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R. Avenhaus and W.S. Jewell

Abstract

1.

Many measurement problems can be formulated as follows:
a certain linear relationship between two variables is to be
estimated by using pairs of input and output data; the value
of an unknown input variable is then estimated, given an
observation of the corresponding output variable. This
problem is often referred to as inverse regression or dis-
crimination.

In this paper, we formulate a general Bayesian calibra-
tion and measurement model for this problem, in which prior
information is assumed to be available on the relationship
parameters, the possible values of the unknown input, and
the output observation error. Simplified and easily inter-
preted formulae for estimating the posterior mean and
variance of the input are then developed using the methods
of credibility theory, a linearized Bayesian analysis
developed originally for insurance estimation problems. A
numerical example of the calibration of a calorimeter to
measure nuclear material is given.

Problem Formulation

In this paper, we consider problems of the following kind:

we wish to estimate the value of a certain state variable x

which cannot be measured directly, or only with very large error

or effort. We know, however, of another state variable y, which

is statistically dependent on x, and which can be measured more

easily or accurately. Thus, in principle, we can estimate the

relationship between x and y, and then, with small effort, ob-

tain x by measuring y and using the inverse relationship.

However, difficulty arises because we must use other pairs,




(xi,yi) (1 =1,2,...,n), to estimate the relationship. Often
these will have been determined for other objectives and under
different experimental conditions. Thus, the true values of
independent and dependent variables may not be precisely known,
or the relationship itself may be slightly different than it
appears from the data.

Finally, as in most physical problems, we assume that a
great deal of collateral information is available which gives
us some prior idea of relationship between x and y, and even
of the unknown value x we are trying to estimate. In other
words, we wish to make a Bayesian formulation of the problem.

Three examples of this class of problem are given below.

A. Calibration and Indirect Measurement of Nuclear

Materials

Nuclear materials, e.g. plutonium, are extremely
difficult to measure directly by chemical means.
Therefore, one uses indirect methods, based upon the
heat production or the number of neutrons emitted, in
order to estimate the amount of material present. From
well-known physical laws, we have a general relationship
between these variables, but any measurement instrument
based on these principles needs first to be calibrated.
Usually, this calibration can be done with the aid of
standard inputs, containing known amounts of nuclear
materials. However, these inputs (xi) are not generally

under our control, and in some cases, may have residual
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imprecisions in their values.

Measurement instruments often have longer-term
drifts, during which they tend to loose their original
calibration. For this reason, measurement of a given
production run often consists of two distinct phases:
(re)calibration of the instrument, and actual indirect
measurement. With a fixed amount of time available, it
is of interest to determine how much time should be
spent on the two phases, assuming that additional time

spent on each observation reduces observational error.

Estimation of Family Incomes by Polling

We wish to estimate, through a public opinion poll,
the distribution of family incomes in a certain city
district. As the major part of the population will not
be willing to divulge their incomes, or will give only
a very imprecise figure, we look for a dependent vari-
able which can be more easily determined. According to
the literature (see, e.q. [10]), housing expenses are
strongly related to family income, and, furthermore,
it may be assumed that the population is less reluctant
to divulge this figure, even though they may not be
able to do so precisely. Clearly, to determine this
relationship exactly, we must have some families in
this district who are willing to give both their total
income and their household expenses. On the other hand,
we have strong prior information on this relationship

from similar surveys, and may have general information




on income distribution from census and other sources.

C. Missing Variables in Bayesian Regression

In a paper with this title [11], Press and Scott
consider a simple linear regression problem in which
certain of the independent variables, X, are assumed
to be missing in a nonsystematic way from the data pairs
(xi,yi). Then, under special assumptions about the
error and prior distributions, they show that an optimal
procedure for estimating the linear parameters is to
first estimate the missing X from an inverse regression

based only on the complete data pairs.

Problems of this kind are described in textbooks on the
theory of measurements, and are sometimes called discrimination
problems (Brownlee [1], Miller [9]).

