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Dissipative Control Systems and
Disturbance Attenuation
for Nonlinear H® — Problems

Halina Frankowska & Marc Quincampoix
CNRS, URA 749, CEREMADE
Université Paris-Dauphine

F-75775 Paris Cedex 16

Abstract

We characterize functions satisfying a dissipative inequality associated with
a control problem. Such a characterization is provided in terms of epicontin-
gent and viscosity supersolutions to a Partial Differential Equation called the
Hamilton-Jacobi-Bellman-Isaacs equation. Links between viscosity and epicon-
tingent supersolutions are studied. Finally, we derive (possibly discontinuous)
disturbance attenuation feedback of the H* —problem from contingent formu-
lation of the Isaacs’ Equation.

1 Introduction

Consider the following control system with two independent controls

() = f(t, (), u(t),w(t)), z(to) = zo L1
u(t) € R? and w(t) € R (1.1

where the state = belongs to R™. One of questions of interest studied in H*-
theory lies in finding a control u(-) insuring' that the following so-called L2-
gain?:
f(;r L(s,z(s), u{s), w(s))ds
”w(')lliz(o,']’)

I When this control can be expressed by a feedback law, it is often called the disturbance
attenuation feedback.

2Whose minimum in the linear case is the H°°-norm of a suitable transfer function. See
[13] or [5] for a detailed description of this fact.



is less or equal to some fixed constant 4. This leads to the H-control problem
described in [5] for instance. See also the bibliography of this book for further
references. A reformulation of the above problem consists in studying the value-
function of the optimal control problem described below.

The goal of the controller u is to minimize a cost function J, given by

T
Ty (to, 2o, u(-), w(-)) 1=/ (L(s,2(5), u(s), w(s)) = ¥ [lw(s)]*)ds  (1.2)

to

against all possible choices of w which is the disturbance of the system. The
result of this optimal action of the controller is a quantity, called the cost (or
value), which depends on the initial conditions of the system

V(to,zo) := inf  sup J,(to,zo, u(-), w(-))
u(JEU w()ew

Here U and W are the sets of measurable functions from [to, 7] into R? and R
respectively, sometimes we shall denote these sets by i/ (tp) and W(tg).
The cost function V is a supersolution of the Partial Differential Equation

“Vi4+ H(t,z,—V:) =0

where H is the Hamiltonian of the control system defined by

H(t,=,p) = sup inf ((p,f(t,r,u,w))—L(tlx,u,w)+vzllwllz)
ueRr wER!

for two suitable concepts of supersolutions. Next, we provide a characteriza-
tion of sub/supersolutions of this Partial Differential Equation thanks to some
monotonicity properties - called dissipative inequalities - of the cost-function J,
along suitable trajectories of the system.

Let us recall the definition of dissipative inequality (see [14]) associated to
some extended function ©(+,-) : Ry x R” — RU{oo}. Fix a measurable control
u(-). If for any measurable disturbance w(-), we have

t2 >t 2te = O(lz, z(t2, u(-), w(-))) — O(tr, 2(t1, @(-), w(-))) <

t (1.3)
< L2l = Lis, 2(s,a(-), w(-)), A(s), w(s)))ds

where z(-,(-), w(-))) denotes the solution to (1.1) corresponding to %(-) and
w(-), then O is called a storage function (associated to the control u(-)). When
there exists a control u(-,-) in the feedback form® such that (1.3) holds true
with @(t) = u(t, 2(t)) for a function ©, it is called the disturbance attenuation

3Namely v : R4 x R® — RP,



feedback. Notice that if © is nonnegative and ty = 0, ©(0,z¢) = 0, then (1.3)
yields

T T
] L(s,2(s, (), w(), @(s). w(s)))ds < 7> / llw(s)|Pds
0 0

for all w € L%(0,T), which means that the L?-gain is not greater than v

The problem will be reduced to the statement of a criterion allowing to de-
termine storage functions as sub/supersolutions of a Hamilton-Jacobi-Bellman
Partial Differential Equation. This result is related to those of James [12] who
proved - in the continuous case - that storage functions are viscosity subsolu-
tions to some PDE and that any continuous viscosity subsolution of this PDE
is a storage function. In the present work, we provide relations between storage
functions, viscosity and epicontingent supersolutions in the lower semicontinu-
ous case.

