 satisfies Ax = b. This implies 

This in turn implies (since A < 1) 1 

that is (7') can be written as a linear combination of the 

other columns in B which is impossible since B is a basis.1 1 
The basis B induces a group H by application of the Smith 

Reduction procedure as described in Appendix 1, and the super- 

group we seek is G @ H. Indirectly, H can be thought to be 

derived from the lack of integrality in the optimal basic 

solution to the linear programming relaxation to (10). How- 

ever, the construction is direct and its validity does not 

depend on the original motivation. 



Remarks: The new group constraints derived from H may well 

imply many of those originally derived from G I  causing some 

redundancy. In this case only a subgroup G'  of G need be 

combined with H to form the supergroup. By a slight reform- 

ulation of (10) it may be ensured that the new constraints 

always imply the old. The details of this are given in 

Appendix 2. (. I 
The group induced from B is 

the mapping of integer vectors onto H is $, and w ~ - ~ + ~  - - $ (em-K+k) I 

k = 1, ..., K + 1, are images of the unit vectors in H. By our 

discussion in Appendix 1 we know w = 0, i = 1, ..., m - K, 
i 

because the vectors ?eil i = 1, ..., m - Kt are basic. 
The group H is used to define the set 

where a' = $(aj). D '  = $(b). As with XI we have F G X ' .  
j 

The critical property of this construction is given by 

the following lemma. 

Lemma 3: If more than one Xk is positive in the basis solution 
corresponding to B defined in (ll), then the infeasible solutions 

1 x ,...,x K+l E X are not contained in X' 

B, by the construction in the -appendix, we have 



S i n c e  a '  e q u a l s  t h e  t e r m  i n  p a r e n t h e s e s ,  w e  have 
j 

On t h e  o t h e r  hand,  t h e  b a s i c  s o l u t i o n  c o r r e s p o n d i n g  t o  B i s  

n o t  i n t e g e r  (more t h a n  one X k  p o s i t i v e )  implying 

The lemma i s  e s t a b l i s h e d  by comparing (14)  and ( 1 5 ) .  I I 
Remarks: The c o n s t r u c t i o n  of  t h e  supergroup  can  c l e a r l y  be 

done w i t h  r e s p e c t  t o  any b a s i s  o f  t h e  form (11)  w i t h  more t h a n  

one  Xk > 0. T h i s  i s  i m p o r t a n t  s i n c e  convergence  t o  t h e  e x a c t  

o p t i m a l  I P  d u a l  s o l u t i o n  may be  s low (see F i s h e r ,  Northup,  

S h a p i r o  [ 6 ] ) .  Moreover, o n l y  t h e  submat r ix  i n  t h e  lower r i g h t  

c o r n e r  needs  t o  be c o n s i d e r e d  (see Appendix 1 ) .  I I 
The i m p l i c a t i o n  o f  lemma 3 i s  t h a t  w e  want t o  r e d e f i n e  t h e  

I P  d u a l  problem t o  r e q u i r e x  E X n X' which i s  e q u i v a l e n t  t o  

d e r i v i n g  t h e  I P  d u a l  problem from G Q H .  

I t e r a t i v e  Dual Method 
0  S t e p  0  ( I n i t i a l i z a t i o n ) :  S t a r t  w i t h  G = Z, and c o n s t r u c t  t h e  

I P  d u a l  problem t o  ( I P )  

0  w0 = max L ( u )  ( D O  

where 



0  L  ( u )  = ub + min (c - uA)x 

X E X  
0  

and 

Go t o  S t e p  1  w i t h  R = 0. 
R R 

S t e p  1 :  Solve  t h e  I P  d u a l  problem (D ) ;  i f  w = +m, ( I P )  i s  

i n f e a s i b l e  and t h e  method i s  t e r m i n a t e d .  Otherwise ,  l e t  u  R 

R deno te  an  o p t i m a l  s o l u t i o n  t o  (D ) and l e t  xR be  t h e  convex 
- R  combinat ion  of  p o i n t s  i n  X - s a t i s f y i n g  t h e  IP  d u a l  o p t i m a l i t y  

c o n d i t i o n s  ( 8 ) .  I f  xR i s  n o t  i n t e g e r ,  go  t o  S t e p  2. 