In the following, we shall formulate these problems as
Bayesian calibration and measurement problems, in the sense of
Dunsmore [3] [4], Hoadley [5], and Lindley [8]. This formulation
is quite general, and although the language corresponds to that
of example A, the translation to other examples is easily made.

Because of the strong distributional specification require-
ments of the full Bayesian analysis, we shall then use the
approach of credibility theory to find best linear approxima-
tions to moments of interest. The resulting formulae enable
us to easily display the relative value of prior information,
on the one hand, and information obtained in the calibration,

on the other. We will develop further the optimization problem



described in Example A above, and will consider a numerical
example of calibration and indirect measurement of nuclear

material.

2. Bayesian Calibration and Measurement Model

To develop the Bayesian model, we suppose that:

(1) Calibration consists of n independent pairs of input
and output observations (x,y) = (x;.,¥;), 1 =1,2,...,n). (x4
is a relatively precise or standard input, and Yy is the
observed output on a measurement instrument, wWhich specifies
a statistical relationship between these pairs through a con-
ditional measurement density, p(yi|xi,6); the measurement
density depends upon a fixed but unknown measurement parameter
8, for which we have a prior density, p(e));*

(2) Measurement consists of using the same instrument on
a sample of unknown <input, X = X, to obtain an output y = vy,
say; the problem is then to <Znfer the value of x. Since this
cannot be accomplished, we must, in general, settle for an
estimate, &, which, in the remainder of the paper, we will
assume to be &{X|y;x,y}. Other Bayes estimators may be important
in other physical situations.

Following.[8], we see that we must compute the posterior

conditional density,

We use the convention that the arguments of any p(+) indicate
the particular density in question, which may be with respect
to Lebesque or discrete measure. Where necessary, we indicate
a random variable with a tilde; i.e., X is the random variable
corresponding to x, etc..




p(x,y;¥[X)
p(y;y[x)

p(x|yix,y)

_/pyy|x,x,8) p(8]x,x) p(x[x,8)d8

/p(x',y,y|x) dx'

from which the mean, &{X|y;x,y}, will be our estimate of the
unknown input, and the variance, ¥{X|y;x,y}, will be the norm
for our optimization problem, since we wish to make the estimate
as precise as possible in the least-squares sense.

To proceed further, we must make additional statistical
assumptions appropriate to our problem:

(1) Given 8, we assume that the measurements are indepen-

dent:

p(YIX|XI§Ie) = p(Yixre) p(yilxire) 7

n=s
'_l

i
(2) We assume that the prior on the measurement parameter

is unrelated to any of the inputs:

p(8|x,x) = p(8)

~e

(3) Any unknown input in the measurement process, x, is
selected independently from the standard inputs, x = [xl,xz,...,xn]',

and the parameter 0:

The third assumption is the strongest, and may not hold, for
example, when the calibration inputs and the test input come
from the same production process. However, in our case, we

assume that the calibration inputs are independent standards.

| S



By elementary manipulations, we obtain:

Px) fply|x,8)p (p|x,y) db
p(x|y;ix.y) = | E134 ' (2.2)

Jp(yl6")p (8'|x,y) A6’

where

P |x;,8) p (8)
p(6|x,y) = - . (2.3)

I p(y;|x;,8")p (6") as'
Jj:l 3]

Notice that the denominators of (2.2) and (2.3) are just
normalizations, which may be computed directly at any time.
In the above form, it is clear that the problem breaks

apart mathematically into two problems:

(1) The updating of p(6) to p(8|x,y) (calibration);

(2) The calculation of moments of interest for p(x|y,0),
averaged over the appropriate density of 6 measure-
ment.

We tackle these problems in reverse order, since the only effect
of calibration is to modify the prior information about the
regression parameters and to improve the precision of this

estimate.

