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Abstract

The convergence of the sequential joint maximizationmethod (Rutherford [10]) for search-

ing economic equilibria is studied in the case of Cobb-Douglas utility functions. It is shown

that convergence is closely related to the behavior of certain inhomogeneous Markov

chains. In particular, convergence takes place if each good is either produced or available

in the economy.

Key words: Applied equilibriumproblem, joint maximizationmethod, Cobb-Douglas

utility.
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Vladimir NORKIN

1 Introduction

The sequential joint maximization method was proposed by Rutherford [10] as a heuristic

procedure for applied equilibrium problems. It turned out to be e�ective in applications

to rather complex intertemporal equilibrium models for integrated assessment of interna-

tional environmental policies (see Manne [6], Manne and Rutherford [7]). In the present

paper we analyze some convergence properties of the method. We consider the case of

Cobb-Douglas utility functions which allow to illustrate the main features of the procedure

in the most simple manner. For example, it is shown that convergence of the joint max-

imization method is related to new problems for inhomogeneous Markov processes. We

also illustrate the convergence of the method without requiring the gross substitutability

assumptions.

2 General equilibrium problem

Let us introduce some necessary notations. Consider an economy consisting of m con-

sumers and l producers. Each consumer k is characterized by a utility function U(xk),

consumption vector xk 2 Qk � Rn, initial endowment wk 2 Rn
+ and shares �ki in pro�ts

of producer i,
Pm

k=1 �ki = 1. Producer i is characterized by the set of feasible activity

vectors yi 2 Yi � Rn and a production vector-function gi(yi) = (gi1(yi); : : : ; gin(yi)). Let

p 2 Rn
+ denote a price vector of goods in the economy, x = (x1; : : : ; xm), y = (y1; : : : ; yl),

Q = Q1 � : : :�Qm, Y = Y1 � : : :� Yl.
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Demand for goods in the economy is generated according to the principle of utility

maximization: it is assumed that each consumer k chooses a vector y+k of goods that

maximizes his/her utility subject to a budget constraint (2) and others, for example,

environmental constraints (3):

Uk(xk) �! max
xk

; (1)

pxk � Ik(y; p); (2)

xk 2 Qk 2 Rn; (3)

where income function Ik(y; p) has the form:

Ik(y; p) = pwk +
lX

i=1

�kipgi(yi);
mX
k=1

�ki = 1; (4)

where pgi(yi) denotes an inner product of vectors p and gi(yi). This approach allows

to generate an arbitrary number of demand functions xk(Ik; p) by choosing appropriate

utility functions Uk(xk).

Producer i chooses the production levels yi from the pro�t maximization:

pgi(yi) �! max
yi

; (5)

yi 2 Yi � Rn: (6)

We also consider a "market player" (see Zangwill and Garcia [12]):

p(
mX
k=1

xk �
mX
k=1

wk �
lX

i=1

gi(yi)) �! max
p
; (7)

p � 0;
nX

j=1

pj = 1: (8)

Vectors x�, y� and p� constitute a general equilibrium if vectors x�k are solutions of (1)-

(3) for �xed p = p�, y = y�, k = 1; : : : ;m; y�i is a solution of (5)-(6) for �xed p = p�,

i = 1; : : : ; l, and p = p� is a solution of (7)-(8) for �xed x = x�, y = y�, i.e. the following

material and �nancial balances are ful�lled:

mX
k=1

x�k � W +G(y�); (9)

p�
mX
k=1

x�k = p�(W +G(y�)); (10)

where W =
Pm

k=1wk, G(y) =
Pl

i=1 gi(yi) (component-wise summation). Thus a general

equilibriumx�; y�; p� is in fact a Nash equilibriumof the appropriate game with (m+l+1)

players.
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We use some common assumptions:

(i) utility functions Uk(xk) are concave and continuous on Qk;

(ii) sets Qk are closed and convex, 0 2 Qk � Rn
+;

(iii) production functions gij(yi) are concave, i = 1; : : : ;m; j = 1; : : : ; n;

(iv) sets Yi, i = 1; : : : ; l; are convex compacts, Yi � Rn
+;

(v) for any product j = 1; : : : ; n there exist activity vectors yi 2 Yi such that Wj +

Gj(y) > 0.

