
Working Paper
An Efficient Mixed Integer

Programming Algorithm for
Minimizing the Training Sample

Misclassification Cost in Two-group
Classification

A. Pedro Duarte Silva*
Antonie Stam **

WP-96-93
August 1996

VllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

.L A. m.rn.m Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

An Efficient Mixed Integer
Programming Algorithm for

Minimizing the Training Sample
Misclassification Cost in Two-group

Classification

A. Pedro Duarte Silva*
Antonie Starn **

WP-96-93
August 1996

'Universidade Cat6lica Portuguesa, Faculdade de Ciencias
Economicas e Empresariais, Centro Regional do Porto,

Rua Diogo Botelho 1327, 4150 Porto, Portugal

"Department of Management, Terry College of Business,
The University of Georgia, Athens, GA 30602, U.S.A.

and
International Institute for Applied Systems Analysis

Laxen burg, Austria

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

IQIllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Dr. AD
..m. Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info~iiasa.ac.at

AN EFFICIENT MIXED INTEGER PROGRAMMING ALGORITHM FOR
MINIMIZING THE TRAINING SAMPLE MISCLASSIFICATION COST

IN TWO-GROUP CLASSIFICATION
ABSTRACT

In this paper, we introduce the Divide and Conquer (D&C) algorithm, a computationally

efficient algorithm for determining classification rules which minimize the training sample

misclassification cost in two-group classification. This classification rule can be derived using mixed

integer programming (MIP) techniques. However, it is well-documented that the complexity of MIP-

based classification problems grows exponentially as a function of the size of the training sample and

the number of attributes describing the observations, requiring special-purpose algorithms to solve even

small size problems within a reasonable computational time. The D&C algorithm derives its name

from the fact that it relies, a.o., on partitioning the problem in smaller, more easily handled sub-

problems, rendering it substantially faster than previously proposed algorithms.

The D&C algorithm solves the problem to the exact optimal solution (i . e . , it is not a heuristic

that approximates the solution), and allows for the analysis of much larger training samples than

previous methods. For instance, our computational experiments indicate that, on average, the D&C

algorithm solves problems with 2 attributes and 500 observations more than 3 times faster, and

problems with 5 attributes and 100 observations over 50 times faster than Soltysik and Yarnold's

software, which may be the fastest existing algorithm. We believe that the D&C algorithm contributes

significantly to the field of classification analysis, because it substantially widens the array of data sets

that can be analyzed meaningfully using methods which require MIP techniques, in particular methods

which seek to minimize the misclassification cost in the training sample. The programs implementing

the D&C algorithm are available from the authors upon request.

Keywords: Classification Analysis, Mixed Integer Programming, Nonparametric Statistics.

AN EFFICIENT MIXED INTEGER PROGRAMMING ALGORITHM FOR
MINIMIZING THE TRAINING SAMPLE MlSCLASSlFlCATlON COST

IN TWO-GROUP CLASSIFICATION
1. INTRODUCTION

The classification problem in discriminant analysis involves assigning observations to exactly

one of several well-defined mutually exclusive, collectively exhaustive groups, based on their

characteristics on a set of relevant attributes. Classification analysis has been used widely in many

different disciplines, including medicine (Spiegelhalter and Knill-Jones 1984; Yarnold et al. 1994), the

social sciences, psychology (Huberty 1984), finance (Eisenbeis 1977; Pinches and Mingo 1973), credit

granting (Campbell and Dietrich 1983; Capon 1982; Srinivasan and Kim 1987), and strategic

management (Kim and Kim 1985; Ramanujan et al., 1986).

In this paper, we will limit ourselves to two-group classification. Define group k by Gk, k = 1,

2, and denote the p-dimensional attribute vector describing the characteristics of observation i by

ai = (ail, ..., aiJT. The classical statistical approach to solving the classification problem uses

estimates of the prior group membership probabilities irk (k = 1, 2) and the conditional probability

density functions p(ai I Gk) to derive a classification rule which minimizes either the probability of

misclassification or the expected misclassification cost. Another approach is to estimate the posterior

probabilities p(Gk 1 a;) directly, and build a classification rule which weighs these probabilities by the

applicable misclassification costs (Anderson 1972, McLachlan 1992).

A third approach is to pre-specify a functional form, and determine a classification rule that

optimizes some measure of discrimination or classification accuracy in the training sample. Fisher's

linear discriminant function (LDF) (Fisher 1936) and Smith's quadratic discriminant function (QDF)

(Smith 1947) are the most widely known methods in this class. The LDF rule has been shown to be

optimal if the attribute populations are multivariate normally distributed with equal cross-group

covariances, whereas the QDF is optimal under multivariate normality with covariances that are

unequal across groups (Anderson 1984).

Both the LDF and QDF use criteria based on L2-norm distance measures. However, an L2-

norm criterion may not be appropriate for non-normal data conditions. Although researchers have

found that the classification accuracy of the LDF is fairly robust if the normality assumption is

moderately violated, it tends to classify poorly if the deviations from normality are significant

(Lachenbruch et al. 1973; Fatti et al. 1982). It is well-known that criteria based on higher order norm

distances tend to be influenced heavily by extreme training sample observations. Real-life data sets

often have highly skewed or heavy-tailed attribute distributions and are frequently contaminated by

outliers (Eisenbeis 1977; Glorfeld and Kattan 1989; Stam and Ragsdale 1992). In the presence of such

da ta conditions, it may be useful to consider nonparametric classification methods based on absolute

distances (L1-norm methods) or methods which minimize misclassification costs (Lo-norm methods),

2

which, like the LDF and QDF, pre-specify the functional form of the classification rule but are

potentially more robust.

McLachlan (1992, p. 16) remarks that classification accuracy depends mostly on how well the

classification rule can handle observations of doubtful origin, rather than on how it deals with

observations of obvious origin. In other words, what matters above all is the classification performance

in the region of the attribute space where the groups overlap. As mathematical programming (MP)-

based methods do not make any assumptions about the distributional characteristics of the attribute

populations, and focus on the boundaries of the groups where overlap occurs and group membership is

most uncertain, McLachlan's argument supports the use of MP classification methods.

For two-group classification, Freed and Glover (1981b) popularized the L1-norm minimize the

sum of absolute deviations (MSD) method, variants of which had been proposed previously by

Mangasarian (1965), Koford and Groner (1966), Smith (1968) and Hand (1981). Freed and Glover

(1981a) proposed the Lw-norm-based minimize the maximum deviation (MMD) method, which almost

all studies have found to yield poor classification results (Bajgier and Hill 1982; Freed and Glover 1986;

Joachimsthaler and Stam 1990; Mahmood and Lawrence 1987; Markowski and Markowski 1987).

There is some empirical and experimental evidence that under certain non-normal data conditions the

MSD is more accurate than the LDF and QDF (Duarte Silva 1995; Freed and Glover 1986;

Joachimsthaler and Stam 1988, 1990; Srinivasan and Kim 1987). Other L1-norm two-group

classification methods include the optimize the sum of deviations (OSD) method (Bajgier and Hill

1982; Markowski and Markowski 1985) and the Hybrid method (Glover, Keene and Duea 1988). The

L1- and Lw-norm methods can be solved using linear programming (LP) techniques. Stam and

Joachimsthaler (1989) proposed a class of general Lp-norm criteria (1 5 p < co) which require

nonlinear programming (NLP) techniques. Recently, Gochet et al. (1993) have generalized the LP

methodology for the two-group classification problem to the case of multiple groups.

Another MP approach, the mixed integer programming (MIP) method, minimizes the number

of misclassified training sample observations directly. Named after the MP optimization technique

which is often used to solve this formulation, the MIP method can be viewed as an Lp-norm method

with PO. Hence, we will refer to these methods as MP-Lo methods. With appropriate weighting

factors in the objective function, the MP-Lo method minimizes the misclassification costs in the

training sample. The MP-Lo method for two-group classification was proposed by Ibaraki and Muroga

(1970), Warmack and Gonzalez (1973), Liitschwager and Wang (1978), and popularized by Bajgier and

Hill (1982), Asparoukhov (1985), Koehler and Erenguc (1990), Stam and Joachimsthaler (1990) and

Stam and Jones (1990). Gehrlein (1986) introduced a general formulation for the multiple-group case.