Another aim of our paper is to use epicontingent supersolutions to derive a
disturbance attenuation law (possibly set-valued) in the context of H“-problem.

2 Preliminaries

In this section we recall some basic definitions of set-valued analysis. The sub-
differential of a function ¢ : R” — R at 2o € Dom(¢) is defined by

O_¢(zo) = {Pe R" | liminf $(z) = 6(z0) = (p. & — z0) > 0}

ik o~ zall

and the superdifferential of ¢ at z¢ by 0, ¢(zg) := —0_(—¢)(zo) (see [6]). The

contingent epiderivative of ¢ at z in the direction v is given by:

- - hv') — bz
R

or equivalently by

Epi(D14(z)) = Trpi(p)(x, 6(2))
where Epi stands for the epigraph and the contingent cone? to a set A at a
point z € A is defined in the following way:

Ta(z) = {v] Limiélfd(:v + hv, A)/h = 0}

Here d denotes the distance. We define in a symmetric way the contingent
hypoderivative:

Dyé(x)(v) = —Dy(=4)(x)(v)
These definitions are related by a result from [3, Proposition 6.4.8]:
Lemma 2.1 Consider a function ¢ : R" — R. Then
6_9(x) = {p: €R* | Vu€ R, Did@)w) 2 (o)} (21)

“or Bouligand’s cone, see [2] and [3].




3 Dissipative Systems and Hamilton-Jacobi
Equations

Consider a subset [/ of a Banach space and continuous functions
f Ry xR'xU—~R" & L:Ry xR'"xU+— R
We associate to these data the control system

z'(s) = [(s,z(s),u(s))
(=10 = o

and assume that

(Hy) V(to,z0) € Ry x R*, 3¢ >0, 3ke L' (to—¢,to+¢)
such that for almost all ¢ € [to —¢,t0+¢], Vu e U,
f(t,-,w) is k(t) — Lipschitz on B{xg,¢)

Ho) V(to,zo) € Ry x R", 3¢ >0, 3¢ > 0 satisfying :
t=tol+||e - zoll S ¢ —
2
1F (2, Wl + Lt 2, w)] < el + |ul]”)

Under these assumptions for every u € L? (R4, U) and (to,z0) € Ry x R" the

loc

control system (3.1} with the initial condition
has a solution on a neighborhood of ¢5 in R,.

Definition 3.1 The control system (3.1) is called dissipative if there ezists a
function V : Ry X R™ — R U {£oo} (called a storage function) such that for
every u € L2 (R4, U) and any solution z(-) to (3.1) corresponding to u(-) and
defined on some time interval [T1, T3] we have

t2
VT <t <ty <Ta, V(ta,z(t2)) < V(tr,z(61)) +/ L(s,z(s),u(s))ds

In the above, f:lz L(s,z(s),u(s))ds = +oo whenever s +— L(s,z(s),u(s)) is
not integrable on [t,¢;]. However, assumption Ho) yields integrability of this
function for t; and ¢, sufficiently close to tg.

Inequality of Definition 3.1 is called the dissipative inequality. In general
the storage function is neither unique nor continuous. Semicontinuous storage
functions can be studied as sub/supersolutions to Hamilton-Jacobi equations.
But first we recall that lower and upper semicontinuous envelopes of a storage
function are again storage functions.