S t e p  2: Apply t h e  Smith r e d u c t i o n  p rocedure  t o  c o n s t r u c t  t h e  

supergroup 

where 13 i s  t h e  g roup  induced by t h e  b a s i s  d e f i n e d  i n  (11)  and 
R R ( G  ) '  i s  t h e  subgroup of  G producing non-redundant congruence  

c o n s t r a i n t s .  U s e  G t o  d e f i n e  X '+' g i v e n  i n  ( 3 )  and c o n s t r u c t  

t h e  d u a l  problem 

w = max L'+' ( u )  

s . t .  u  E R"' . 

Return  t o  S t e p  1 .  
0  Remarks: The i n i t i a l  I P  d u a l  problem ( D  ) i s  s imply  t h e  l i n e a r  

programming r e l a x a t i o n  of  ( I P )  when x  = 0  o r  1  i s  r e p l a c e d  hy 
j 

0  < x  < 1  (see Nemhauser and Ullman [ 1 9 ] ) .  - j -  
 heo or en 1 :  The i t e r a t i v e  d u a l  p rocedure  converges  f i n i t e l y  t o  

a n  o p t i m a l  s o l u t i o n  t o  ( I P ) ,  o r  p roves  ( I P )  i s  i n f e a s i b l e .  
R P roof :  The s o l u t i o n  of  each  I P  d u a l  problem (D ) d e f i n e d  over  

R R x C - X O  i s  f i n i t e  because  X' i s  f i n i t e  implying (D ) i s  a  l i n e a r  

programming problem. I f  t h e  s o l u t i o n  x R  = t Atx from ( 9 ) '  
n 



is not integer, then the Smith reduction procedure, which is 

finite, produces a new set XR+l satisfying 1X"l 1 - < 1x1 - 2. 
This is because nonintegrality of xR implies at least two At 

are positive in (11) which in turn implies by lemma 3 that at 

least two solutions from X are eliminated in the construction 

of x"'. Clearly, since X0 is finite, this reduction process 

must terminate finitely with an optimal solution to (IP) in 

the case F # +, or, with wR = +w for some R in the case F = 4. I ( 
Remarks: Total enumeration of the set XO = {xlx = 0 or 1)  

j 
would be another finitely convergent procedure for (IP). The 

strength of the IP dual approach is that the sets XR are consid- 
0 R erably smaller than X , and the computation of L (u) for various 

values of u does not explicitly use more than a small fraction 
R of X . The practical imperfection in the IP dual theory is that 

R I G  I may grow too large. Some measures are possible to effect- 
R ively reduce (G ( ; suggestions are given in [I21 and [1 31 . 

Another approach is to approximate any large group by a group 

of fixed order, say 2000 (Burdet and Johnson [4]). Another 

positive feature of the IP dual approach are the monotonically 
R increasing lower bounds L (u) for use in branch and bound (see 

Fisher and Shapiro [51) . 
Remarks: The IP duality theory can be combined with Benders' 

method to achieve a duality theory for mixed integer programming. 

Details are given in [24] . 
2. Relation to the Convex Hull of Feasible Integer Solutions 

The equivalence between dualization and convexification of 

mathematical programming problems (Magnanti, Shapiro and Wagner 

[171) permits us to give a convex analysis interpretation of 

the results of the previous section. 