Unfortunately, the MP-Lo formulation is NP-complete, with computational requirements which

increase exponentially as a function of the training sample size. As a consequence, standard MIP

solvers such as MPSX-MIP (International Business Machines 1975) or LINDO (Schrage 1991) can be

used only to solve MP-Lo problems with relatively small training samples. Although special-purpose

3

algorithms which take advantage of the special structure and characteristics of the problem formulation

alleviate this problem somewhat and facilitate the analysis of larger problems (Banks and Abad 1991;

Koehler and Erenguc 1990; Rubin 1990; Soltysik and Yarnold 1994), their application is still limited to

training samples of up to several hundred observations.

The initially proposed MP-based classification rules were linear in the original attributes.

Several recent studies have shown that under certain conditions, for instance if the variance-covariances

across groups differ substantially, classification rules which are nonlinear in the original attributes, in

particular quadratic and polynomial ones, can yield much more accurate classification results than their

linear counterparts (Banks and Abad 1994; Duarte Silva and Stam 1994; Rubin 1994). In practice, the

optimal classification rule may be approximated most accurately by general polynomial functions with

a large number of parameters, and using training samples which are "large" relative to the number of

parameters. Thus, accurate estimation in the presence of unequal variance-covariances across groups

may call for the use of large training samples. In this paper, we present the Divide and Conquer

(D&C) algorithm, a special-purpose, computationally efficient algorithm which takes advantage of the

special structure of the MP-Lo problem, enabling an MIP analysis for substantially larger training

samples than previous special-purpose algorithms. As its computational requirements grow a t a slower

rate than previous methods, the relative efficiency of the D&C algorithm increases with the number of

coefficients to be estimated, 2 , and the training sample size, n. The computational results in Section 5

indicate that the D&C algorithm is superior to previous methods for n 2 200 if t = 2, for n 2 100 if

t = 3, and for n 2 50 if t 2 4.

Throughout this paper, we will focus on the MIP method for classification analysis, and will

use the pre-specified MP classification rule in (1.1), which is comprised of t functions, til = fl(a,), ...,
tit = ft(a,), of the original attribute vectors a,:

t
Classify observation i into GI, if C c j t i j < co,

j = 1
t

Classify observation i into GZ, if C c j t i j > co,
j = 1

where the cj (j = 0, ..., t) are unknown coefficients (parameters), determined such that the appropriate
t

classification criterion is optimized, and observation i is not classified if C c j t i j = co. The functions
j = 1

f3(a,) may be nonlinear. The linear classification rule is a special case of (1.1), with t = p and

t . . = a, j, for all i, j.
8 3

t
Let the classification score of observation i be given by f, = C cjtij, and denote the set of

j = 1
misclassified observations by At. The surface defined by f, = co separates the two groups, and

d , =] f,-co I measures the distance of observation i from the separating surface. If i E At, d, measures

the extent of misclassification, otherwise d, measures the extent of correct classification. Assuming

equal costs of misclassification, the MSD criterion minimizes C . d,, the MMD criterion minimizes

maxi &di, and the MIP criterion minimizes C ,6,, where 6, = 1 if i E At and 6, = 0 otherwise.

4

2. PREVIOUS MP-Lo METHODS FOR MINIMIZING MISCLASSIFICATION COSTS
The critical factors affecting the computational effort of solving MIP models are the number of

integer variables, the structure of the model, and the number of constraints (Hillier and Lieberman

1990, p. 467). Specifically, MIP models with a structure characterized by "tight" constraints, i.e.,

models for which the convex hull of the feasible region is close to the feasible region of the linear

relaxation of the MIP model, require considerably less computational effort than models with "loose"

constraints.

The first MP-Lo formulation is due to Ibaraki and Muroga (1970). For a training sample of n

observations, Ibaraki and Muroga's formulation requires n binary variables and 3n constraints, as well

as the specification of an arbitrarily large scalar M, which may lead to loose constraints. The

computational requirements of Ibaraki and Muroga's model quickly become prohibitive as n increases.

Warmack and Gonzalez (1973) developed a special-purpose Lo classification algorithm which uses a

non-enumerative search procedure based on the geometrical properties of the problem, and is not based

on MP models. Liitschwager and Wang (1978) proposed a MP-Lo formulation requiring n + 22 integer

variables, n + 1 constraints and 22 simple bounds, which does not involve an arbitrary large scalar and

has tighter constraints than Ibaraki and Muroga's model. Koehler and Erenguc (1990) developed a

model with n integer variables that uses "large" scalars, which may lead to loose constraints. Their

special-purpose MP-Lo algorithm solves successive LP models with no more than t + 1 constraints.

Banks and Abad (1991) used a similar strategy, solving LP models with t + 1 tighter constraints and

without arbitrary large scalars. Their model formulation has n integer variables. Athough Banks and

Abad's model requires n more non-integer variables than that of Koehler and Erenguc, the tighter

model constraints more than compensate for the additional computational effort. Soltysik and Yarnold

(1993, 1994) showed that their modified version of the non-MP based Warmack and Gonzalez

algorithm is still more efficient, computationally, than any of the MP-based algorithms mentioned

above.

MP-Lo formulations with secondary objectives can be found in Ibaraki and Muroga (1970),

Bajgier and Hill (1982) and Rubin (1990). Soltysik and Yarnold (1992) present alternative ways of

tightening the model constraints. Heuristic procedures for solving MP-Lo models can be found in

Rubin (1990), Koehler and Erenguc (1990), Ragsdale and Stam (1991), Abad and Banks (1993) and

Chen (1996).

3. SOME IMPROVEMENTS ON MP-Lo METHOD ALGORITHMS
The purpose of our research is to develop faster algorithms for solving MP-Lo models, thus

enabling the analyst to analyze larger size training samples. In this paper, we introduce the D&C

algorithm, an MP-Lo method which, like Koehler and Erenguc (1990) and Banks and Abad (1991),

replaces the task of solving the original MIP formulation by that of solving several LP models with

fewer constraints. In addition, the D&C algorithm partitions the parameter space C into sub-spaces,

5

and solves each corresponding sub-problem with tighter constraints separately.

The contribution of the D&C algorithm can be divided into (1) improvements on Liitschwager

and Wang's (1978) formulation of the MP-Lo classification problem, which we will discuss in Section

3.1, and (2) special-purpose algorithms which partition the original problem into more easily solved

sub-problems, which will be the topic of Section 3.2.

3.1. Tightening the Model Constraints

Liitschwager and Wang's (1978) formulation is presented in Model I.

Model I

Minimize zl = *2c(1 12)
n2 C

i E G2
Subject to:

cj unrestricted, j = 0, ..., p, (3-7)

where C(k 1 m) represents the cost of classifying an observation that belongs to G, into Gk (k, m = 1,

2; k # m), and nk is the number of training sample observations belonging to Gk (k = 1, 2), for a total

training sample size of n = nl + n2.

Model I assumes a linear classification rule, and criterion zl in (3.1) represents the per unit

misclassification cost in the training sample. The scalar M should be large enough to ensure that (3.2)

and (3.3) are always satisfied, so that T, = 1 if observation i E A , and T, = 0 if i $ A. By (3.5),

exactly one of the ej, gj, j= 1, ..., p, equals 1. The constraint set (3.4) forces exactly one of the cj

(j = 1, ..., p), say ch, to either -1 (if gh = 1) or + 1 (if eh = I) , and restricts all other c, (m = 1, ..., p;

m # h) to I c, I 5 1. Forcing (ch I = 1 eliminates the trivial solution co = cl = ... = cp = 0 from

consideration. The scaling of the cj does not exclude any classification rule from consideration, because

all proportional rules of the form (1.1) are equivalent. Scaling the problem such that I cj I < 1, j = 1,

..., p, guarantees that in the optimal solution I co I 5 pMax. .(I aij I), so that (3.2) and (3.3) are
'3

always satisfied if T, = 1 and M = 2pMaxij(I aij I). In the remainder of this paper, we denote the

parameter space of all cj except ch by 9.