Proposition 3.2 Assume that for every u € L} (R4, U) the solution z(-) to
(8.1), (3.3) is defined on R, and there eziste > 0, k € L} such that for any
u, f(t,-,u) is k(t)—Lipschitz on B(z(t),€). Further assume that for a conslant
¢> 0 and a function ¢ : Ry x R* — R, which ts bounded on bounded sets the

following inequalities hold true

{ I/ (t, 2, u)

| < e(1+ |lul®)(1 + |l=[))
|L(t, z, u))]

<
— 2
<e(l+[jull” + (¢, 2))

IfV is a storage function, then so do its lower and upper® envelopes Vi, V*.

The proof proceeds by classical arguments and is omitted. Because of the above
result, below, we shall only study lower semicontinuous storage functions.

Theorem 3.3 Assume that (3.2) holds true. If V is a slorage function, then
for all (t,z) € Dom(V)

{ supyey Dy V(L 2)(1L, f(t,z,u)) - L(t,z,u) <0
t>0 == sup,ep Di(-V)(t,z)(—1,-f(t,z,u)) - L{{,z,u) <0

Proof — Let u € U be a constant control. Consider an associated solution

to (3.1) satisfying z(¢) = z, defined on [t — §,1 + 6]. Then for h > 0,
13
Vit —hz(t—h) > V(t,z) —/ L(s,z(s),u)ds
t—h

and therefore

—V({t=ha(t—h) - (-V(t,z)) 1 [
h SE/

L(s,z(s),u)ds
h

t—

We can pass to the lower himt and apply Lebesgue’s theorem, using (3.2) and
that z(t — h) =z — hf(t, z,u) 4+ o(h). In this way we get

D'T(_V)(tlm)(_L —f(t,l‘, u)) S L(t7 l‘)u)

Since u is arbitrary, we derived the second inequality. The proof of the first one
is similar by applying the dissipative inequality between t and t + A. 0O

Define Hamiltonians

HY(t,2,p) = sup (3, £(t,2,)) = L(t, 7, v))
uel

5The lower envelope Vy of V is the largest lower semicontinuous function which is smaller
than V. In a shorter way, Epi(Vy) is the closure of the epigraph of V. The upper envelope
V* is defined by considering hypographs: Hypo(V*) := cl(Hypo(V)).



and
Hb(t,l',p) = Jgg((plf(t:zvu)) + L(t,l’,u))

Let us check, like in [12], that any storage function is a viscosity sub/supersolution®

defined thanks to subdifferentials:

Corollary 3.4 If V is a storage function, then it 1s a viscosity subsolution fo
Vi+ HY(t,2,Vz) =0 (3.4)

and a viscosity supersolution to
—Vi+H (t,z,-V;) =0 (3.5)

The proof follows from Lemma 2.1 and Theorem 3.3.
If V is differentiable, then both statements boil down to :

V(tz)e Ry x R*, Vi+ H"(t,z,V;) <0

We observe that 9, V (¢, z) is adapted to deal with upper semicontinuous storage
functions and 0_V(t,z) is adapted to lower semicontinuous storage functions.
Indeed, a statement converse to Corollary 3.4 holds true.

Theorem 3.5 Assume (3.2). If V is an upper semicontinuous viscosity sub-
solution to (3.4), then V is storage function. If V is a lower semicontinuous
viscosity supersolution to (3.5), then V 1s storage function.

Proof — Fix 0 < t; < {5, an L? -control u(-) and let z(-) be an associ-
ated solution to (3.1), (3.3). Consider a sequence u,(-) of piecewise continuous
controls converging to u(+) in L%-norm on [t,¢,]. Hence

V (Phpr) e 0+V(t,x), pi + (pflf(tlx)1tﬂ(t))) - L(tvxruﬂ(t)) S 0
Consequently,

v (ptapx) € 6—(_‘/)“11")) —Pt + (—pr,f(t,x,un(t))) - L(t1x7un(t)) S 0

$Consider an Hamiltonian H : [0,T] x R™ x R® — R. A function © : [0,T] x R" — Risa
viscosity supersolution (cf [6]) to the following PDE