Lemma 4: 

t 
{xlx= f x At, At feasible in the IP dual problem) 

t= 1 



Proof: The proof is straightforward and therefore omitted. I I 
Theorem 2: The IP dual problem is equivalent to 

w = min cx 

Proof: The IP dual problem can be written as the linear 

prograzning problem (6) . In view or' lema 4, (1 8) follows 

immediately. 1 I 
Thus, a given IP dual problem approximates (IP) by mini- 

mizing the objective function over the intersection of the 

linear programming feasible region with the convex polyhedron 

[XI. When the IP dual problem solves (IP) in the sense that 

the optimality conditions are found to hold, then [XI has cut 

off enough of the LP feasible region for an optimal solution 

to (IP) to be discovered. Thus, in this case the IP dual 

problem has found a local approximation to [F], the convex 

hull of feasible integer solutions, in the neighborhood of an 

optimal solution. The exact nature of this approximation is 

an area of future research; polyhedra similar to [XI have been 

studied by Gomory [Ill. Bell and Fisher [3] have considered 

the approximation of [F] by intersecting the corner polyhedra 

corresponding to different LP bases. 

3. Numerical Example 

Consider the zero-one IP problem 

For the purpose of the example we will initialize the 



algorithm by solving the linear programming relaxation of 

(19) and use its optimal basis to form the first set of group 
- - - 1 equations. The optimal solution is xl = x2 - x3 - 1, x4 - 

- all other variables being at zero. The optimal basis X5 - 7 

1 which induces the group G = Z5 and the congruence 

4x + hc +ox + ox4 +ox5 + 4x6+ 4x7 + 4x8 + 1% + 2xlO - 3 (mod 5) 1 2 3 
(21 

is added to (19) preparatory to creating the IP dual problem 

(DI 1 

The dual has optimal solution u1 = (b, -1) with dual 

1 objective value w = -- The optimal x solution is 3 

x = 1, X1 = X4 - - - - 
2 which has two representations in - X 9  3 
1 X and for the sake of illustration we will proceed with the 

algorithm in each case. 

One representation is as a linear combination of x - 1 2 - 
and x = x2 = x4 = xg = 1 with optimal basis to (8) of 1 

2 which induces the group G = Z6 and the congruence 



2 
This is added to (21) to form the next dual problem (D ) .  This 

dual has optimal solution u2 = (0,O) yielding x = x3 = x8 = 1, 1 
the optimal solution to (19) by the optimality conditions. 

1 
The other representation of the x solution to (D ) is as a 

linear combination of x2 = 1, x1 = x2 - - xg = 1 and x2 = x 4 = 1  

with optimal basis to (8) of 

2 which induces G = Z15 and the congruence 

Ilx + 2x + lox + Ox4 + lox5 + 11x6 +11x7 + x8 + 4x9 + 3xlO = 7 (mod 15) 1 2 3 
(23) 

Notice that congruence (23) implies that of (21) which is thus 
2 redundant. (D ) may be formed using only (23) as the group 

constraints. It is equivalent to adding the further group 

constraint 

to (Dl). 

Once again the optimal solution is u2 = (0,O) with optimal 
- - x solution of xl = x3 - x8 - 1. 



APPENDIX 1 

Smith Reduction P~rocedure 

Smith's reduction procedure for integer matrices is at the 

heart of the supergroup and iterative IP dual methods. Although 

this procedure has appeared in the literature (e.g. Wolsey [251 

or Garfinkel and Nemhauser [8]), we review it briefly here 

emphasizing a few subtie points. 

Consider the linear system 

where P is an m x n (n 2 m) matrix of rank m and P and p are 
integer. We wish to characterize the integer solutions to this 

linear system. Let B be any basis of P (2 is m x m of rank m) 

and partition P into (B,N) and y into (yB,yN). Solving for the 

dependent variables yB in terms of the independent variables 

y gives us N 

In general, B is not unimodular implying the integer vectors yN 

which make yB integer are a subset of the set of all n - m 
integer vectors. 

The requirement that (yB,yN ) be integer is written as 

yN integer. 