Let us note that the case of nonlinear functions gi(yi) (instead of traditional gi(yi) = yi)

is important when decomposition schemes are used (see, for example, [3]).

If utilities Uk(�), k = 1; : : : ;m; are positively homogeneous and income functions

Ik(y; p) := tk, k = 1; : : : ;m, are constant, then the general equilibrium problem is re-

duced to an optimization problem (see Eisenberg and Gale [2], Gale [4], Eisenberg [1],

Polterovich [8], [9]).

De�nition 2.1 Function U(x); x 2 Q; is called positively homogeneous with degree � on

a cone Q 2 Rn if for any x 2 Q and r > 0

U(rx) = r�U(x):

The following positively homogeneous utility functions are often used:

U(x) = x
�1
1 � : : :� x�nn ,

Pn
j=1 �j = 1, 0 � �j � 1 (Cobb-Douglas function);

U(x) = min1�i�nfx1=a1; : : : ; xn=ang, aj � 0 (Leontief function);

U(x) =
Pn

i=1 cixi, ci � 0 (linear function).

Theorem 2.1 Assume in addition to (i)-(v) that

(vi) function Uk is positively homogeneous with degree �k and nonnegative on Qk,

set Qk is a cone with the vertex at the origin and contains a vector x0k 2 Qk such that

Uk(x
0

k) > 0, k = 1; : : : ;m;

(vii) the income function Ik(y; p) = tk is constant, k = 1; : : : ;m.

Then vectors x�, y� and p� constitute an equilibrium i� vectors x�k, k = 1; : : : ;m, y�i ,

i = 1; : : : ; l; are solutions of the following optimization problem:

mX
k=1

tk

�k
lnUk(xk) �! max

x;y
; (11)

mX
k=1

xk �W +G(y); (12)

x 2 Q; y 2 Y; (13)
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and p� is a Lagrange multiplier vector corresponding to inequalities (12).

This statement is a generalization of the results by Polterovich [8], [9] to the case

of nonlinear production functions gi. The following proof basically repeats the proof by

Polterovich [8].

Lemma 2.1 Assume that function f(x) is concave and positively homogeneous with de-

gree � > 0, set Q is a cone with 0 2 Q, and t > 0. Then at the optimal solution of the

optimization problem

t

�
ln f(x) �! max

x
; (14)

qx � t; (15)

x 2 Q; (16)

constraint (15) is ful�lled as equality (in the optimum) and the Lagrange multiplier cor-

responding to (budget) constraint (15) equals one.

Proof. Let x� be the optimal solution of (14)-(16). Since 0 2 Q and t > 0, then in (15)

Slater's condition is ful�lled. By Kuhn-Tucker theorem for any x 2 Q

t

�
ln f(x�) � t

�
ln f(x) + �(t � qx); (17)

where � � 0. Note that

qx� = t: (18)

Otherwise, there exists a vector rx�, r > 1, satisfying constraints (15) and (16), thereby

contradicting the optimality of x�:

f(x�) < r�f(x�) = f(rx�):

Putting in (17) x = rx�, r > 0, and using (18) and homogeneity of f we obtain

�(r � 1) � ln r: (19)

If r < 1 then � � ln(r=(r � 1)), and passing to the limit t ! 1 � 0 we obtain � � 1.