3. Estimation of Input Using Credibility Theory

To find the moments of p(x|y,6) = p(y|x,0)p (x)//p(y|x',0)
p(x') dx' , we must in the general case make distributional as-
sumptions about p(x) and p(y|x,6). However, since only the

moments of this density are of interest, it is desirable to



have a simpler, distribution-free approach, such as that pro-
vided by credibility theory [6][7]. 1In this approach, Bayesian
means conditional on given data w, say, are approximated by
linear combinations of certain functions of w, chosen from
physical considerations; the coefficients are then chosen to
minimize the mean-square approximation error prior to w. 1In
certain cases, these approximation formulae are also the exact
Bayesian conditional means [6].

The usual assumption about a measurement process is that,
given the measurement parameter 6, there is a linear relation
between the true input and the true output, but that the ob-
served process may contain an additional uncorrelated measure-
ment observation error, with zero mean and known variance.

This may be conveniently expressed as:

&1¥|x,0} By (8) + B,(0) x (3.1)

¥{§|x,0} = o (3.2)

2
M
(In other applications, the observation error may also depend
upon 6 or the level of x.) We call 61(6), 82(6) the instrument
parameters.

We know that, for general p(x,y|6), the fact that the
regression of y upon x (3.1) is linear does not necessarily
mean that the regression of x upon y is linear in y. However,
it is true in the case of the normal and some other bivariate
distributions, and seems a desirable characteristic of any
measurement process. Therefore, we shall assume that our prior

estimate of the true input x, given an observed output y, may



be approximated by the linear function:
x|y} = 8%y, 0} * £(y) =z + z;7 (3.3)

Z

where the "credibility coefficients" , are chosen so as

ZO,

to minimize the approximation error variance:

H, = S[F1%|¥) - £$7° . (3.4)

For the remainder of this section, we shall treat the averaging
over 6§ as if it were with respect to the prior p(6), realizing
that in the next section we shall change to p(6|x,y), to add the
information provided by the calibration.

One can easily show [6,7][2, Appendix 3] that the optimal

credibility coefficients are given by:

Zy = F{x} - zZy HyY (3.5)
Lo
Y

so that the optimal estimator is unbiased.
&{X} represents our prior estimate of the value of the

input to be measured; the remaining moments must be calculated

from our measurement assumptions (3.1) (3.2). From (3.1):
E{y} = bl + bzé{i} ’ (3.7)
where
b, = &{8;(8)} (1 =1,2) (3.8)

are the mean prior estimates of the instrument parameters.

By unconditioning (3.2) on x and 6, we find:
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#{§} = o2 +w{x} (b2 + A + A
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2 22) + 20 ,8(%) + 8y, [F1R)]7
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=N

where

Aij =%{B;(0) ; Bj(e)} (i,3 = 1,2) (3.10)

are the prior estimates of the (co)variances in the instrument

parameters. We see that the total prior-to-measurement var-

iance in the observation is composed of three groups of terms:

(1) The observ~tion error variance;
(2) The prior variation in input;

(3) (Co)variances in instrument parameters.

An increase in any one of these will reduce the weight, Zqys
attached to the observed output, y, in (3.3).
There is only one prior source of covariance between input

and output:
#{9:%} = by{x} , (3.11)

which means that, as the uncertainty in the input increases,
one must attach more importance to the observed output in (3.3).
For convenience, we reproduce the final formula for the

estimate of the true input:
f(y) = &{x} + zl(y-éﬁ§}) = (1-b, zl)éTi} +zy(y-by)

b 1%}
z, = . (3.13)

2 o (12 - 1172
oy * PARY (D5 + 8,5) + Ay + 28, ,8(%} + A, [F(X}]

Thus, in the credibility approach, only seven prior moments must
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be specified: the mean and variance of the potential input,
and the two means and three (co)variances of the instrument
coefficients.