(mod 1) 

The Smith procedure reduces this linear system of m congruences 

by working with a diagonal matrix A = RBC, where R and C are 

m x m unimodular matrices. The exact form of this matrix is 



where qi i s  i n t e g e r ,  qi 2 2,  q i lq i+ l ,  i = 1. ..., r ,  and 

r 
l d e t  B I  = n qi .  For f u t u r e  r e f e r e n c e ,  w e  l e t  Z d e n o t e  t h e  

i= 1  q i  

c y c l i c  group of  o r d e r  qi.  S u b s t i t u t i n g  CA-'R f o r  B-' i n  ( 2 5 ) ,  

w e  o b t a i n  from (25) 

cA-'RNYN E CA-I  Rp (mod 1  ) 

yN i n t e g e r .  

S i n c e  C i s  unimodular ,  t h i s  l a s t  system of congruences  i s  

e q u i v a l e n t  t o  

-1 -1 A RNyN 7 A Rp (mod 1 )  (26)  

yN i n t e g e r  . 
L e t  li be t h e  i n t e g e r  c o e f f i c i e n t s  of  t h e  m x ( n  - m )  

m a t r i x  RN, and l e t  gi be t h e  i n t e g e r  c o e f f i c i e n t s  of  t h e  m x 1  

v e c t o r  Rp. For t h e  f i r s t  m - r congruences  i n  ( 2 6 ) ,  t h e  d i ag -  

o n a l  e lements  of  A-I  a r e  1  and t h e r e f o r e  t h e s e  congruences  a r e  



n  - - - - 1 a i j y j  - p i  (mod 1 )  i = 1 ,  ... , m - r  
j =m+ 1  

which are n o t  r e s t r i c t i v e  b e c a u s e  y  are r e q u i r e d  t o  b e  i n t e g e r .  
j 

On t h e  o t h e r  hand ,  t h e  l as t  r c o n g r u e n c e s  i n  ( 2 6 )  are o f  t h e  

form 

1  
n  - - 1 -  - - - 1 a m - r + i ,  jY j  - qiPm-r+i (mod I ) ,  i = l , . . . , r  

qi j=m+l 

which res t r ic ts  t h e  p e r m i s s a b l e  i n t e g e r  y  v a l u e s  b e c a u s e  
j 

q i  1 2.  F o r  c o n v e n i e n c e ,  and  w i t h o u t  l o s s  o f  g e n e r a l i t y ,  w e  

c a n  r e p l a c e  t h e  6,-r+i by t h e  u n i q u e  a i j  E Z s a t i s f y i n g  
I j q i  

- 
ci - 

i j  - am-r+i,j (mod q i )  and  gm-r+i by Bi E Z qi s a t i s f y i n g  

- - 
Bi = Pm-r+i (nc3 q . ) .  1 I n  c o n c l u s i o n ,  t h e  c o n d i t i o n  w e  s e e k  i s  

i s  i n t e g e r  

y j  i n t e g e r ,  

F o r  o u r  c o n s t r u c t i o n  i n  S e c t i o n  2 ,  w e  d i s p e n s e  w i t h  t h e  
-1 -1 b a s i s  r e p r e s e n t a t i o n  y  = B p  - B NyN and  work w i t h  t h e  B 

a b e l i a n  g r o u p  G = Z @ * *  @ Z i nduced  by B.  L e t  @ b e  t h e  
91 9 r 



mapping t a k i n g  a r b i t r a r y  m-vectors s i n t o  e lements  $ ( s )  E G . 
T h i s  mapping i s  g iven  by t h e  l a s t  r rows of  R = ( p i j )  TO s e e  

t h i s ,  n o t e  t h a t  i n  t h e  c o n s t r u c t i o n  above, t h e  i n t e g e r  v e c t o r  

s = ( s , , . .  . ,sm) i s  mapped i n t o  a  = ( a l  ,.. . , a r )  = $ ( s )  E G where 

a  = s .  (mod q k ) ,  k  - ',-,+kt i 1 k = l , . . . , r  . 
i= 1 

m 
The v e c t o r  s can  a l s o  be r e p r e s e n t e d  a s  s = siei, where ei 

i = l  
i s  t h e  i t h  u n i t  v e c t o r  i n  Rm. T h i s  i m p l i e s  

where 

$ (ei) = E = . , c r i )  and i 

There  a r e  t h r e e  i m p o r t a n t  o b s e r v a t i o n s  abou t  t h i s  c o n s t r u c t i o n  

used i n  S e c t i o n  2. F i r s t ,  t h e  e lement  6 E G i s  n o t  z e r o ,  t h e  

t h e  i d e n t i t y  e l ement ,  i f  B - ' ~  i s  n o t  i n t e g e r .  I f  it w e r e ,  t h e n  

Y j  
= 0 f o r  j = m + 1 ,  ..., n ,  would be a  s o l u t i o n  i n  (27)  which 

i s  n o t  p o s s i b l e .  

