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AN EFFICIENT MIXED INTEGER PROGRAMMING ALGORITHM FOR 
MINIMIZING THE TRAINING SAMPLE MISCLASSIFICATION COST 

IN TWO-GROUP CLASSIFICATION 
ABSTRACT 

In this paper, we introduce the Divide and Conquer (D&C) algorithm, a computationally 

efficient algorithm for determining classification rules which minimize the training sample 

misclassification cost in two-group classification. This classification rule can be derived using mixed 

integer programming (MIP) techniques. However, it is well-documented that the complexity of MIP- 

based classification problems grows exponentially as a function of the size of the training sample and 

the number of attributes describing the observations, requiring special-purpose algorithms to solve even 

small size problems within a reasonable computational time. The D&C algorithm derives its name 

from the fact that it relies, a.o., on partitioning the problem in smaller, more easily handled sub- 

problems, rendering it substantially faster than previously proposed algorithms. 

The D&C algorithm solves the problem to the exact optimal solution ( i . e . ,  it is not a heuristic 

that approximates the solution), and allows for the analysis of much larger training samples than 

previous methods. For instance, our computational experiments indicate that,  on average, the D&C 

algorithm solves problems with 2 attributes and 500 observations more than 3 times faster, and 

problems with 5 attributes and 100 observations over 50 times faster than Soltysik and Yarnold's 

software, which may be the fastest existing algorithm. We believe that the D&C algorithm contributes 

significantly to the field of classification analysis, because it substantially widens the array of data  sets 

that can be analyzed meaningfully using methods which require MIP techniques, in particular methods 

which seek to minimize the misclassification cost in the training sample. The programs implementing 

the D&C algorithm are available from the authors upon request. 

Keywords: Classification Analysis, Mixed Integer Programming, Nonparametric Statistics. 



AN EFFICIENT MIXED INTEGER PROGRAMMING ALGORITHM FOR 
MINIMIZING THE TRAINING SAMPLE MlSCLASSlFlCATlON COST 

IN TWO-GROUP CLASSIFICATION 
1. INTRODUCTION 

The classification problem in discriminant analysis involves assigning observations to  exactly 

one of several well-defined mutually exclusive, collectively exhaustive groups, based on their 

characteristics on a set of relevant attributes. Classification analysis has been used widely in many 

different disciplines, including medicine (Spiegelhalter and Knill-Jones 1984; Yarnold et  al. 1994), the 

social sciences, psychology (Huberty 1984), finance (Eisenbeis 1977; Pinches and Mingo 1973), credit 

granting (Campbell and Dietrich 1983; Capon 1982; Srinivasan and Kim 1987), and strategic 

management (Kim and Kim 1985; Ramanujan et  al., 1986). 

In this paper, we will limit ourselves to two-group classification. Define group k by Gk, k = 1, 

2, and denote the p-dimensional attribute vector describing the characteristics of observation i by 

ai = (ail, ..., aiJT. The classical statistical approach to solving the classification problem uses 

estimates of the prior group membership probabilities irk ( k =  1, 2) and the conditional probability 

density functions p(ai I Gk) to derive a classification rule which minimizes either the probability of 

misclassification or the expected misclassification cost. Another approach is to estimate the posterior 

probabilities p(Gk 1 a;) directly, and build a classification rule which weighs these probabilities by the 

applicable misclassification costs (Anderson 1972, McLachlan 1992). 

A third approach is to pre-specify a functional form, and determine a classification rule that 

optimizes some measure of discrimination or classification accuracy in the training sample. Fisher's 

linear discriminant function (LDF) (Fisher 1936) and Smith's quadratic discriminant function (QDF) 

(Smith 1947) are the most widely known methods in this class. The LDF rule has been shown to  be 

optimal if the attribute populations are multivariate normally distributed with equal cross-group 

covariances, whereas the QDF is optimal under multivariate normality with covariances that are 

unequal across groups (Anderson 1984). 