It is of interest to examine several limiting cases of
the estimator (3.12) (3.13) in more detail. First, as already

, , , . , 2
mentioned, if either the observation error variance o

M Or any

of the instrument variances is very large (sometimes called a
"diffuse" calibration prior), then, since zy vanishes, the best
estimate of X is its prior mean, #£{x%}; the measurement process
gives little additional information. Similarly, the vanishing
of ¥{X%X} makes &{x} very reliable.

On the other hand, suppose that we have a "diffuse" prior
on the level of input, that is, although &{X} is given, ¥{xX}->w.

In this case the forecast can be rewritten:
2171 2. ..
£(y) = [1+ (Azz/bz)] [(Azz/bz)f?{x} - (by/by) - <y/b2)} . (3.14)

If A22/b§ is small compared with unity, we obtain exactly the
deterministic result corresponding to (3.1l1l), y = bli-bzx .

In the optimization model of Section 6, we shall need the
mean-square value of the error between the true value x and the

predictor f(y), that is, the varZance of forecast error:
o s 2
H=4&{(x - £(¥)7} . (3.15)
But, by elementary manipulations,

H=H.+ H ’ (3.16)
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where HO is the <rreducible forecast variance using the Bayesian

conditional mean:

Hy = 660 (% - S%|TH7|9) =0x|7} (3.17)

and HA is given by (3.4).

With the optimal choice of credibility coefficients, we obtain:

H = 7{x} - :f@{?;i} =y{x} (1 - Zlbz) . {3.18)
H in (3.15) and (3.18) is the variance of forecast error for
one inverse measurement. If r such measurements are performed,
with independent, identically distributed inputs, then one can

easily show that the variance of the total error will be:

1) - o1z - z) b, )

s (? 1) 22 (o) 20,857 + b, [6121]F)

(3.19)
We see that, in addition to the expected first term which is
r times (3.18), there is a component which is proportional
to r2. This represents a possible persistence of error due

to instrument parameter covariances, which may cause the in-

dividual forecast errors to be positively correlated.
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4. Updating of Instrument Parameters Using Credibility Theory

We turn now to the problem of incorporating the results

of the calibration experiments into our prior-to-measurement

density on 6. Remember that the number, n,

and the previously calibrated levels of the inputs,

of such experiments,

xi(i=l,2,...,n), are assumed to be fixed by external considerat-

ions. See also Section 6 below.

Assuming that (3.1) and (3.2) apply also to calibration

(i.e. the same instrument is used), we may write:

- lylx,8) = X BO)

@{7:7|x,8) = 021 *)

where

i = [yl’§2'oo.,§n]' ’ 2_{ = [xl’le"'

(o) = [8y(0),8,0)]" , X = [1,x]

n

1l is a vector of n ones, In is the unit matrix of order n,

(4.1)

(4.2)

and 02 is the observation variance for each output yi(i=l,2,...

C

We thus have a formulation as a Bayesian regressicn problem,

which we want to estimate various moments of p(g(9)|x,y).

In

in

particular, from (3.8) (3.10) (3.13) (3.18), we see that the first

and second moments:
E18(6) |x,y} : €IB®):iB®O)|x,y}

will be needed.

(*) Vector covariance is defined as

'} - Slw) [#LE1]"

INg

Fl@; 2} = i

for any two random vectors w and z.

,n) .
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Rather than make distributional assumptions, such as those
followed in [li], we shall again make a credibility approximation,
this time to J{@(é) | x,y}. The appropriate theory has been
developed in [7], and we shall give only the necessary results
here.

First, we approximate the desired mean instrument parameter

vector by a linear function of the data vector y:

£L8®) | x,vy} * gqly) =z, + 2y , (4.3)

0

where q, zy are two-vectors, Z is a 2 * n matrix, and the cred-
ibility coefficients are chosen so as to minimize the mean-square
approximation of both components to those of the Bayesian condit-
ional mean vector. After some algebra it is shown in [7] that

the optimal credibility forecast can be written as:
gly) = (I, = 2)b + z B(y) , (4.4)

where b = [bl,bél' is the vector of prior-to-calibration means,

2 is a new 2 * 2 credibility matrix:
z = [A(x'E'lx)] [1, + A(x'E’lx)j'l (4.5)