Second, t h e  v e c t o r s  a k  of  t h e  b a s i s  B a r e  mapped i n t o  

$ ( a k )  = 0. To see t h i s ,  s i n c e  C B ' R  = B - I ,  w e  have 

Thus, s i n c e  C i s  unimodular  t h e  l a s t  r components of  A - ~ R ~ ~  a r e  

i n t e g e r ,  o r  t h e  l a s t  r components of Rak a r e  i n t e g e r  m u l t i p l e s  

of q l t - - . t q r  implying a k = $ ( a k )  E 0 .  

F i n a l l y ,  suppose  t h e r e  a r e  columns of B c o r r e s p o n d i n g  t o  



unit vectors ei or -ei, 

where the unit vectors are on rows 1 ,  ..., t. Then, by elementary 

column operations 

A 

implying the reduction can be performed on B. Moreover, 

E~ = $(ei) = 0, i = 1, ..., t, since +e is in the basis B. i 



APPENDIX 2 

A Modification of the Procedure 

The modification that follows has the advantage that at 

each iteration all the non-redundant group constraints are, 

generated directly from the current optimal basis, but has the 

disadvantages that work may be repeated and the number of 

constraints increases by one at each iteration. 

Step 0 (Initialization). Start with GO = Z1 and construct the 

IP dual problem to (IP) 

0 wO = max L (u) 

u E R~ 

where 

0 L (u) = ub + nin (c-uA)x 

XEX 0 

and 

Go to Step 1 with R = 0, Bo as the identity matrix. 

R R Step 1: Solve the IP dual problem (D ) ;  if w = + (IP) is 

infeasible and the method is terminated. Otherwise let u 
R 

R 
denote an optimal solution to (D ) and let xR be the convex 

combination of points in X' satisfying the IP dual optimality 

conditions and let be the optimal LP basis to 

n+R + 

min 1 (si + s;) 
i=l 



R A t , O  f o r  t ~ T ( u )  

+ - 
s 2 0  , s 2 0  . 

where B R  i s  a column of R z e ro s .  

R * t * 
W e  may t a k e  x = 1 X x where X i s  op t ima l  i n  ( 9 ' ) .  I f  

t & T ( u  ) 

x R  i s  i n t e g r a l ,  t h e n  it i s  op t ima l  and t h e  method t e r m i n a t e s .  

I f  xR i s  n o t  i n t e g r a l ,  go t o  S t e p  2. 

S t e p  2: Apply t h e  Smith r e d u c t i o n  p rocedure  t o  c o n s t r u c t  t h e  

supergroup G induced by t h e  b a s i s  

U s e  G R+1 t o  d e f i n e  x g iven  i n  (13) and c o n s t r u c t  t h e  d u a l  

problem 

w = max L'+' ( u )  

s . t .  u E R~ 

Return  t o  S t e p  1 .  
R Theorem 3: A t  each  s t e p  o f  t h e  p rocedure  x'+' X . 

Proof :  Note t h a t  M R + l  i s  i n t e g r a l  s i n c e  

R 
i s  i n t e g r a l  f o r  a l l  xt  E X' by d e f i n i t i o n  of  X . 



xecl is defined by the equations 

(mod 1 ) 

and since M R+ 1 
is integral, this implies that 

(mod 1) 

R 
and hence xRC1 G X . I I 
Note thus that a honomorphism from G to G' induced by 

"R+1 exists. 
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