Even without special-purpose algorithms, the D&C algorithm improves on Model I in several

different ways. First, the D&C algorithm generalizes the linear classification rules in Model I to the

form (1.1). Second, as the minimization of z1 may yield several non-equivalent classification rules with

the same minimum training sample misclassification cost, the D&C algorithm includes a secondary

criterion z2 which serves to resolve ties in the achievement of zl:

Minimize z2 = ~2 C(1 1 2) E {CO - 5 C j ~ j j } . (3.9)
n2 i E G 2 ~ = 1

The secondary criterion z2 measures the extent by which the observations are misclassified

minus the extent by which the observations are classified correctly. As z2 should never affect the

achievement of zl, z1 and z2 of the modified objective function are optimized lexicographically.

Third, the model structure can be improved by imposing individual lower (L C , < 0) and upper
J

(Uc . > 0) bounds on each c j (j = 0, ..., 1) , instead of the bounds of -1 and + 1 used in Model I. If z1
J

is the single criterion, the optimal criterion value remains unchanged by imposing individual bounds,

provided that L C , and Uc. have opposite signs, because any classification rule can be converted to an
J J

equivalent rule with bounds L C , < 0, Uc , > 0, by multiplying all c j by an appropriate scalar. However,
.I J

if z2 is introduced into the model, the choice of L C , and Uc , is no longer arbitrary, because the scaling
3 J

of c j affects the type of solution obtained directly. For instance, if z2 < 0, which will be the case for

most "reasonable" classification rules (Glover, Keene and Duea 1988; Glover 1990; Gochet et al. 1993),

minimizing z2 implies maximizing I z2 I , introducing a bias towards rules with c j that are close to their

bounds: Thus, the choice of L C and U C should reflect reasonable tentative values for cj, for instance
J J

values derived using some other classification method. In the current implementation of the D&C

algorithm, L C . and Uc , are selected symmetric about 0, one being the value A estimated by the LDF
J 3

(if the MP-Lo rule is linear in the original attributes) or the QDF (if the MP-Lo rule is quadratic in the

original attributes), and the other being - A . The bounds are then normalized such that

(L (= IU, I = l .
Co 0

Fourth, the D&C algorithm implements the recommendation by Soltysik and Yarnold (1992)

to replace M in (3.2) and (3.3) by observation-specific scalars Mi (i = 1, ..., nl + n2). As
t L C <_ c j 5 Uc ., we can set M, = x = ~ a x b ~ C j , Uc ,(,j}-~co for each i E GI, without affecting

J 3 J J
the feasibility of (3.2). Similarly, for i E G2 we can set Mi = U -xi = l ~ i n @ c Cjj, Uc ,tjj}, without

Co J J

affecting (3.3).

Fifth, we observe that a branch-and-bound algorithm (Hillier and Lieberman 1990, 469-485)

which branches first on the binary variables ej and gj in Model I, will set each of these variables equal

to 1 in turn. However, this is equivalent to omitting the ej and gj from Model I altogether, and

setting each c j to -1 (or to LC ,) and + 1 (or to Uc ,) in turn. This solution strategy, adopted in the
J J

D&C algorithm, reduces the number of binary variables by 2(t + 1) and involves solving 2(t + 1)

separate problems P(l), 1 = 1, ..., 2(t + l) , as (1.1) has t + 1 different coefficients c j (cO, ..., ct).

7

Summarizing, the D&C algorithm solves 2 (t + 1) problems of the form Model I1 in

(3.10)-(3.19):

Model 11: MP-Lo Major Sub-Problem

Minimize z3 = I x (rj-7s;) +
i E G 1

Subject to:

c j unrestricted, j = 0, ..., 2; j # h, (3.17)

where [, = (CjO, ..., (,t)T = [-I, fl(a,), ..., ft(a,)lT, ch is fixed to B (either L or U), the s, are
Ch C h C h

slack (i E GI) or surplus (i E G2) variables, s = (sly ..., snl + n2)T, and 77 is a constant satisfying (3.20),

The Us, in (3.20) represent the upper bounds of s,, which, using (3.11)-(3.14), can be
2

expressed as in (3.21) and (3.22),

Since si 5 Us ,, Vi E Gl U G2, (3.20) implies (3.23),
a

so that the r, (i = 1, ..., nl + n2) in the optimal solution are affected only by the minimization of those

components of z3 which correspond to zl. By substitution, the left-hand side of (3.23) equals (3.24),

Therefore, once the ri's are fixed (3.24) is a linear transformation of z2 in (3.9), and

minimizing z3 is equivalent to minimizing zl, followed by minimizing z2 as a secondary objective to

resolve the case of alternative optimal solutions. In a preliminary experimental comparison (not

reported here) we found that, due mainly to a tighter model structure, solving the 2(t + 1) Model I1

problems requires substantially less computational effort than solving the corresponding Model I

problem.

3.2. Partitioning the Global Model

The major contribution of the D&C algorithm is that it greatly improves solution efficiency by

dividing e into several sub-spaces, and solving the resulting partial models separately. Before

discussing the partitioning strategy of the D&C algorithm, we turn our attention to the special case of

perfectly separated training samples.

3.2.1. The Case of Perfect Separation

If it is possible to determine a rule for which all training sample observations are classified

correctly, we can obtain perfect separation of the groups in the training sample. In this case, it is not

necessary to divide the global model into partial models, and the optimal solution of Model 11, with

secondary criterion z2, can be found by solving Model I11 in (3.25)-(3.30). Therefore, the D&C

algorithm solves Model I11 prior to creating 2(2 + 1) Model I1 problems.

Model III: Perfect Separation Model

Minimize z4 = - si - Sir

Subject to:

LC. I c j I Uc ., j = 0, ..., 2,
3 3

c j unrestricted, j = 0, ..., t,

Model I11 has t + 1 structural variables, nl slack variables, n2 surplus variables, nl + n2

constraints and 2(2+ 1) simple bounds. The D&C algorithm solves the dual of Model 111, which has

substantially less constraints (excluding simple bounds), using the simplex method for bounded

variables (Hillier and Lieberman 1990, pp. 58-111, 302-304). Perfect separation is possible if the

9

optimal solution is finite. If the dual yields an unbounded solution, perfect separation in the training

sample is impossible, and the D&C algorithm proceeds with partitioning the global model.

3.2.2. Global Model Partitioning Strategy

As noted above, after checking whether the training sample is perfectly separable, the first step

in the D&C algorithm is to divide the original MP-Lo problem into 2(t + 1) major Model I1 sub-

problems P(I) (I = 1, ..., 2(t + I)) , in which all c j are treated as variables, except for ch, which is fixed

at one of its bounds. Let e(I) C st+' be the parameter space of all cj associated with P(0, and let

Y(I) c st be the parameter space of the c j (j = 0, ..., t; j # h) of P(I) that are not fixed.

The second step is to divide Y(I) into r sub-spaces Y1(I), ..., Y,(I), with "tight" constraints. If a

sub-space does not contain solutions that are close to the global optimal solution, the computational

loss due to a loose formulation tends to be relatively mild. However, it is important to have very tight

formulations for sub-spaces which contain solutions that are close to the global optimum. Thus, rather

than partitioning Y(I) into sub-spaces of equal size, the D&C algorithm creates larger sub-spaces in

regions with solutions that have relatively high training sample misclassification costs and smaller ones

in regions with solutions for which the misclassification costs tend to be lower. The D&C algorithm

generates a set of reasonably good solutions %(I), and uses the characteristics of these solutions in order

to partition Y(I) effectively. %(I) is comprised of the the crN best among N sample solutions (0 < cr < 1)

in Y(I) , determined using a limited breadth-first branch-and-bound search strategy. The values of N

and cr are selected by the analyst.