(the terms in square brackets commute), and B(y) is the class-

ical regression estimator of B :

1 ~1

8(y) = (x'e"tx)7t x'g7ly . (4.6)

A is the 2 ¢« 2 matrix of prior-to calibration covariances

defined in (3.10), and
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- ) _ 2
E =&¢ly:ylx, 6} = og I . (4.7)

Thus, in our model, the "regression errors" are "homoscedastic",

and we get the further simplifications:

2 -1
z = [Ax'X][og I, + AX'X] ' (4.8)
and
o _ ' -1 1
B(y) = (X'X) X'y , (4.9)
where
_ N — _ -
1 i£1 xi/n 1 my
XX' = nM = n = n , (4.10)
n n 2
L%/ 1. xj/n mg m,
[i=1 i=1 _ L N

i.e. n times a matrix of deterministic moments m,, m describing

2
the predetermined calibration inputs. One may easily verify that:

The results (4.4) (4.8) (4.9) are intuitively very satis-
fying, for they show that our estimate of the instrument co-
efficients prior to calibration should be taken as a linear mixture
of our prior hypothesis, b, and of the well-known classical esti-
mator, é(y). The credibility attached to the latter depends upon
the so-called design matrix, X, the observation error variance,

oé, and the instrument covariances, A. (See Jewell [7]).




Several limiting cases are of interest. First, as our
observation error variance gets very large, z vanishes, and
no credibility is attached to the calibration experiment --
it is better to stick with the prior estimates.

Conversely, if all the prior instrument covariances, Aij’
get very large, then z -~ I2’ and "full credibility" is attached
to the calibration data; the same result occurs as oé + 0.

Note also that full credibility occurs as the length of the
calibration run, n, increases, as long as the successive inputs

are chosen in such a way as to keep my and m., about the same;

2
in other words, the more calibration, the more weight is attached
to the results.

The above model may be easily generalized to the case where
the standard inputs themselves are subject to errors. 1In this
case, we suppose that the selection of a "target input" i specif-
ies g{ii}, rather than Xii the actual input differs from the
mean by a known variance, VT%i}. The reader may easily verify

that the above formulae again apply, with X = [1 , &{x}] and with
PP n X

(4.7) replaced by a new diagonal matrix, with terms:

E.. = g2 + (bg ¥ byo) ¥R D (i=1,2,...,n) , (4.11)

In the general case, the formulae (4.5) (4.6) must now be used;
however, if the precision of the standards is the same, the
regression is again homeoscedastic, and (4.8) (4.9) may be used,
but with ol replaced by (4.11).

As far as the mean-square error in fitting B(6) by (4.4)

is concerned, we can also show that the prior covariance matrix,
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with optimal choice of credibility coefficients, is:

b (X) T (B(8) - gly))(B(8) - g(y))']|x}

1 -1 (4.12)

(1 )

, = 2)0 = z(X'ET

If this fit is good, then ¢ij will be a good approximation to
%ﬂsi(é) ; Bj(é)} after the calibration, at least as we perceive
it to be before we actually obtain the outputs y. In other
words, ¢(X) is our preposterior estimate of the covariance
between instrument parameters.

It should be remembered that only the diagonal terms of
(4.12) were individually optimized in the choice of credibility
coefficients; one can easily show that the diagonal elements

of ¢(X) are less than those of A.

5. Integration of the Calibration and Measurement Stages

We may now complete our arguments about the relationship
between Sections 3 and 4, in light of the knowledge available
at each stage of the physical problem.

First, with only a prior hypothesis about our instrument
available, and no calibration contemplated, our best estimate
of ﬁ(é) is b, with covariance A. If an inverse measurement
were to be performed at this point, (3.12) (3.13) is the formula
we would use to estimate the true input, and H in (3.18) is the
estimate now of the variance in this estimate.