Passing in (19) to the limit t! 1 + 0 we obtain the opposite inequality � � 1. 2
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Proof of Theorem 2.1. Consider an equilibrium x�k, k = 1; : : : ;m; y�i , i = 1; : : : ; l;

and p�. Obviously, vector x�k is a solution of the problem

tk

�k
lnUk(xk) �! max

xk
; (20)

p�xk � tk; (21)

xk 2 Qk; (22)

By Lemma 2.1

p�x�k = tk; �k = 1:

Using Kuhn-Tucker theorem for any xk 2 Qk we have

tk

�k
lnUk(x

�

k) �
tk

�k
lnUk(xk) + (tk � p�xk): (23)

Summing (23) over k and taking into account that p�x�k = tk we obtain

mX
k=1

tk

�k
lnUk(x

�

k) �
mX
k=1

tk

�k
lnUk(xk) + p�(

mX
k=1

x�k �
mX
k=1

xk): (24)

For producers at equilibrium we have

p�gi(y
�

i ) � p�gi(yi); yi 2 Yi; i = 1; : : : ; l; (25)

and hence

p�G(y�) � p�G(y); y = (y1; : : : ; yl) 2 Y: (26)

By de�nition of the equilibrium

p�
mX
k=1

x�k = p�(W +G(y�)); p� � 0: (27)

From (24), (26), (27) for any xk 2 Qk and y we obtain

mX
k=1

tk

�k
lnUk(x

�

k) �
mX
k=1

tk

�k
lnUk(xk) + p�(W +G(y)�

mX
k=1

xk): (28)

Vectors x�k, k = 1; : : : ;m, and y�i , i = 1; : : : ; l, satisfy conditions (13). From (27), (28)

follows that these vectors form a solution to problem (11)-(13) and p� is an optimal

Lagrange multiplier vector to constraint (12).

The proof of the inverse statement proceeds as follows. Let x�k, k = 1; : : : ;m, and

y�i , i = 1; : : : ; l, be a solution of (11)-(13) and p� be an optimal Lagrange multiplier

corresponding to constraint (12). This means that relations (27), (28) hold true. From
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(27), (28) for xk = x�k we obtain (26) and hence (25). Then, for yi = y�i we obtain (24).

Therefore

tk

�k
lnUk(x

�

k) �
tk

�k
lnUk(xk) + (p�x�k � p�xk): (29)

Taking xk = rx�k after simple transformations for all r > 0

(r � 1)p�x�k � tk ln r: (30)

Hence

p�x�k = tk: (31)

Substituting p�x�k in (29) by tk we obtain (23), which jointly with (31) shows that x�k is a

solution of problem (1)-(3) of k-th consumer. Thus consumption and production vectors

x�k, k = 1; : : : ;m, y�i , i = 1; : : : ; l, as well as p� satisfy equilibrium conditions (12) and

(27). 2

Parameter k = tk
�k

in (11) is called Negishi's weight of utility Uk in the aggregated

utility

U(x1; : : : ; xm) =
mX
k=1

k lnUk(xk):

Consider a parametric optimization problem (11)-(13), denote its solution sets X(t),

Y (t) and optimal Lagrange multiplier set P (t) (corresponding to (12)). Now construct

the following set valued mapping:

I(t) = fz 2 Rmjzk = p(wk +
lX

i=1

�kigi(yi)); k = 1; : : : ;m;

p 2 P (t); (y1; : : : ; yl) 2 Y (t)g: (32)

The next lemma connects equilibriums of model (1)-(6) with �xed points of I(t).

Theorem 2.2 Suppose assumptions (i)-(vi) are ful�lled.

If x�; y� p� constitute an equilibrium of (1)-(6) then

t� = ft�k = p�(wk +
lX

i=1

�kigi(y
�

k)); k = 1; : : : ;mg (33)

is a �xed point of I(t).