Y(I) is partitioned into rectangular regions which are parallel to the principal axes of variation

of %(I). The principal axes of variation are determined using principal component analysis (Morrison

1990, pp. 312-342). The initial sub-space Y1(I), built around the centroid of %(I), is a t-dimensional

square region with sides of length SZO(I). The volume of Y1(I) should be a function of the anticipated

effort required to solve each problem. One important factor affecting this effort is the number of

misclassified observations in the optimal solution. The D&C algorithm uses the number of

misclassifications in the incumbent solution (i . e . , the best solution found so far) as a proxy of the

number of misclassifications in the optimal solution, and SZO(I) is inversely related to this quantity.

SZO(I) is also inversely related to the difference between the objective value of the incumbent solution

and the objective value of the linear relaxation of the sub-problem P(I) under consideration. The

rationale for the latter is that if these objective function values are similar (close), the branch-and-

bound algorithm will be able to quickly fathom most of the nodes of its search tree, in which case it is

not necessary to have a very tight formulation and a larger value for SZO1(I) suffices.

As we move away from the centroid along the principal axes of %(I), the side length along the

kth dimension SZk(l) of the subspaces Y,(I), a = 2, ..., r, is increased by a factor IFTk(I) > 1, k = 1, ...,
2 , which is is inversely related to the contribution of the kth principal component of %(I) to the total

variance of %(I), as measured by the corresponding eigenvalue vk(l). Proceeding in this way, the

10

volume of the sub-spaces Ya(I) increases a t successively higher rates, as we move from Y1(I) along

directions which contribute less to the total variance of %(I). Figure 1 illustrates a typical partition of

Y(1) for t = 2.

..

Figure 1 About Here

3.2.3 Solution Strategy

Let Ya(I) be some sub-space created by partitiomng Y(I). The partial sub-problem of Model I1

restricted to Ya(I) requires the introduction of a set of t simple bounds in order to restrict the non-fixed

coefficients cj (j = 0, ..., t; j # h) to Ya(I). This is done by applying the change of variable

transformation (yl, ..., yt + = y = Uc, where U is a (t + 1) x (t + 1) matrix, such that uij (i # t + 1,

j # h) is the coefficient of cj on the ith principal component of %(I), uh = (0, ..., 0, and

ut + l , = 0, for j # h. The first t elements of y represent the principal axes of variation of %(I), and

yt +
= ch. The partial sub-problem for Ya(O is given as Model IV.

Model IV: Partial SubProblem

Minimize z5 = ~ 2 C (1 12) C (ri-17s;)l (3.31)
i E G~ n2 i t G~

Subject to:

L y j S y j 5 Uy ., j= 1, ..., 1,
3

B -
Y t + 1 - BCh7

yj unrestricted, j = 1, ..., 1,

Constraint set (3.32) is derived from (3.1 1) and (3.12). Specifically, Pi = (Pi l l ...,

Pi , t +
= u-'[, for i E G1, and Pi = -u-'[; for i E G2. Constraint set (3.33) corresponds directly

with (3.13). If Ya(I) is located within the interior of Y(4, (3.33) is never binding. Constraint set (3.34)

restricts each yj to the region of Y,(I). Algorithm IV details how L and U can be computed. The
j Y j

values of the Mi are defined by (3.39)-(3.42). Whereas (3.39) and (3.40) correspond with the original

restrictions on the cj, (3.41) reflects that c = (co, ..., cJT must lie inside Ya(C).

Model IV has t continuous structural variables, nl + n2 slack variables, nl + n2 binary

variables, nl + n2 + 2t constraints and 22 simple bounds. Solving Model IV using the branch-and-

bound algorithm implies solving successive LP models (linear relaxations of MIP models) in which

some of the ri are fixed to 0, others are fixed to 1, and yet others are converted into continuous

variables bounded between 0 and 1. Each linear relaxation has nl + n2 + 22 rows and, depending on

how many ri are fixed, between 22 and nl + n2 + 22 columns. Koehler and Erenguc (1990) developed a

model similar to Model IV with linear relaxations of only t rows. Koehler and Erenguc first express the

ri in terms of the remaining variables, and then solve the dual of the revised model, which has as many

constraints as coefficients to be estimated and can be solved very efficiently. Applying this approach to

the linear relaxations of Model IV leads to Model V.

Model V: Reformulated Linear Relaxation - Primal
t x Pi jy j + + l P i , t + 1 + S ,

Minimize z6 = ~ ~ 1 1 2 1 1) n1 (x j - I

Mi -71s; i E G1

Subject to:

t x P i j y j + S , > -By(+ 1 4 i , t + V i E G1 U G2, for which r, is not fixed, (3.45)
j = 1 t

L~~ 5 x U T : ~ , ~ Y ~ 5 uCj, j = 0, ..., t; j # h, (3.46)
k = 1

L y j 5 yj 5 Uy ,, j = 1, ...? 4
3

y . unrestricted, j = 1, ..., t,
3

The scalars Mi in Model V are calculated using (3.39)-(3.42). Some of the ri are fixed, either

to 0 or 1, and the corresponding constraints in (3.44) are derived from (3.32). The constraints (3.45)

apply to those ri which are not fixed, and are derived from (3.32) and the fact that r, > 0. Theorem

12

3.1 shows that in the optimal solution to Model IV all ri 5 1, so that it is not necessary to include

these constraints explicitly.

Theorem 3.1.

Let (y*, s*, r*) be an optimal solution to Model IV, in which some of variables ri are fixed to 0, others

to 1, and the remaining ones satisfy ri 2 0, rather than (3.37). Then it follows that r;' 5 1, b'

i E G1 u G2.

Proof: Suppose that (y*, s*, r*) is an optimal solution and r k > 1, for some m. From (3.32), (3.34),

(3.41) and (3.42) it follows that s k 2 M,(rk-1). Hence, s, and r, can be reduced by As, and Ar,,

respectively, and still remain feasible, as long as As, = M,Ar, and As, 5 sk , thus reducing the
n c 2 i

objective function value by (I '(L - AS, if m E G~ or by '2'" I 2) (~ - if
"1 M, "2 M,

m E G2, which are positive quantities because ~- , l - .q > 0 by (3.20). Therefore, (y*, s*, r*) cannot be

optimal, so that we conclude by contradiction that Theorem 3.1 is true.

Instead of Model V, the D&C algorithm solves its computationally more efficient dual, Model

VI.

Model VI: Reformulated Linear Relaxation - Dual

Maximize z7 = C B y t + l i , t + w i + C M i ~ i +
iEG1UG2 i€G1uG2: r , = 1

Subject to:

wi 2 0, b' i E G1 U G2 for which r, is not fixed, (3.55)

The optimal values for Models V and VI, z: and z;, respectively, differ by a constant, as shown

in (3.58),

Model VI has t rows, nl + n2 + 41 columns and nl + n2 simple bounds. The dual variables 8 3

and B f correspond with the primal constraints that impose the original lower and upper bounds on the

c j coefficients, the y; and y f with the primal constraints associated with the boundaries of Y,([), and

the w, with the primal constraints that determine the contribution (through si and ri) of each

observation to the objective function.

For sub-spaces located within the interior of Y(0, the initial bounds on the c j are satisfied

automatically, in which case the 8; and B f can be eliminated from Model VI. We can verify which of

these variables need to be included in the model formulation, by checking whether (3.59) or (3.60)

holds.

If (3.59) holds for a given sub-space Y,([), then = lu;; yk 2 L C , can never be violated, so
3

that 6; can be omitted from Model VI.

Similarly, if (3.60) is satisfied, then C L = lu;:Yk < Uc , is always satisfied and 6f can be
3

omitted from Model VI. Furthermore, if c is restricted to a sufficiently narrow sub-space of its domain,

it is possible to identify sets of observations that will be misclassified or classified correctly. For

instance, observation i will always be classified correctly if (3.61) holds, and we can set ri = 0.