Now, suppose we contemplate performing a calibration exper-
iment (X,n), with a fixed number of standards and fixed input

design, but the results of the calibration are not yet available.
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We still have no basis for revising £{g(6)}, since the formula
(4.4) is, prior-to-calibration, unbiased. However, the know-
ledge that there will be a calibration will reduce our instrument
covariance terms from A to ¢ (X). Therefore, prior to calibration,
our estimate of the forecast error variance after measurement
changes from (3.18) to:

]

2 P 2 ~ o 1 2
o +f7{x}(b2+¢22) oot 2¢12£{x} + ¢22[5{x1]

H(X) =¥ {x} -
M
(5.1)

(This is the point at which optimization of the next section will
be carried out). Similar modification applies to (3.19).

We now perform the calibration experiment, obtaining y and
the revised estimates, g(y), of 6{@(5)|y,x} from (4.4). These
revised estimates of the instrument coefficients are then used

in (3.12) and (3.13), which become:

£yly,®) = [1 = g,(p)zy (1, 0] #ix} + 2z, (v, 0y - 9, ()] 5
(5.2)

g, () ¥ {x)

2 (¥, X) = = 2 N 12
OM +(y{x}{IgZ(Y)] + ¢22} + ¢ll + 2¢12§{x} + ¢225f{x}]

(5.3)
This is the final estimator for any unknown input, after the
calibration has been performed.
We admit that it should, in principle, be possible to
revise our estimate of the covariance of the instrument co-

efficients, ¢, after the actual calibration outputs, y, are
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obtained; however, these terms are probably already small for
any reasonable calibration run, and to construct an additional
credibility approximation for the posterior-to-calibration
variance would require additional moments and complex formulae.
Similarly, it should be possible in principle to revise
our estimate of H(X) after the measurement y is made, but this
leads to the same additional complexity. If one wishes, post-
erior to the calibration,one can replace b2 in (5.1) by gz(z).
We mention again some of the limiting cases of (5.2) (5.3),
assuming that the revised instrument covariances are small.

. , . . 2
First, if the observation error variance o

M is very large, or

the variance in input is small, then the credibility in (5.3)
will be very small, and the best estimate of the input is the
prior mean. Conversely, a diffuse input,¥ {&} - =, will lead to

Zl(y,x) = (gz(y)) l, and a forecast:
flyly,.X) = [y - 9, (@ ]/9,(¥) . (5.4)

6. Optimization

For the optimization, we assume that there is a total of
T hours to be split among n calibration measurements, say a
total of TC hours, and the remainder, TM =T - TC hours, to be
spent upon r inverse inference measurements. We assume that
one hour spent on a single measurement or calibration gives an

\ . 2 . .
observation error variance of ¢~ ; therefore the individual

observation variances used previously are then:

2 2
2 _ no . 2 _ro
Oc = —75- i oM = 7% . . (6.1)

C M
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To minimize the prior-to-calibration estimation of the
forecast variance of a typical measurement, we must minimize

the denominator of the second term of H(X) in (5.1):

2 ~ ~
_ xo v 2 i - 2
D(To,Ty) = T7— + PIxI(DS + 6,5) + by + 20,,8x} + ¢, [#{X}]° .
M (6.2)
where ¢ is given by (4.12), with oé replaced by n02/TC in (4.8),
subject to TC + TM = T. 1In general, this optimization must be

carried out numerically. However, if n02/TC is much smaller
than the diagonal terms of AM, then the calibration will have
practically full credibility, and

2 2
o= (1 - pb = [, - @ - Bran™] =& vt L (6

Q

This shows the expected result, namely, that a good calibration
run gives vanishing ¢ as TC increases. The effect of the number
of runs, n, is essentially cancelled out, as long as M is stable

over different designs.