If t� is a �xed point of I(t), i.e. t� 2 I(t�), then there exist x� 2 X(t�), y� 2 Y (t�)

and p� 2 P (t�) constituting an equilibrium of the original model (1)-(6).
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Proof. Let x�; y�; p� be an equilibrium of (1)-(6). Construct t� by (33). Now consider

optimization problem (11)-(13) with t = t�. By Theorem 2.1 x�; y�; p� belong to solutions

of (11)-(13), i.e. x� 2 X(t�), y� 2 Y (t�) and p� 2 P (t�). Hence

t� 2 I(t�) = fzj zk = p(wk +
Pl

i=1 �kigi(yk)); k = 1; : : : ;m;

p 2 P (t�); y 2 Y (t�)g:

Now prove the reverse statement. From t� 2 I(t�) and the de�nition of I(t) it follows

that there exist p� 2 P (t�) and (y�1; : : : ; y
�

l ) 2 Y (t�) such that

t�k = p�(wk +
lX

i=1

�kigi(y
�

i )); k = 1; : : : ;m: (34)

By Theorem 2.1 x�; y�; p� constitute an equilibrium of the original model (1)-(6), where

t�k stands for Ik(y; p), k = 1; : : : ;m. But due to (34) budget constraint (2) can be rewritten

in the form

pxk � t�k = p�(wk +
lX

i=1

�kigi(y
�

i )):

It means that x�k provides a solution of consumer k's problem (1)-(3) under �xed p = p�

and y = y�. This completes the proof. 2

3 Cobb-Douglas utilities

Notice that the aggregated utility function (11) in Theorem 2.1 is in fact a logarithm of

the following Cobb-Douglas type function

U(x) =
mY
k=1

U tk=�k(xk):

So it is natural to analyze possibilities of computational procedures �rst of all in the

following case.

(viii) Assume that consumer's utility functions have Cobb-Douglas form:

Uk(xk) = x
�k1
k1 � x

�k2
k2 � : : :� x

�kn
kn ; (35)

xk = (xk1; : : : ; xkn) � 0;

where

0 � �ki � 1;
nX
i=1

�ki = 1; k = 1; : : : ;m:
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This utility functions are positively homogeneous of degree 1.

Consider optimization problem (11)-(13) in the case of Cobb-Douglas utilities:

U�(t) = max
x;y

mX
k=1

tk ln(x
�k1
k1 � : : : � x�kmkm ) (36)

mX
k=1

xk �W +G(y); (37)

x � 0; y 2 Y: (38)

Lemma 3.1 In (36)-(38) an optimal production vector y� is a solution of the problem:

max
y2Y

nX
j=1

 
mX
k=1

tk�kj

!
ln(Wj +Gj(y)): (39)

An optimal Lagrange multiplier vector p� has the form:

p�j =
1

Wj +Gj(y�)

mX
k=1

tk�kj; j = 1; : : : ; n: (40)

Optimal consumption x�k; k = 1; : : : ;m; is calculated as follows:

x�kj =
tk�kj

p�j
; j = 1; : : : ; n: (41)

Proof. Denote p = (p1; : : : ; pn) � 0 vector of Lagrange multipliers corresponding to

inequality (37). The required follows from the following assertions:

U�(t) = max
y2Y;x�0

min
p�0

 
mX
k=1

tk lnUk(xk)� p(
mX
k=1

xk �W �G(y))

!
=

max
y2Y

min
p�0

0
@ mX
k=1

nX
j=1

max
xkj�0

(tk�kj ln(xkj)� pjxkj) + p(W +G(y))

1
A =

max
y2Y

min
p�0

0
@ mX
k=1

nX
j=1

(�kjtk ln
tk�kj

pj
� tk�kj) + p(W +G(y))

1
A =

max
y2Y

0
@ nX
j=1

min
pj�0

 
(
X
k=1

(tk�kj) ln
1

pj
+ pj(Wj +Gj(y))

!1
A+

mX
k=1

nX
j=1

tk�kj ln�kj +
mX
k=1

(tk ln tk � tk) =

max
y2Y

nX
j=1

 
mX
k=1

tk�kj

!
ln(Wj +Gj(y))�

nX
j=1

 
mX
k=1

tk�kj

!
ln

 
mX
k=1

tk�kj

!
+

mX
k=1

nX
j=1

tk�kj ln�kj +
mX
k=1

tk ln tk:

2

Consider the set valued mapping I(t) in the case of Cobb-Douglas utilities.
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Lemma 3.2 In the case of Cobb-Douglas utility functions (35) the set valued mapping

I(t) has the form:

I(t) = fA(y)tj y 2 Y (t)g (42)

where t = (t1; : : : ; tm)
T , Y (t) is a solution set of (39) and matrix A(t) = fapqgmp;q=1 has

elements

apq(t) =
nX

j=1

wpj +
Pl

i=1 �pigij(yi)

Wj +
Pl

i=1 gij(yi)
�qj: (43)

Proof. By de�nition

I(t) = fz 2 Rmj zk = p(wk +
Pl

i=1 �kigi(yi)); k = 1; : : : ;m;

p 2 P (t); y 2 Y (t)g;

where Y (t) and P (t) are solutions of (36)-(38). But by Lemma 3.1 Y (t) is a solution set

for (39) and

P (t) = fp 2 Rnj pj =
1

Wj +Gj(y)

mX
q=1

tq�qj; j = 1; : : : ; n; y 2 Y (t)g:

Then for z = (z1; : : : ; zp; : : : ; zn) 2 I(t) we have

zp =
Pn

j=1 pj(wpj +
Pl

i=1 �pigij(yi))

=
Pn

j=1

�Pm
q=1

�qj
Wj+Gj (y)

tq
� �

wpj +
Pl

i=1 �pigij(yi)
�

=
Pm

q=1

�Pn
j=1

wpj+
P

l

i=1
�pigij(yi)

Wj+Gj(y)
�qj

�
tq

=
Pn

q=1 apqtq:

2

Remark. Notice that matrix A(y) in (42) has a remarkable feature: the sum of

elements in each column of A(y) equals to 1. Indeed,

mX
p=1

apq =
mX
p=1

nX
j=1

wpj +
Pl

i=1 �pigij(yi)

Wj +Gj(y)
�qj =

nX
j=1

�qj

Pm
p=1 wpj +

Pl
i=1 gij(yi)

Pm
p=1 �pi

Wj +Gj(y)
=

nX
j=1

�qj = 1:

4 The lack of gross substitutability

Let us now calculate the excess demand function in the case of Cobb-Douglas utilities

and for a �xed (possibly zero) feasible production plan y 2 Y .
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Let p be a given price vector. Each consumer k solves the problem:

x
�k1
k1 � : : :� x

�kn
kn �! max

xk
;

pxk � p(wk +
lX

i=1

�kigi(yi)) = pwk; xk � 0;

where wk = wk +
Pl

i=1 �kigi(yi).

By Lemma 2.1 this problem is equivalent to:

(pwk)
nX

j=1

�kj lnxkj �
nX

j=1

pjxkj +
nX

j=1

pjwkj �! max
xk1;:::;xkn�0

:

Its solution is

xkj =
1

pj
(pwk)�kj; j = 1; : : : ; n:

Thus excess demand function f(p) = ffj(p)g has the following components:

fj(p) =
1

pj

mX
k=1

(pwk)�kj �Wj �Gj(y):

Let us check the gross substitutability condition. We have

@fj(p)

@pi
=

1

pj

mX
k=1

wki�kj � 0:

If, for instance, wk > 0 and �k = (�k1; : : : ; �kn) > 0 for all k, then

@fj(p)

@pi
> 0 for all i; j; i 6= j;

and, hence, the gross substitutability condition is satis�ed. In this case an equilibrium in

the (exchange) economy can be found by a Walrasian tâtonment process. But if for some

pair (i; j) it happens that
Pm

k=1 wki�kj = 0 then @fj(p)=@pi = 0 and the convergence of this

tâtonment process is not guaranteed. An advantage of the sequential joint optimization

method, as will follow from the next section, is its convergence in the absence of gross

substitutability.

Let us consider a simple numerical example.