-0, + H(t,z,-0;) =0
if and only if
V (t,z) € Dom(®), ¥ (pt,pz) € 0-O(¢t,z), —p: + H(t,z,—pz) > 0
and is a viscosity subsolution to the above PDE if and only if

Y (t,z) € Dom(®), V (pe,pz) € 840(t,z), —pt + H(t,z,—p2) <O



Using the same arguments as in [7] we deduce that
Di(=V)(t,z)(=1, —f(t,2,un(1))) < L(t, 7, un(1))
This is equivalent to
(1, = f(t,z,un(t)), L(t, 2,un(t))) € Tgpi—v)(t,z,=V(t,2)) C Tgpi—v)(t,z,y)

for any y > —V(t,z). Thanks to the Viability Theorem (cf [2]) applied to the

map
(t,z) = =1 x —f(t,z,us(t)) x L(t, z,un(t))

on the epigraph of —V, we know that there exist some y,(-), 2n(+) solving

(1 (5),2'(5)) = (= F(5,4(5), un(s)), L(5,y(s), un(s)))
such that (y,,(0),2,(0)) = (z(t2), =V (t2,2(t2))) which is viable in the set Epi(—V').
This implies that for any t < t,,

— V{ta,z(t2)) > =V(ta — t,ya(t)) — /t : L(s,yn(ta — s),un(s))ds  (3.6)

Consider the solution (y(-), 2(*)) to

{(y’(S),Z’(S)) = (=f(s,u(s),u(s)), L(s, y(5), u(s)))
(¥(0),2(0)) = (2(t2), =V (ta,2(12)))

By the Gronwall inequality, (y,(-), z,(-)) converge to (y(-),=(-)) when n — oc.
Since —V is lower semicontinuous, taking the lower limit in (3.6), this yields for
t :=ty — t; and the solution z(t) := y(t2 — t) to (3.1)

—V(ta, z(t2)) > —V(t1,z(t1)) — /t ’ L{s,z(s),u(s))ds

The second statement is proved similarly. O

Remark — In the difference with [12] we do not have to assume that V
is locally bounded. So our framework satisfies the requirements of [14]. O

4 Solutions of Partial Differential Equations

As it was shown in [12], the dissipative inequality leads to a first order par-
tial differential equation, called Isaacs’ equation. In the previous section, we
already explained the meaning of viscosity sub/supersolutions, here let us re-
call another approach through contingent solutions (cf [3]) of Hamilton-Jacobi-
Bellman-Isaacs’ equations. We shall see further that the value function V' from



the introduction satisfies in a suitable sense these partial differential equations.
But now, we only want to define and compare two definitions of solutions of

Isaacs’ equation.
Denote by R the extended real line RU { o0} and define the Hamiltonian
of the H®-control problem:

H(t,z,p) := sup inf {(p, f(t,z,u,w)) — L(t,z,u, w) + 7v*||w|* }
ue Rp w€ R!

Consider the associated Hamilton-Jacobi-Isaacs’ equation:
-0, +H(t,z,-0,)=0 (4.1)

Definition 4.1 A function © :[0,T] x R™ v R is an epicontingent supersolu-
tion to (4.1) if and only if for all (t,2) € Dom(©) witht < T

sup inlle{—-Dr O(t,z)(L, f(t,z,u,w)) — L(t,z,u,w) + Y’} >0  (4.2)
u€ Rr w€

A function © : [0,T] x R™ +— R is an hypocontingent subsolution to (4.1) if and
only if for all (t,z) € Dom(O) with t < T

sup inf {=D; O(t,z)(1, f(t,z,u,w)) — L(t,z,u, w) + v w?} <0
ue R? w€ R

Lemma 2.1 yields
Proposition 4.2 Consider a function © : [0,T] x R* — R.

o IfO(:,-) is an epicontingent supersolution lo (4.1), then it is a viscosily
supersolution to (4.1).

e IfO(-,-) is an hypocontingent subsolution to (4.1), then il is a viscosily
subsolution to ({.1).