Conversely, observation i will always be misclassified if (3.62) holds, and we can set ri = 1.

t

C jP i j 7 uy jP, j) + B Pi, t + I > 0,
j = 1 y t + 1

We also know that if (3.63) is true, observation i will always be assigned to G1, so that we can

set ri to 0 if i E G1 or to 1 if i E G2. If (3.64) holds, observation i will always be assigned to G2, and

we can set ri to 1 if i E G1 or to 0 if i E G2.

14

In Model VI, those w , variables corresponding to observations for which the group assignment

is not yet fixed (i.e., r , is variable) are forced to be nonnegative by (3.55). If observation a is forced to

be classified correctly - either by pre-checking, or in the course of the branch-and-bound search - and

r , is fixed to 0, the corresponding constraint of the form (3.55) is removed from the model. If

observation a is forced to be misclassified and r, is fixed to 1, the associate constraint (3.55) is removed

from the model and the constant Mi is added to the objective coefficient of w,.

4. THE DIVIDE AND CONQUER ALGORITHM
We are now ready to outline the steps of the D&C algorithm.

Algorithm I: The Main Algorithm

Step 1: Determine the global bounds L C , and Uc , for each cj, j = 0, ..., 2, and normalize the c j such
that ILc I = 1. 3 3

0

Step 2: Solve the dual of Model 111. If the optimal solution 4 is finite, the groups are perfectly
separable and the classification function that yields perfect separation while mimimizing z2
was found. Otherwise, go to Step 3.

Step 3: Formulate the 2(2 + 1) Model I1 sub-problems P(I), 1 = 1, ..., 2(2 + I) , fixing each ch to LC
h and Uc in turn, and use the procedure described in Algorithm I1 to solve the corresponding

h linear relaxations. Denote the space of the cj that are not fixed by Y(I).

Step 4: Sequence the P(I) in increasing order of the optimal objective function value 5 found in Step

For 1 = 1 to 2(2+ 1) do Steps 5 through 9:

Step 5: Use the procedure described in Algorithm I11 to generate N solutions for model P(I). Create
the set %(I) with the best a N of these solutions.

Step 6: Reorder P(I) in increasing order of the optimal objective function values 4 found in Step 5.

Step 7: Compute the principal components of %(I). Determine the inverse of the (2 + 1) x (2 + 1)
matrix U defined by y = Ue, where yk (k = 1, ..., 2) equals the kth principal component of
%(I), and yt equals the coefficient ch that is fixed in P(I).

Step 8: Use the procedure in Algorithm IV to partition Y(I) into several sub-spaces Ya(I), a = 1, ..., r.

Step 9: Use the procedure described in Algorithm V to solve Model IV for each sub-space Ya(I).

Step 10: Stop. The current solution is optimal for the MP-Lo classification problem, using z2 as the
secondary objective.

In Steps 4 and 6 of Algorithm I, P(I) is ordered in increasing order of the objective values 5 of

the incumbent solutions for Model 11. The purpose of the ordering is to solve the models which are

more likely to have good solutions first, so that solutions with low objective function values may be

identified relatively fast. Proceeding in this manner renders the D&C algorithm faster, because the

15

pre-checking process can quickly eliminate several models from consideration, speeding up the branch-

and-bound algorithm for the remaining models.

Algorithm I1 describes the procedure used to solve the linear relaxation of Model 11. Algorithm

I11 details how to generate an initial set of solutions %(I) for each sub-problem P(C). Algorithm IV

describes the procedure to partition Y(C) into sub-spaces Y1(C), ..., Y,(C). Algorithm V describes the

procedure used to solve the model associated with each sub-space.

Algorithm 11: Solving the Linear Relaxation of Each Major Sub-problem

Step 1: Use equations (3.63) and (3.64) to determine which observations are always classified
correctly when ch = BCh, and set the associated variables r; = 0.

Step 2: Use (3.63) and (3.64) to determine which observations are always misclassified if ch =
(i . e . , either L or U), and let the corresponding ri = 1. B ~ h

h Ch

Step 3: Formulate and solve Model VI without the 73 and the f variables and with U = I, where I
is the (2 + 1) x (2 + 1) identity matrix.

Algorithm 111: Generating An Initial Set of Solutions %(I) For Each Sub-problem

Step 1: Use equations (3.63) and (3.64) to determine which observations are always correctly
classified if ch = B , and let the corresponding ri = 0.

Ch

Step 2: Use equations (3.63) and (3.64) to determine which observations are always misclassified if
ch = Bch, and let the corresponding r, = 1.

Step 3: Generate a set of solutions for problem P(I) using a limited breadth-first, branch-and-bound
search. Start by treating all r, variables not fixed in Steps 1 and 2 as free variables. At each
level of the search tree, set one of the r, equal to 1, in turn.

Step 4: For each of the linear relaxations in Step 3, formulate and solve Model VI without the 73
and the 7f variables and with U = I. Determine %(I) as the set of a N best among the
solutions found.

Algorithm IV: Partitioning the Space of the Non-Fixed Coefficients Y(I)

Step 1: Select values for SZO(C) and IFTk(l), k = 1, ..., 2, determine the centroid c of the set %(I),
and compute y = UF, where U is described in Step 7 of Algorithm I.

Step 2: Create Yl(C) by setting SZk(C) = SZO(C), k = 1, ..., 2. Set the bounds L and Uy , to the
following values: Lyj =Y~-o.ssz~(I), u = B~ + o . ~ s z ~ (c) , j = 1, ..., 2. j 3

j

Step 3: Create Y2(C), ..., Y,(C) by changing the bounds Ly , and Uy ,. Start from Y1(C) and move
towards the boundaries of Y(C). Each time a move 1s made along a direction associated with
the f h principal component of %(C), multiply the side lengths SZk(C) by the factor IFTk(l),
k = 1, ..., j. Stop when Y(C) is totally covered by the sub-spaces created in this step.

Algorithm V: Solving a Partial Sub-problem

Step 1: Use equations (3.59) and (3.60) to find the boundaries of Y(C) that are active in the current
sub-space Y(1).

Step 2: Use equations (3.61), (3.63) and (3.64) to determine which observations are always classified
correctly when ch = Bch and c is restricted to Y',(4. Set the associated variables r, equal to 0.

Step 3: Use equations (3.62), (3.63) and (3.64) to determine which observations are always
misclassified when ch = Bc Restrict the coefficients c j that are not fixed to Y',(I), and set

h'
the corresponding variables r, equal to 1.

Step 4: Solve Model IV by the branch-and-bound algorithm. Use the formulation in Model VI to
solve each linear relaxation derived from Model IV. Include only the variables 8 3 and 8 3
associated with the boundaries of Y'(I) that are active in Y',(I).

5. COMPUTATIONAL EXPERIMENTS
The D&C algorithm described in Section 4 is implemented in the C + + programming

language. The code is available from the authors upon request. Some of the functions used in this

code were developed by Koehler and Erenguc (1990), who were kind enough to share the source code of

their programs. Other functions are our original work, and yet others are adapted from Koehler and

Erenguc's (1990) code. In this section, we report the results of simulation experiments to assess the

relative computational performance of the D&C algorithm, the two fastest existing MP-based

algorithms for solving MP-Lo classification problems, one developed by Banks and Abad (1991) (B&A),

the other by Koehler and Erenguc (1990) (K&E), and the adapted Warmack-Gonzalez algorithm as

implemented by Soltysik and Yarnold (1994) (S&Y). The S&Y algorithm is not MP-based.

Initially, in Table 1 we compare the computational effort of the D&C algorithm with the

results reported in B&A and K&E, in terms of the number of LPs, major pivots and pricings. The

S&Y algorithm cannot be compared in terms of statistics pertaining to MP operations. All of the

results in Table 1 refer to problems with 100 training sample observations (nl = n2 = 50) and 3

independent, identically distributed attributes. The attributes of the observations in GI are normally

distributed with a mean of 0 and a variance of 1, whereas those in G2 follow the normal distribution

with a mean of 0.6 and a variance of 2. The misclassification costs and prior probabilities are assumed

to be equal across groups.