Example. Consider an exchange economy with only two consumers and two types of

goods.

The �rst consumer has utility function U1(x1) = x12 and endowment vector w1 =

(1; 1), i.e. he solves the problem

x12 �! max
x11;x12

;

10



p1x11 + p2x12 � p1 + p2; x11; x12 � 0:

The second consumer has utility function U2(x2) =
p
x21x22 and endowment vector

w2 = (1; 0), i.e. he solves the problem

p
x21x22 �! max

x
21
;x
22

;

p1x21 + p2x22 � p1; x21; x22 � 0:

The economy has the following equilibrium solutions:

p� = (0; 1); x�1 = (x11; 1); x�2 = (x21; 0);

where x11; x21 are arbitrary, but 0 � x11 + x21 � 2.

Excess demand functions here have the form:

f1(p) = �1

2
;

f2(p) =
1

p2
(
3

2
p1 + p2)� 1:

Thus @f1(p)=@p2 = 0 and the gross substitutability condition is not satis�ed. The classical

Walrasian tâtonment process dp=d� = f(p) does not converge here in the sense that its

�rst component goes to �1. Let us show that the sequential joint maximization method

can overcome this di�culty.

5 Sequential joint maximization method

Rutherford's [10], [11] sequential joint maximization method can be viewed as an attempt

to solve the inclusion t 2 I(t) by the following sequence of vectors ts = (ts1; : : : ; t
s
m),

s = 0; 1; : : ::

t0 is an arbitrary nonnegative vector,
Pm

k=1 t
0
k = 1;

t
s+1 2 I(ts); (44)

ts+1 = (1� �s)t
s + �st

s+1
; (45)

where I(t) is de�ned by (32), parameters �s > 0 play a role of step multipliers. If �s = 1

then the (full step) process has the form

ts+1 2 I(ts): (46)
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An empirical result is that sequence ts (with some 0 < � � �s � 1) converges to �xed

points of I(t) (equilibrium incomes) (see Rutherford [10], [11], Manne [6], Manne and

Rutherford [7]). The corresponding equilibria of model (1)-(6) can be found as solutions

X(t), Y (t) and P (t) of optimization problem (11)-(13).

Let us analyze some convergence properties of this method in the case of Cobb-Douglas

utilities. In this case method has the form:

t0 � 0;
mX
k=1

t0k = 1; (47)

ts+1 = ((1� �s)E + �sA(y
s))ts; ys 2 Y (ts); s = 0; 1; : : : : (48)

Note that when starting in a simplex, i.e.
Pm

k=1 t
0
k = 1, the method always remains within

a simplex, i.e.
Pm

k=1 t
s
k = 1, due to the fact that the column sums of A(y) equal 1.

Let us note that if the set Y (t) is a singleton then (48) is reduced to the process

ts+1 = A(ts)ts; ; s = 0; 1; : : : ; A(ts) = (1� �s)E + �sA(Y (t
s)); (49)

which generates a sequence of inhomogeneous nonnegative matrices

A(t0); A(t1); : : : ; A(ts); : : :

They are stochastic matrices, therefore the convergence of (48) is connected with the

convergence of the backward products

A(ts)A(ts�1)� : : :�A(t0):

The main complexity here is concerned with endogenously generated inhomogeneity of

such products by the sequence t0; t1; : : :. It leads to new challenging problems of Markov

processes. In this article we mention only some straightforward results.

Proposition 5.1 If functions Gj(y) are strictly concave and monotonously increasing,

�s � � > 0, then subsequences ftslg such that

lim
l!1

ktsl+1 � tslk = 0;

converge to an equilibrium.