With this approximation, (6.2) can be written:

2 2 ~
_ ro uo 2
D(TC'TM) = 75t T + ¥ {x} b2 ' (6.4)
M C
where
m, - 2mlé’{x} +é’{x2}
b= 3 . (6.5)
m, - mj

In this form, the optimization is obvious--the total time T

should be split:

* *
T, / Ty = Ju/r , (6.6)



_21_

giving a minimal value for D of:
* g2 2 )

D =& (1 + Yu/r) + ¥ Ix} by - (6.7)
An increase in the number of production runs, r, dec eases the
time used for calibration in an interesting way (6.6).

It is also interesting to note, in this approximation,
that the ratio of effort depends, in addition to r, only on the
first and second moments of the calibration design inputs, and
on the measurement input. If the design X is considered to.be
variable, we see that we can further minimize (6.4) by decreas-

ing 4, i.e. we choose inputs X so that:
my = & x} (m2 - mi) is as large as possible; (6.8)

wnich is very intuitive from a physical point of view.
This design choice would make i close to unity, and then
T;/T; = r_%. Of course, there may be many other physical
reasons why the calibration input must be chosen in a dif-
ferent manner.

Even if the approximation (6.3) does not hold, (6.6) is suggested

as an initial trial solution.




7. Numerical Example: Calorimetric Measurement of Nuclear

Material

In order to illustrate the models developed in previous
sections we use three kinds of information:
(1) a-priori information on the relationship between
dependent and independent variable;
(2) results of calibration;

(3) results of measurement of the dependent variable.

The following realistic example will illustrate circum-
stances under which certain information is more important, and
the improvement is achieved by using credibility procedures.

Let us consider the quantitative measurement of plutonium
with the help of a calorimeter. The problem is to measure
a voltage induced by the heat produced by the plutonium. For
this purpose, one has to know the isotopic composition of the
plutonium to be measured as well as the specific heat production
of the different isotopes. Typical data are given in Table 1.

Let the amount of plutonium of one batch to be measured,
and let w be the specific heat production of the plutonium
under consideration. Then the heat x produced by the amount

P of plutdnium is given by
X =we+P . (7.1)

The voltage Ey induced in the measurement chamber of the

calorimeter is proportional to this heat:

E, = a-+x = a-+ (wP) . (7.2)
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In a second, identical chamber, a reference heat X5 is gener-
ated which induces a voltage EO. Because of the assumed sym-

metry of the chambers, we have
E. =a-+*Xx . (7.3)

The value of Xq is kept constant throughout the operation of
the instrument. The quantity actually measured is the differ-

ential voltage vy,

y=E, -E, =a*x. - a-+ (wP) ; (7.4)
or, in other words,

y = By + B, - (WP) (7.5a)
where

By = a* x5 B, = —a , a>o . (7.5b)

The value of X, may be assumed to be known precisely. 1In

o

addition, we assume there exists experience from past measure-

ments, expressed as expectation and variance of 3, now considered

as a random variable. This means we know
bl = @”{a}xO : b2 = -&a} ; (7.6a)
¥{B,} @B, :8,) x?  -x
1 1°F2 0 0
A = = ¥{3} . (7.6b)
B8,:8,}  ¥{8,) %y 1

The calibration is performed by putting an electric heater into
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the measurement chamber and generating different values X5

of heat which generates corresponding differential voltages Y

AEi = Bl + 82- Xin i=1,...,n . (7.7)

Typical data for such a measurement problem are given in

Table 2. According to this table, we have

b

, = 600 [mv] (7.8a)

b, = -240 [mV/Watt] ; (7.8b)
and furthermore,
X1 = 2 12 _ 2 2
¥{&} = (.02)" « [£(a)]° = 23.04 * [mV"/Watt®].(7.8c)

In addition, we have

2

f{x} = 2.668, ¥ {x} = .07118, F{x"} = 7.189 . (7.9)

Therefore, we get for Aij' as defined by (3.10) and given by

(7.6),

6.25 =2.5 144 -57.6
A = 23.04 = . (7.10)