Table 1 About Here

The results reported by K&E are based on 100 replications, while the B&A and D&C

experiments involve 20 replications. The figures in Table 1 indicate that the D&C algorithm is much

more efficient computationally than the K&E and B&A algorithms. The computational effort of the

D&C algorithm is greatly reduced, with on average about 35 times less LPs solved, 4.5 times less

pivots and 90 times less pricings than K&E, and with about 5 times less LPs and 3 times less pivots

than Banks and Abad. Koehler and Erenguc reported an average CPU time for their algorithm of 3

minutes on an IBM 3090/400 mainframe. On average, the D&C algorithm required 18 CPU seconds

on a 486 DX2 (66 Mhz), DX2 Personal Computer with 16MB of RAM. Banks and Abad did not

17

report solution times or pricing information for their algorithm.

The two right-most columns of Table 1 provide information on the average number of sub-

problems created (SBP-CRT) and actually solved (SBP-SLV) by the D&C algorithm. Not all sub-

problems created are actually solved, since it is possible to recognize a priori that some sub-regions of

the coefficient space cannot contain solutions with a lower training sample cost than the current

incumbent solution. The two right-most columns do not apply to the B&A and K&E algorithms, since

these did not divide the original problem into sub-problems.

Soltysik and Yarnold (1994) report experimental results which show that, a t least for data

conditions similar to those studied by Koehler and Erenguc (1990) and Banks and Abad (1991), with

100 training sample observations and 3 attributes), the S&Y algorithm is considerably faster than the

MP-based B&A and K&E algorithms. Therefore, we performed an experiment to measure the relative

efficiency of the D&C and S&Y algorithms, comparing the CPU time required to find the linear MP-Lo

classification rule using PC implementations of both algorithms, run on a 486 DX2 (66 Mhz), DX2

Personal Computer with 16MB of RAM. Since the S&Y algorithm is not based on MP models, the

two algorithms can be compared only in terms of CPU times.

In our experiments, we analyzed problems with 2, 3, 4 and 5 attributes. The attributes of the

training sample observations in GI were generated from the multivariate normal distribution with

mean vector p = (0, ..., o) ~ and variance-covariance matrix C = I, and those in G2 from the

multivariate normal distribution with p = (1, ..., and C = I. This data condition corresponds with

the "high discrimability problems" considered by Soltysik and Yarnold (1994). The training samples

generated were balanced. Intitially, we generated and solved problems with a total of 50 and 100

observations. Subsequently, as long as none of the problems required more than 10 CPU minutes to

solve, we extended the computational experiment to larger training samples, in increments of 100

observations. The largest problem considered had two attributes and 1,000 observations in the training

sample. All of the classification rules used were linear, and the computational results are based on 10

replications for each data condition. The computational results of our experiments are summarized in

Tables 2-5.

..

Figure 2 and Tables 2-5 About Here

The figures in Tables 2-5 clearly show that the time required to determine the MP-Lo

classification rule increases exponentially as a function of the training sample size. For instance, when

the training sample size is doubled from 50 to 100 observations, the mean solution time of the S&Y

algorithm increases from 10.7 to 263.2 seconds for 4-attribute problems, and from 45.4 to 4,200 seconds

for 5-attribute problems. Although the computational effort for the D&C algorithm is much less, the

exponential growth in computational burden is evident for this algorithm as well, with an increase from

5.3 to 29.5 and from 3.5 to 78.5 seconds for 4-attribute and 5-attribute problems, respectively. The

18

exponential growth for the case of 3-attribute problems is displayed graphically in Figure 2.

The exponential growth becomes more dramatic as the number of attributes increases. For

instance, when the training sample size for 2-attribute problems is increased from 50 to 100, the CPU

time grows by a factor of about 2.5 (from 0.5 to 1.4 and from 0.4 to 0.9 seconds for the D&C and the

S&Y algorithm, respectively). For 4-attribute problems, the corresponding growth factors are 5.6

(D&C) and 24.5 (S&Y), and for 5-attribute problems are 22.7 (D&C) and 92.4 (S&Y).

This computational behavior has two important consequences: (1) for "small problems," with

few attributes and small training samples, it is possible to determine MP-Lo classification rules very

quickly. However, for "larger problems" the computer resources required become prohibitive; (2) the

training sample size for which it is possible to find MP-Lo rules within a "reasonable" time strongly

depends on how many attributes the problem has. For 2-attribute problems, training samples with

more than 1,000 observations can still be analyzed, but the limit on the training sample size decreases

quickly as the number of attributes increases.

Although the S&Y is faster than the D&V algorithm for "small" problems (i . e . , for 2-attribute

problems with less than 200 observations and 3-attribute problems with less than 50 observations), it is

evident from Tables 2-5 that the solution time of the S&Y algorithm grows faster than that of the

D&C algorithm, as the training sample size and the number of number of attributes increases. For

example, for 4-attribute problems with more than 200 observations and 5-attribute problems with more

than 100 observations, the D&C algorithm is over 50 times faster than the S&Y algorithm. This

impressive improvement in relative efficiency of the D&C algorithm is due to the fact that, whereas the

solution times of the S&Y algorithm explode quickly, even for moderate numbers of attributes, the

D&C algorithm is able to moderate this effect by judicially dividing the problem into sub-problems,

thus reducing the computational burden and facilitating the solution of substantially larger size

problems within a reasonable time.

In order to better understand the effect of training sample size on the CPU times required by

both algorithms, we regressed the logarithms of the CPU seconds, ln(T), against the logarithms of the

number of training sample observations, ln(n), for each number of attributes considered. The

estimated regressions, with the standard errors within brackets below the coefficient estimates, are

presented in Table 6.

..............................
Table 6 About Here

The high R~ values of between 85 and 98 percent reveal a strong linear relation between ln(T)

and ln(n), implying an exponential relationship between the original variables, T and n. The effect of

the number of attributes on the rate of exponential growth of the CPU time for the S&Y algorithm is

shown by the increase of the coefficient of ln(n). For the S&Y algorithm, this coefficient increases from

2.57 for 2-attribute problems to 6.59 for 5-attribute problems; for the D&C algorithm it increases from

19

1.73 to 4.20. As the coefficients of ln(n) for the D&C algorithm are always smaller than the

corresponding coefficients for the S&Y algorithm, the regression models confirm the notion that the

growth rate of the computational effort for the D&V algorithm is slower than that for the S&Y

algorithm.

We can also use the regression models in Table 6 to estimate the maximum training sample

sizes that could be solved within a given amount of time T, using a 486 DX2 (66 Mhz) PC. The

estimates of the largest training sample sizes that can be solved in 10, 60, 600 and 3,600 CPU seconds

are presented in Table 7.

...

Figure 3 and Table 7 About Here

Table 7 illustrates that a small reduction in the growth rate of the solution time can yield a

dramatic improvement in computational efficiency. For instance, in ten CPU minutes (600 seconds)

the D&C algorithm is able to solve problems with about three times more observations than the S&Y

algorithm. Problems with 5 attributes and 100 observations would take about one CPU hour (3600

seconds) and one CPU minute (60 seconds) using the S&Y and D&V algorithm, respectively. The

projection for the case of 4-attribute problems are shown in Figure 3.

In spite of these promising results, the current implementation of the D&C algorithm is still

unable to find solutions to some common pattern recognition problems involving more than 1,000

observations and more than 10 attributes, within a reasonable amount of time. Furthermore, for these

problems the availability of faster hardware would not have a significant impact, as the increase in

training sample size that can be analyzed associated with a given reduction of the computational

requirement is less than proportional. For instance, for 5-attribute problems a tenfold increase in CPU

time is not enough to double the maximum training sample size that can be handled. However, further

reductions in the growth rate of the CPU solution time can increase the size of problems that can be

analyzed substantially.

Our current research focuses on how to improve and fine-tuce the D&C algorithm. It is our

belief that future implementations of the D&C algorithm will have a considerably lower growth rate of

CPU time, and will facilitate the solution of considerably larger problems, particularly problems with

larger numbers of attributes, than is currently feasible.