Proof. Notice that solution Y (t) of problem (39) with strictly concave and increasing

functions Gj(y) is unique and continuously depends on t, the same holds for I(t). Suppose

tsl �! t� and ktsl+1 � tslk �! 0, s �!1. Then tsl+1 �! t� and from

tsl+1 = (1� �sl)t
sl + �slI(t

sl)

12



it follows

t� = I(t�):

By Theorem 2.2 t� is the equilibrium income vector of the original model (1)-(6). 2

The proposition provides a tool to select a subsequence of points converging to an equi-

librium. But in general, there may be no such subsequences tsl satisfying the conditions

of this proposition.

In the following three cases �s = � > 0 and matrices A(y); y 2 Y (t) do not depend

on y. Then process (47)-(48) becomes a standard homogeneous Markov chain with well

known conditions of convergence to a stable distribution (see Gantmaher [5]).

Case 1. Consider an exchange economy, i.e. gi(yi) = 0, i = 1; : : : ; l. Then matrix

A(y); y 2 Y (ts) is constant and has the form

A =

0
BBBBBBBB@

Pn
j=1

w1j
Wi

�1j
Pn

j=1
w1j
Wj

�2j : : :
Pn

j=1
w1j
Wj

�mjPn
j=1

w2j
Wj

�1j
Pn

j=1
w2j
Wj

�2j : : :
Pn

j=1
w2j
Wj

�mj

: : : : : : : : : : : :Pn
j=1

wmj

Wj

�1j
Pn

j=1
wmj

Wj

�2j : : :
Pn

j=1
wmj

Wj

�mj

1
CCCCCCCCA
:

Case 2. If levels of productions are �xed, i.e. Y consists of a single point, then

A(ys); ys 2 Y is also constant and has the form (43).

Case 3. Suppose that

�pi = �p; i = 1; : : : ; l;

Wj > 0 and Gj(y) = 0 for j = 1; : : : ; n0;

Wj = 0 and Gj(y
0) > 0 for j = n0 + 1; : : : ; n and some y0 2 Y

(in particular we may have Wj = 0 for all j = 1; : : : ; n), i.e. each good is either produced

(but not available as endowment) or not produced (but available as endowment) in the

economy. Then matrix A(y) is also constant and has the form

A =

0
BBBBB@

Pn0

j=1
w1j
Wj

�1j + �1
Pn

j=n0+1 �1j : : :
Pn0

j=1
w1j
Wj

�mj + �1
Pn

j=n0+1 �mj

: : : : : : : : :Pn0

j=1
wmj

Wj

�1j + �m

Pn
j=n0+1 �1j : : :

Pn0

j=1
wmj

Wj

�mj + �m

Pn
j=n0+1 �mj

1
CCCCCA :
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Lemma 5.1 Let either of Cases 1, 2 or 3 apply, �s = � > 0, and thus matrix A(ys) = A

be constant. If A has a positive row, then A = (1 � �)E + �A is stable with maximum

eigenvalue �A = 1, so

lim
s!1

ts+1 = lim
s!1

A
s
t0 = tA;

where tA is a single eigenvector of A corresponding �A = 1:

AtA = tA:

Then AtA = tA and by Theorem 2.2 tA is an equilibrium income vector.

Example (continued, from section 4). In this example matrix A is constant (as in

Case 1) and equals to

A =

0
B@ 1 3=4

0 1=4

1
CA :

It has a unique eigenvector tA = (1; 0)T ,
Pm

k=1(tA)k = 1, corresponding to the maximal

eigenvalue 1. Sequence ts+1 = Ats, starting from any initial point t0,
Pm

k=1 t
0
k = 1, very

quickly converges to tA.

6 Concluding remarks

In this article we have indicated only some convergence properties of the joint maxi-

mization method and related issues. In particular we demonstrate that even the case

of Cobb-Douglas utility functions leads to a new type of problems for inhomogeneous

Markov processes, where the time dependence of the transition matrix is endogenously

generated by the probability distribution of its current states. It is worth mentioning

that the convergence of the joint maximization method does not require the gross sub-

stitutability assumptions to be met. Further convergence analysis requires more in-depth

study of the mapping I(t) and matrix A(y) in (42), (43).
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