Let us underline that the converse implication is not true, in general.

Counter Example —  Consider the case when the dynamics depend only
on w. For any (z,y) € R? define

i 01if (z,y) ¢ Ry(1,1)
f(z,y,w) = { w where w € ITV;: c0{(0,0);(1,1)} elsewhere

The set-valued map f(-,-,W) is obviously upper semicontinuous with convex
nonempty values. We shall exhibit a Lipschitz function ¢ : Ry, x R?> — R
which satisfies for any z

V(Prupy) € a—¢(r:y)’ ur;neav)é ((p;,-,py),f(l’,y, w)) <0 (43)



but does not satisfy

sup Did(z,y)(f(z,y,w)) <0 (4.4)
weW

To accomplish this task, define ¢ as follows:

¢(z,y) =0 if e <0ory<0
¢(z,y)=y f0<y<«
#(z,y)=z H0<z<y

Inequality (4.4) means that for any w € W,
(f(I>y1 w)l 0) € TEpi(¢)(Tu Y, ¢(‘E: y))

which is obviously false for instance if (z,y) = (1,1).
Inequalities (4.3) are fulfilled because

(z,9) ¢ Ri(1,1) = max((pz,py), f(2,y,w)) =0, ¥ (pz,py) € 0-6(2,y)

it

0}

{ (2,) = (0,0) = 9_6(0,0) = {
(z.9) € Ry(1L,D\{(0,0)) = 0_¢(0,0)=#

I

5 Regularity of the Value-Function

The value function”

V{to,zo) :== inf  sup J,(to, zo, u(-), w(-))
u(-)elU w(-)eW
is Lipschitz under suitable regularity of data. We shall need the following as-

sumptions:
The growth of the dynamic is bounded in the following way

3E >0, [|[f(t,z,u,w)|| < E(+ [[uf*)(L +||=])) (5.1)
The dynamic is Lipschitz continuous as follows

{ f is continuous and Ja(-) € L}(0,T; Ry), such that

Vwe R, f(t,-,-,w)is a(t) — Lipschitz (5-2)

The integral cost satisfies assumptions insuring that the value is finite :

L is continuous and 3 (a,b) € Ri, V(¢ z,u,w),
i) L(t,z,u,w) < v3[jw]|® + a(l + ||u]|?)
i) L(t,z,u,w) > ¥2||w||* - b (5.3)
i) VE>0,3kg>0,Vuw

L(-,-,-,w)is kgr — Lipschitz on Ry x B(0,R) x R?

"where J~ is defined by (1.2).



V(t,z,u) € Ry x R" x RP, the set
{(L(t,z,u,w) - 72”w”2 + R+’ f(t)zvuvw)) |w € R } (54)

is closed and convex.

Proposition 5.1 Let assumptions (5.1) - (5.3) hold true. Then V(-,-) s con-
tinuous and Lipschilz in z with a constant independent from t.

The proof is very technical and can be found in [9].

6 Disturbance Attenuation Feedback

6.1 Existence of continuous feedback and epicontingent
supersolutions

Let © :[0,T] x R* — RU {+00} be an extended function.

Proposition 6.1 Suppose that there exists a conlinuous feedback u : [0, T] x
R" +— RP such that for any measurable control w(-) an associated solution z(-)
to (1.1) satisfies (1.3) with u(t) = u(t,z(t)). Then O(:,-) is an epicontingent
supersolution to (4.1) and consequently also its viscosity supersolution.