Both the LDF and QDF use criteria based on L2-norm distance measures. However, an L2- 

norm criterion may not be appropriate for non-normal data  conditions. Although researchers have 

found that the classification accuracy of the LDF is fairly robust if the normality assumption is 

moderately violated, it tends to classify poorly if the deviations from normality are significant 

(Lachenbruch et  al. 1973; Fatti et  al. 1982). It is well-known that criteria based on higher order norm 

distances tend to be influenced heavily by extreme training sample observations. Real-life data  sets 

often have highly skewed or heavy-tailed attribute distributions and are frequently contaminated by 

outliers (Eisenbeis 1977; Glorfeld and Kattan 1989; Stam and Ragsdale 1992). In the presence of such 

da ta  conditions, it may be useful to  consider nonparametric classification methods based on absolute 

distances (L1-norm methods) or methods which minimize misclassification costs (Lo-norm methods), 
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which, like the LDF and QDF, pre-specify the functional form of the classification rule but are 

potentially more robust. 

McLachlan (1992, p. 16) remarks that classification accuracy depends mostly on how well the 

classification rule can handle observations of doubtful origin, rather than on how it deals with 

observations of obvious origin. In other words, what matters above all is the classification performance 

in the region of the attribute space where the groups overlap. As mathematical programming (MP)- 

based methods do not make any assumptions about the distributional characteristics of the attribute 

populations, and focus on the boundaries of the groups where overlap occurs and group membership is 

most uncertain, McLachlan's argument supports the use of MP classification methods. 

For two-group classification, Freed and Glover (1981b) popularized the L1-norm minimize the 

sum of absolute deviations (MSD) method, variants of which had been proposed previously by 

Mangasarian (1965), Koford and Groner (1966), Smith (1968) and Hand (1981). Freed and Glover 

(1981a) proposed the Lw-norm-based minimize the maximum deviation (MMD) method, which almost 

all studies have found to yield poor classification results (Bajgier and Hill 1982; Freed and Glover 1986; 

Joachimsthaler and Stam 1990; Mahmood and Lawrence 1987; Markowski and Markowski 1987). 

There is some empirical and experimental evidence that under certain non-normal data  conditions the 

MSD is more accurate than the LDF and QDF (Duarte Silva 1995; Freed and Glover 1986; 

Joachimsthaler and Stam 1988, 1990; Srinivasan and Kim 1987). Other L1-norm two-group 

classification methods include the optimize the sum of deviations (OSD) method (Bajgier and Hill 

1982; Markowski and Markowski 1985) and the Hybrid method (Glover, Keene and Duea 1988). The 

L1- and Lw-norm methods can be solved using linear programming (LP) techniques. Stam and 

Joachimsthaler (1989) proposed a class of general Lp-norm criteria (1 5 p < co) which require 

nonlinear programming (NLP) techniques. Recently, Gochet et al. (1993) have generalized the LP 

methodology for the two-group classification problem to the case of multiple groups. 

Another MP approach, the mixed integer programming (MIP) method, minimizes the number 

of misclassified training sample observations directly. Named after the MP optimization technique 

which is often used to  solve this formulation, the MIP method can be viewed as an Lp-norm method 

with PO. Hence, we will refer to these methods as MP-Lo methods. With appropriate weighting 

factors in the objective function, the MP-Lo method minimizes the misclassification costs in the 

training sample. The MP-Lo method for two-group classification was proposed by Ibaraki and Muroga 

(1970), Warmack and Gonzalez (1973), Liitschwager and Wang (1978), and popularized by Bajgier and 

Hill (1982), Asparoukhov (1985), Koehler and Erenguc (1990), Stam and Joachimsthaler (1990) and 

Stam and Jones (1990). Gehrlein (1986) introduced a general formulation for the multiple-group case. 

Unfortunately, the MP-Lo formulation is NP-complete, with computational requirements which 

increase exponentially as a function of the training sample size. As a consequence, standard MIP 

solvers such as MPSX-MIP (International Business Machines 1975) or LINDO (Schrage 1991) can be 

used only to solve MP-Lo problems with relatively small training samples. Although special-purpose 
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algorithms which take advantage of the special structure and characteristics of the problem formulation 

alleviate this problem somewhat and facilitate the analysis of larger problems (Banks and Abad 1991; 

Koehler and Erenguc 1990; Rubin 1990; Soltysik and Yarnold 1994), their application is still limited to 

training samples of up to  several hundred observations. 