6. CONCLUSIONS
In this paper, we introduce the Divive and Conquer (D&C) algorithm, a special-purpose

algorithm for solving MP-Lo classification problems. Our computational tests show that, except for

small sample sizes - in which case there are no computational difficulties anyway - the D&C

algorithm solves the MP-Lo classification problem much faster than previously proposed algorithms,

MP-based and non-MP-based alike. By partitioning the problem into smaller sub-problems, the D&C

20

algorithm reduces the computational effort required dramatically. As, in comparison with existing

special-purpose algorithms, the D&C algorithm greatly reduces the exponential growth rate of the

computational requirements as a function of the training sample size and the number of attributes, it

contributes significantly to the field of MP-Lo classification analysis, facilitating the analysis of much

larger training sample data sets than previously possible.

The current research can be extended in several different ways. First, it is worthwhile to

explore parallel implementations of the D&C algorithm, improving the computational efficiency even

further. Second, the D&C algorithm can be refined in several respects. It appears particularly useful

to focus on improvements which reduce the exponential growth rate of the computational requirements.

Third, whereas the D&C algorithm solves to optimality, it may be possible to develop tabu-search

heuristics that provide close approximations to the optimal solution of large MP-Lo classification

problems.

Abad, P. L. and Banks, W. J., "New LP Based Heuristics for the Classification Problem," European
Journal of Operational Research, 27, 1993, 88-100.

Anderson, J . A., "Separate Sample Logistic Discrimination," Biometrika, 59, 1972, 19-35.

Anderson, T. W., An Introduction to Multivariate Statistical Analysis, Second Edition, Wiley, New
York, NY, 1984.

Asparoukhov, 0. K., Microprocessor System for Investigation of Thromboembolic Complications,
Unpublished Ph.D. Dissertation, Technical University of Sofia, Bulgaria, 1985 (in Bulgarian).

Bajgier, S. M. and Hill, A., "An Experimental Comparison of Statistical and Linear Programming
Approaches to the Discriminant Problem," Decision Sciences, 13, 1982, 604-618.

Banks, W. J . and Abad, P. L., "An Efficient Optimal Solution Algorithm for the Classification
Problem," Decision Sciences, 22, 1991, 1008-1023.

Banks, W. J . and Abad, P. L., "On the Performance of Linear Programming Heuristic Applied on a
Quadratic Transformation in the Classification Problem," European Journal of Operational Research,
74, 1994, 23-28.

Campbell, T. S. and Dietrich, J . K., "The Determinants of Default on Insured Conventional
Residential Mortgage Loans," Journal of Finance, 38, 1983, 1569-1581.

Capon, N., "Credit Scoring Systems: A Critical Analysis," Journal of Marketing, 46, 1982, 82-91.

Chen, C., "Hybrid Misclassification Minimisation," paper presented a t the National INFORMS
Meeting, Washington, DC, May 1996.

Duarte Silva, A. P., Minimizing Misclassification Costs in Two-Group Classification Analysis,
Unpublished Ph.D. Dissertation, The University of Georgia, 1995.

Duarte Silva, A. P. and Stam, A., "Second Order Mathematical Programming Formulations for
Discriminant Analysis," European Journal of Operational Research, 74, 1994, 4-22.

Eisenbeis, R. A., LLPitfalls in the Application of Discriminant Analysis," Journal of Finance, 32, 1977,
875-900.

Fatti, L. P., Hawkins, D. M. and Raath, E. L., "Discriminant Analysis," in: Topics in Applied
Multivariate Analysis, D. M. Hawkins (Ed.), Cambridge University Press, Cambridge, England, 1982,
1-77.

Fisher, R. A., "The Use of Multiple Measurements in Taxonomy Problems," Annals of Eugenics, 7,
1936, 179-188.

Freed, N. and Glover, F., "A Linear Programming Approach to the Discriminant Problem," Decision
Sciences, 12, 1981a, 68-74.

Freed, N. and Glover, F., "Simple But Powerful Goal Programming Formulations for the Discriminant
Problem," European Journal of Operational Research, 7, 1981b, 44-60.

Freed, N. and Glover, F., L'Evaluating Alternative Linear Programming Models to Solve the Two-
Group Discriminant Problem," Decision Sciences, 17, 1986, 151-162.

Gehrlein, W. V., "General Mathematical Programming Formulations for the Statistical Classification
Problem," Operations Research Letters, 5, 1986, 299-304.

Glorfeld, L. W. and Kattan, M. W., "A Comparison of the Performance of Three Classification
Procedures When Applied to Contaminated Data," in: Proceedings of the 21st Annual Meeting of the
Decision Sciences Institute, 1989, 1153-1155.

Glover, F., "Improved Linear Programming Models for Discriminant Analysis," Decision Sciences, 21,
1990, 771-785.

Glover, F., Keene, S. and Duea, B., KA New Class of Models for the Discriminant Problem,'' Dec i s i~n
Sciences, 19, 1988, 269-280.

Gochet, W., Srinivasan, V., Stam, A. and Chen, S., "Multi-Group Discriminant Analysis Using Linear
Programming," Onderzoeksrapport #9305, Department of Applied Economic Sciences, Katholieke
Universiteit Leuven, Leuven, Belgium, 1993 (Forthcoming in Operations Research).

Hand, D. J. , Discrimination and Classification, John Wiley, New York, NY, 1981.

Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research, Fifth Edition, McGraw-Hill,
New York, 1990.

Huberty, C. J. , LLIssues in the Use and Interpretation of Discriminant Analysis," Psychological Bulletin,
95, 1984, 156-171.

Ibaraki, T. and Muroga, S., "Adaptive Linear Classifier by Linear Programming," IEEE Transactions
on Systems, Science and Cybernetics, SSG6, 1970, 53-62.

International Business Machines, IBM Mathematical Programming Systems Extended/370
(MPSX/370), Mixed Integer Programming/370 (MIP/370), White Plains, New York, NY, 1975.

Joachimsthaler, E. A. and Stam, A., "Four Approaches to the Classification Problem in Discriminant
Analysis: An Experimental Study," Decision Sciences, 19, 1988, 322-333.

Joachimsthaler, E. A. and Stam, A., "Mathematical Programming Approaches for the Classification
Problem in Two-Group Discriminant Analysis," Multivariate Behavioral Research, 25, 1990, 427-454.

Kim, L. and Kim, Y., "Innovation in a Newly Industrializing Country: A Multiple Discriminant
Analysis," Management Science, 31, 1985, 312-322.

Koehler, G. J . and Erenguc, S. S., "Minimizing Misclassifications in Linear Discriminant Analysis,"
Decision Sciences, 21, 1990, 63-85.

Koford, J . S. and Groner, G . F., "The Use of an Adaptive Threshold Element to Design a Linear
Optimal Pattern Classifier," IEEE Transactions on Information Theory, IT-12, 1966, 42-50.

Lachenbruch, P. A., Sneeringer, C. and Revo, L. T., "Robustness of the Linear and Quadratic
Discriminant Function to Certain Types of Non-Normality," Communications in Statistics, 1, 1973,
39-57.

Liitschwager, J . M. and Wang, C., "Integer Programming Solution of a Classification Problem,"
Management Science, 24, 1978, 1515-1525.

Mahmood, M. A. and Lawrence, E. C., "A Performance Analysis of Parametric and Nonparametric
Discriminant Approaches to Business Decision Making," Decision Sciences, 18, 1987, 308-326.

2 5

Mangasarian, 0 . L., "Linear and Nonlinear Separation of Patterns by Linear Programming,"
Operations Research, 13, 1965, 444-452.

Markowski, C. A. and Markowski, E. P., "Some Difficulties and Improvements in Applying Linear
Programming Formulations to the Discriminant Problem," Decision Sciences, 16, 1985, 237-247.

Markowski, C. A. and Markowski, E. P., "An Experimental Comparison of Several Approaches to the
Discriminant Problem With Both Qualitative and Quantitative Variables," European Journal of
Operational Research, 28, 1987, 74-78.