Proof — Fixw € R and let z(-) = z(-, o, 2o, @, w) be an associated solution
to (1.1). Applying inequality (1.3) with ¢, :=ty <t := to + h we obtain for all

h>0
#(O(to + h,z(to + b)) — O(to, za)) <

< L2 w2 — L(s, 2(s), u(s), w))ds

We can pass to lower limit in the last inequality when h — 0+ to get
DO(tg, zo)(1, f(to, zo, ulto, zo), w)) < v2|lw|]* = L(to, o, u(te, o), w)
Since it occurs for any w we obtain (4.2). O

Consider next an epicontingent supersolution © to (4.1). The question arises
whether there exists a feedback u(-,-) such that © is a storage function.

Let us give a necessary condition for © to satisfy (1.3) in the case of existence
of a continuous feedback u(t, z):

Theorem 6.2 Assume (5.1) - (5.4). Let O(-,-) : [0,T] x R* — R, U {oo} be
a lower semicontinuous function, Lipschilz with respect lo the second variable®
with a constant independent from t, which salisfies the contingent inequalily

sgp{DT@(t,x)(l,f(t,z,u(t,:c),w)) ~ Y2 |lw|® + L(t, 2, u(t,z),w) } <O (6.1)

8This is the case for instance, of the value-function studied in the previous section.

10



for some continuous u(-,-) and allt < T. If for some w(-) € L*(0,T), a solution
z(-) to
() = f(t, z(t), u(t, z(¢)),w(t)), =z(0)==xzo (6.2)

is defined on the whole® interval [0,T], then the following dissipative inequality
holds true: V0 < t, <ty <T,

O(ts, 2(12)) < O(, 2(11)) + / "l = L(s,2(s), uls, 2(5)), w(s)))ds

Proof — The proof is inspired by the proof of a Viability Theorem for Tubes
(see [10] and [11]). We need the following result.

Lemma 6.3 ([9]) Let a() : [0,T] — R be a lower semicontinuous function
and B : [0, T] — R be an integrable function. Ifsup,¢po rp Dra(s)(1) < +oo and

for almost all s € [0,T], Dya(s)(1) < B(s)

then for any 0 <t; <ty < T,

a(ty) < a(t1)+/ Qﬂ(ﬁ)dﬁ

Proof of Theorem 6.2 — Let us fix w(-) € L%(0,7T) and consider a solution
z(-) to (6.2) defined on [0,T]. We claim that

Dra(t)(1) < b for everyt € [0,T]

and

Dra(t)(1) < B(t) for almost everyt € [0, 7] (6.3)
where a(t) := O(t, 2(t)) and 4(t) == ¥*||w(®)||* = L(¢, z(¢), u(t, z(t)), w(t)). In-
deed, fix t € [0,T[. Let h, — 0+ be such that
— lim Ot + hy, z(t +hh.n)) —O(t, z(1))

Dra(t)(1)
By the mean value theorem and assumptions (5.1), (5.4) there exist w € R' and

a subsequence h,, such that

z(t+ hn,) —2(t)
hn,

— f(t, z(t),ult,z(t)), w)

From assumptions (5.3) 7) and (6.1), for all (¢,z,w) € [0, T[x R" x R,

D10(t, 2)(1, f(t. 2, u(t, 2),w)) < yllwll® = L(t, 2, u(t, ), w) <b

90ne way to insure this statement is to assume that u(-,-) is bounded.

11



Since O(t, ) is Lipschitz
Dra(t)(1) = DrO(t, z(1))(1, f(¢,2(t), u(t, z(¢)), w)) < b

Consider a point t such that z'(t) = f(t,z(¢), u(t, z(t)),w(t)). Since O(t,-) is
Lipschitz, using (6.1) we obtain
Ot + h,z(t+ h)) — O(t, z(t))

Dra(t)(1) = }‘12151_5 : =

fig QA2 + S 1(s,2(s), uls, 2(s)), w(s))ds) — O(t, z(t))
h— 04 h -

= D1O(t, 2z(t))(1, f(t, 2(t), u(t, z(t)), w(t))) < B(t)

Applying Lemma 6.3, we derive

O(tz2, z(t2)) < O(t1,z(11)) + /t 2(72|Iw(5)||2 — L(s,z(s), u(s, 2(s)), w(s)))ds O

6.2 Value function and disturbance attenuation feedback

We next prove that the value function V satisfies the dissipative inequality (1.3)
when there exists an “optimal feedback”.