The initially proposed MP-based classification rules were linear in the original attributes. 

Several recent studies have shown that under certain conditions, for instance if the variance-covariances 

across groups differ substantially, classification rules which are nonlinear in the original attributes, in 

particular quadratic and polynomial ones, can yield much more accurate classification results than their 

linear counterparts (Banks and Abad 1994; Duarte Silva and Stam 1994; Rubin 1994). In practice, the 

optimal classification rule may be approximated most accurately by general polynomial functions with 

a large number of parameters, and using training samples which are "large" relative to the number of 

parameters. Thus, accurate estimation in the presence of unequal variance-covariances across groups 

may call for the use of large training samples. In this paper, we present the Divide and Conquer 

(D&C) algorithm, a special-purpose, computationally efficient algorithm which takes advantage of the 

special structure of the MP-Lo problem, enabling an MIP analysis for substantially larger training 

samples than previous special-purpose algorithms. As its computational requirements grow a t  a slower 

rate than previous methods, the relative efficiency of the D&C algorithm increases with the number of 

coefficients to  be estimated, 2 ,  and the training sample size, n. The computational results in Section 5 

indicate that the D&C algorithm is superior to previous methods for n 2 200 if t = 2, for n 2 100 if 

t = 3, and for n 2 50 if t 2 4. 

Throughout this paper, we will focus on the MIP method for classification analysis, and will 

use the pre-specified MP classification rule in (1.1), which is comprised of t functions, til = fl(a,), ..., 
tit = ft(a,), of the original attribute vectors a,: 

t 
Classify observation i into GI, if C c j t i j  < co, 

j = 1  
t 

Classify observation i into GZ, if C c j t i j  > co, 
j = 1  

where the cj  ( j  = 0, ..., t) are unknown coefficients (parameters), determined such that the appropriate 
t 

classification criterion is optimized, and observation i is not classified if C c j t i j  = co. The functions 
j = 1  

f3(a,) may be nonlinear. The linear classification rule is a special case of (1.1), with t = p and 

t .  . = a, j, for all i, j. 
8 3 

t 
Let the classification score of observation i be given by f, = C cjtij, and denote the set of 

j = 1  
misclassified observations by At. The surface defined by f, = co separates the two groups, and 

d ,  = ] f,-co I measures the distance of observation i from the separating surface. If i E At, d, measures 

the extent of misclassification, otherwise d, measures the extent of correct classification. Assuming 

equal costs of misclassification, the MSD criterion minimizes C . d,, the MMD criterion minimizes 

maxi &di, and the MIP criterion minimizes C ,6,, where 6, = 1 if i E At and 6, = 0 otherwise. 
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2. PREVIOUS MP-Lo METHODS FOR MINIMIZING MISCLASSIFICATION COSTS 
The critical factors affecting the computational effort of solving MIP models are the number of 

integer variables, the structure of the model, and the number of constraints (Hillier and Lieberman 

1990, p. 467). Specifically, MIP models with a structure characterized by "tight" constraints, i.e., 

models for which the convex hull of the feasible region is close to the feasible region of the linear 

relaxation of the MIP model, require considerably less computational effort than models with "loose" 

constraints. 

The first MP-Lo formulation is due to Ibaraki and Muroga (1970). For a training sample of n 

observations, Ibaraki and Muroga's formulation requires n binary variables and 3n constraints, as well 

as the specification of an arbitrarily large scalar M, which may lead to loose constraints. The 

computational requirements of Ibaraki and Muroga's model quickly become prohibitive as n increases. 