McLachlan, G. J., Discriminant Analysis and Statistical Pattern Recognition, Wiley, New York, NY,
1992.

Morrison, D. F., Multivariate Statistical Methods, Third Edition, McGraw-Hill, New York, NY, 1990.

Pinches, G. E. and Mingo, K. A., "A Multivariate Analysis of Industrial Bond Ratings," Journal of
Finance, 28, 1973, 1-18.

Ragsdale, C. T. and Stam, A., "An Efficient Heuristic Method for Minimizing the Number of
Misclassified Observations in Discriminant Analysis," Working Paper, Terry College of Business, The
University of Georgia, 1991.

Ramanujan, V., Venkatraman, N. and Camillus, J . C., "Multi-Objective Assessment of Effectiveness of
Strategic Planning: A Discriminant Analysis Approach," Academy of Management Journal, 29, 1986,
347-372.

Rubin, P. A., "Heuristic Solution Procedures for a Mixed-Integer Programming Discriminant Model,"
Managerial and Decision Economics, 11, 1990, 255-266.

Rubin, P. A., "A Comment Regarding Polynomial Discriminant Analysis," European Journal of
Operational Research, 72, 1994, 29-31.

Schrage, L., LINDO: User's Manual, Release 5.0, The Scientific Press, South San Francisco, CA, 1991.

Smith, C. A. B., "Some Examples of Discrimination," Annals of Eugenics, 13, 1947, 272-282.

Smith, F. W., "Pattern Classifier Design by Linear Programming," IEEE Transactions on Computers,
C-17, 1968, 367-372.

Soltysik, R. C. and Yarnold, P.R., "Fast Solutions to Optimal Discriminant Analysis Problems,"
presented a t the TIMS/ORSA National Meeting (Invited), Orlando, FL, April 1992.

Soltysik, R. C. and Yarnold, P.R., "ODA 1.0: Optimal Discriminant Analysis for DOS, Optimal Data
Analysis, Chicago, IL, 1993.

Soltysik, R. C. and Yarnold, P. R., "The Warmack-Gonzalez Algorithm for Linear Two-Category
Multivariate Optimal Discriminant Analysis," Computers & Operations Research, 21, 1994, 735-745.

Spiegelhalter, D. J . and Knill-Jones, R. P., "Statistical and Knowledge-Based Approaches to Clinical
Decision-Support Systems, With an Application to Gastroenterology," Journal of the Royal Statistical
Society, Series A 147, Part 1, 1984, 35-77.

Srinivasan, V. and Kim, Y. H., "Credit Granting: A Comparative Analysis of Classification
Procedures," Journal of Finance, 42, 1987, 665-683.

Stam, A. and Joachimsthaler, E. A., "Solving the Classification Problem in Discriminant Analysis via
Linear and Nonlinear Programming Methods," Decision Sciences, 20, 1989, 285-293.

Stam, A. and Joachimsthaler, E. A., "A Comparison of a Robust Mixed-Integer Approach to Existing
Methods for Establishing Classification Rules for the Discriminant Problem," European Journal of
Operational Research, 46, 1990, 113-120.

Stam, A. and Jones, D. G., "Classification Performance of Mathematical Programming Techniques in
Discriminant Analysis: Results for Small and Medium Sample Sizes," Managerial and Decision
Economics, 11, 1990, 243-253.

Stam, A. and Ragsdale, C. T., "On the Classification Gap in MP-Based Approaches to the
Discriminant Problem," Naval Research Logistics, 39, 1992, 545-559.

Warmack, R. E. and Gonzalez, R. C., "An Algorithm for the Optimal Solution of Linear Inequalities
and its Application to Pattern Recognition," IEEE Transactions on Computers, C-22, 1973,
1065-1075.

Yarnold, P.R., Soltysik, R. C. and Martin, G. J., "Heart Rate Variability and Susceptibility for
Sudden Cardiac Death: An Example of Multivariable Optimal Discriminant Analysis," Statistics in
Medicine, 13, 1994, 1015-1021.

Figure 1: A Typical Partition of J(I)

2 6

Figure 2: Average Computational Effort for the D&C and S&Y Algorithms, %Attribute Problems

5 0 100 200 300 400 500

Observations

Figure 3: Projected Etelationship of Computational Effort and Maximum Training Sample Sizes
for the D&C and S&Y Algorithms, 4Attribute Problems

0 . I

10 60 600 3600

CPU Solution Time

28

Table 1: Computational Effort of the BEA, K&E and D&C Algorithms

Table 2: Execution Times (CPU Seconds) for the D&C and S&Y Algorithms:
Problems with Two Attributes

Algorithm

K&E

B& A

D&C

Table 3: Execution T i e s (CPU Seconds) for the D&C and S&Y Algorithms:

Number of Major Pivots

53,485
16,673

35,739
15,077

12,099
4,266

Number of LPs

Mean 61,821
Std. 30,515

Mean 8,940
Std. 5,242

Mean 1,707
Std. 1,040

Number of
Observations

50
100
200
300
400
500

Problems with ~ h r e e Attributes

Pricing

15,478,800
6,609,405

-
-

172,027
64,372

D&C
Mean Min Max

0.5 0.4 0.8
1.4 0.9 1.9
4.0 2.9 5.1
8.4 6.5 10.8

14.0 11.5 16.4
20.6 16.5 25.8

Table 4: Execution T i e s (CPU Seconds) for the D&C and S&Y Algorithms:
Problems with Four Attributes

S&Y
Mean Min Max

0.4 0.2 0.6
0.9 0.5 1.5
4.5 3.4 7.4

14.9 11.2 21.5
35.3 24.6 50.8
67.2 49.1 93.4

Number of
Observations

Number of
Observations

SBP-CRT

-
-

-
-

2,565
606

S&Y
Mean Mean Min Max

D&C
Mean Min Max

5.3 0.6 15.2
29.5 11.3 66.0

181.5 70.0 311.3
488.2 307.9 788.1

SBP-SLV

-
-

-
-

290
94

S&Y
Mean Min Max

10.8 1.9 17.4
263.2 103.4 436.2

9,076.6 4,732.2 13,999.3
- -

Table 5: Execution Times (CPU Seconds) for the D&C and S&Y Algorithms:
problems with ~ i v e Attributes

Number of
Observations Mean Mean Min Max

Table 6: Estimated Regression Models (Computational Effort vs. Training Sample Size)

Two-Attribute Problems

S&Y Algorithm

l n (T) = -11.74 + 2.571n(n)
(.224) (.037)

R2 = 0.98

D&C Algorithm

ln (T) = -7.65 + 1.731n(n)
(.130) (. 0 2 2)

R2 = 0.98

Three-Attribute Problems

S&Y Algorithm

l n (T) = -14.01 + 3.681n(n)
(.340) (.081)

R2 = 0.98

D&C Algorithm

ln (T) = -8.10 + 2.201n(n)
(.244) (. 0 4 6)

R2 = 0.98

Four-Attribute Problems

S&Y Algorithm

l n (T) = -16.99 + 4.911n(n)
(.765) (.168)

R2 = 0.97

D&C Algorithm

ln (T) = -9.94 + 2.841n(n)
(.826) (. 1 6 8)

R2 = 0.88

Five-Attribute Problems

S&Y Algorithm

ln (T) = -22.12 + 6.591n(n)
(1 .415) (.331)

R2 = 0.95

D&C Algorithm

ln (T) = -15.65 + 4.201n(n)
(1 .505) (.324)

R2 = 0.85

30

Table 7: Estimates of Largest Training Sample S i That Can be Analyzed with a 486 PC at 66 MHz

Number of
Attributes

2

3

4

5

Algorithm

S&Y
D&C

S&Y
D&C

S&Y
D&C

S&Y
D&C

CPU Time (Seconds)
10

234
311

84
114

5 1
74

40
72

600

1150
3310

257
736

117
316

75
19 1

60

470
876

137
258

73
140

53
110

3600

2308
9310

419
1664

169
596

99
293