-2.5 1 ~57.6 23.04

Let us consider first the case that we do not perform any
calibration, but use only the prior information given by
equations (7.8) and (7.9). According to (3.12) the estimate

of the heat production is given by

| S,
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f(y) S{%} + z (y - &{¥})

103 y = 600
2.48-10 © + b, + 0.2234 '

(7.11)

which is to a good approximation
1
£(y) ~ g~ (y - 600)
2

We can easily determine the preposterior improvement in pre-
cision if we use (7.11) instead of simply using &{x}; if we

take #{X}, then the variance of this estimate is

HO =@ {x} = .07118

Now, according to (3.18) we get for the variance of the fore-

cast error of a single measurement

o
Il

V{i} * (l_zl'bz)

(%} + 9.31 « 104

s 10 3.y}

and according to (3.19), for the variance of the forecast error

of the sum of r measurements

H(r)

r¥{%} 1=z -b,y) + (rz-r)°Z§-(All+2A - £ %}

12
+ by, [#121]%)

3 2

4.3+10 ° + 4+ 10

4.4.10°%

]

which shows that this variance is mainly determined hy the

uncertainty of the instrument parameters, which is common to
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all measurements.

Let us now use the calibration given in Table 2. With

1 8
1 1.1
X = . . (7.12)
1 2.9
we have
1 1.85
X'X = 8 = 8M . (7.13)

1.85 3.845

We can use the approximate formula (6.6) for the optimal dis-
tribution of calibration and measurement effort, if n - 02/Tc
is much smaller than the diagonal terms of A+« M., We check this
assumption by first using equatioi. (6.6) and then seeing whether
or not the result fulfills the assumption.

According to equation (6.6) and Table 2 the optimal

distribution of the time T available is given by

H

*
C

= .214 , T + T = 720

-
2%

or, in other words,

*x = *x =
Tc 127 , TM 593 . (7.14)
Therefore, we have
5 (M) 4 | 300
0ol = B0 = 1.154 << = , (7.15)
c

142
| a5, |
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which means that our assumptions are fulfilled.
Finally, we want to determine the improvement in
precision by using the calibration. According to equation

(4.12) we have
P (X) = (I2 -z)+*A

where z is given by (4.8). With (7.10), (7.13), and (7.15)

we obtain
5.96 12.54
-2.36 -4.94
which gives for (4.12)

8.06 =-3.22
¢ = . (7.16)
-2.34 0.96

Even though the forecast error variance after calibration and
measurement according to (5.1) can be determined only if the
calibration data (xi,yi), i=1,...,n. are available, a com~
parison of (7.16) and (7.10) shows that the use of the cali-

bration represents a considerable improvement in precision.
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Table 1: Typical Plutonium Mixture
(Source: Schneider et al. [12])

Pu238 Pu239 Pu240 Pu24l Pu242 Am241
Mean
concentration 0.041 90.51 8.265 1.113 0.064 0.05
[%]
Specific
heat flux 569.0 1.923 7.03 4.62 0.12 108.4
[mw/g]
Contribution
to w 0.2333] 1.7405| 0.581 0.052 | 7.69-10 >|0.0612
[mW/g]

Mean specific heat flux w: 2.668 [mW/g Pu]
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Table 2: Typical Measurement Problem

(Source: Schneider et al. [12])

No. of batches r 60
Mean Pu content P [hg] of one batch 1
Mean heat production x = w -+ P [W] of one batch 2.668
Batch-to-batch variation 10%

Variance of a single measurement cz(t) UmV)ZJ as a

18.324
function of time t[h] for t > 6 Tt
Total time T[h] available 720
No. of calibrations n 8
Range R of calibrations [Watt] 0.8 < R < 3.0
Values Xi9 of calibration procedure 0.8, 1.1,...,2.9
A priori information ﬁBl[mV] on intercept Bl 600
A priori information €82[mV/Wat§ on the slope of
the calibration line =240

A priori information on the variance of 8

(parametrically) 2

o°
-
[9)]
o0
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