Proposition 6.4 We assume (5.1) - (5.4) and that

{ there exists a feedback u: [0,7] x R* +— RF, V (t,z)
V(t,l‘) = Supw(v)e W(t) j’y(tuzyu('1 )1w())

Then for any measurable disturbance w(-) the solution 2(-) to (1.1) satisfies the
dissipative inequality (1.3) with u(t) = u(t, z(t)).

(6.4)

Proof — Consider 0 < t; < t, < T and a measurable disturbance w(-).
Denote by W(t;)[t2] the set of all measurable @ : [t;, 7] — R! whose restriction
to [t1, 2] is equal to w(-). Then

{ V(ti,2(t1)) = supuye wiry) T (t1, z(t), u(-, ), (-
> SUPg(.)e Wity )[ta] T (1 2 (t1), u(s, ),

which, by the very definition of 7,, is equal to
ta

/ (L(s,2(5),u(s, 2(s)), w(s)) = 72 f[w(s)[) ds+  sup  Ty(ta, a(ta), w, 6())
1y w(-)E W(tz)

Hence

tz
Viti,z(t)) 2 V(s I(tz))+/ (L(s, 2(s), u(s,2(5)), w(s)) = ¥*|lw(s)|") ds O
iy
Thanks to Proposition 6.1 we can state the following

12



Corollary 6.5 We impose assumptions of Proposition 6.4. Assume further-
more that the feedback u(-,-) salisfying (6.4) is continuous. Then the value
function V is an epicontingent supersolution to (4.1).

6.3 Disturbance attenuation feedback and supersolutions
of Isaacs’ equation

This section is devoted to the construction of an attenuation feedback u(-,-) such
that for any measurable w(-), the associated solution satisfies the dissipative
inequality.

Consider the contingent inequality

inf sup (DT@(t,z)(l,f(t, z,u,w)) — 72||w||2 + L(t,z,u, w)) <0 (6.5)
u€R? Rt
By Section 6.2 we know that if there exists a continuous feedback u(-,-) as in
(6.4), then the value function V' verifies the above inequality. We also know
that when the data are regular enough, then V' is continuous and Lipschitz with
respect to z with a constant independent from ¢.

We first show that a solution © to (6.5) allows to construct a discontinuous
attenuation feedback. The feedback we propose is set-valued, 1.e. U(t,z) C RF,
but any - possibly discontinuous - selection u(t,z) € U(t,z) is a candidate for
the single-valued feedback, provided it enjoys the following property :

{ VweW, V(to,zg) €[0,7] x R*, Jz(-) solving the system
'(t) = f(t, (), u(t, z(t), w(t)), z(to) =xo

Let © solve (6.5) on [0, T[x R™ and define the set-valued feedback U : [0, T[x R" —
RF by

U(t,z) .= {uelU|Vw, DO, z)(1, f(t,z,u,w))—v|w|]*+ L(t,z,u,w) < 0}
The sets U(t,z) are closed whenever f and L are continuous.

Theorem 6.6 We impose assumplions (5.1) - (5.4). Further assume that © 1s
lower semzcontinuous and Lipschitz with respect lo the second variable with a
constant independent from t. Then for every w € L*(0,T) and any solution
lo the differential inclusion

(1) € f(t2(), Ut z(1)), w(t))), z(to) = zo
we have an analogous of (1.3) : for all t, <t <t, < T,
O(ta, x(t2)) < O(tr, z(t)) + : (w2 = Lt 2(8), u(t), w(e))de

where u(t) is so that z'(t) = f(t,z(t),u(t),w(t)). In the other words © is a
storage function.

The proof is similar to the proof of Theorem 6.2 and is omitted.
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