Warmack and Gonzalez (1973) developed a special-purpose Lo classification algorithm which uses a 

non-enumerative search procedure based on the geometrical properties of the problem, and is not based 

on MP models. Liitschwager and Wang (1978) proposed a MP-Lo formulation requiring n + 22 integer 

variables, n + 1 constraints and 22 simple bounds, which does not involve an arbitrary large scalar and 

has tighter constraints than Ibaraki and Muroga's model. Koehler and Erenguc (1990) developed a 

model with n integer variables that uses "large" scalars, which may lead to loose constraints. Their 

special-purpose MP-Lo algorithm solves successive LP models with no more than t + 1 constraints. 

Banks and Abad (1991) used a similar strategy, solving LP models with t + 1 tighter constraints and 

without arbitrary large scalars. Their model formulation has n integer variables. Athough Banks and 

Abad's model requires n more non-integer variables than that of Koehler and Erenguc, the tighter 

model constraints more than compensate for the additional computational effort. Soltysik and Yarnold 

(1993, 1994) showed that their modified version of the non-MP based Warmack and Gonzalez 

algorithm is still more efficient, computationally, than any of the MP-based algorithms mentioned 

above. 

MP-Lo formulations with secondary objectives can be found in Ibaraki and Muroga (1970), 

Bajgier and Hill (1982) and Rubin (1990). Soltysik and Yarnold (1992) present alternative ways of 

tightening the model constraints. Heuristic procedures for solving MP-Lo models can be found in 

Rubin (1990), Koehler and Erenguc (1990), Ragsdale and Stam (1991), Abad and Banks (1993) and 

Chen (1996). 

3. SOME IMPROVEMENTS ON MP-Lo METHOD ALGORITHMS 
The purpose of our research is to develop faster algorithms for solving MP-Lo models, thus 

enabling the analyst to analyze larger size training samples. In this paper, we introduce the D&C 

algorithm, an  MP-Lo method which, like Koehler and Erenguc (1990) and Banks and Abad (1991), 

replaces the task of solving the original MIP formulation by that of solving several LP models with 

fewer constraints. In addition, the D&C algorithm partitions the parameter space C into sub-spaces, 
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and solves each corresponding sub-problem with tighter constraints separately. 

The contribution of the D&C algorithm can be divided into (1) improvements on Liitschwager 

and Wang's (1978) formulation of the MP-Lo classification problem, which we will discuss in Section 

3.1, and (2) special-purpose algorithms which partition the original problem into more easily solved 

sub-problems, which will be the topic of Section 3.2. 

3.1. Tightening the Model Constraints 

Liitschwager and Wang's (1978) formulation is presented in Model I. 

Model I 

Minimize zl = *2c(1 12) 
n2 C 

i E G2 
Subject to: 

cj unrestricted, j = 0, ..., p, (3-7) 

where C(k 1 m) represents the cost of classifying an observation that belongs to G, into Gk (k, m = 1, 

2; k # m), and nk is the number of training sample observations belonging to Gk (k = 1, 2), for a total 

training sample size of n = nl + n2. 

Model I assumes a linear classification rule, and criterion zl in (3.1) represents the per unit 

misclassification cost in the training sample. The scalar M should be large enough to ensure that (3.2) 

and (3.3) are always satisfied, so that T, = 1 if observation i E A ,  and T, = 0 if i $ A. By (3.5), 

exactly one of the ej, gj, j=  1, ..., p, equals 1. The constraint set (3.4) forces exactly one of the cj 

( j  = 1, ..., p), say ch, to either -1 (if gh = 1) or + 1 (if eh = I) ,  and restricts all other c, (m = 1, ..., p; 

m # h)  to I c, I 5 1. Forcing ( ch I = 1 eliminates the trivial solution co = cl = ... = cp = 0 from 

consideration. The scaling of the cj  does not exclude any classification rule from consideration, because 

all proportional rules of the form (1.1) are equivalent. Scaling the problem such that I cj I < 1, j = 1, 

..., p, guarantees that in the optimal solution I co I 5 pMax. .( I aij I ), so that (3.2) and (3.3) are 
'3 

always satisfied if T, = 1 and M = 2pMaxij( I aij I ). In the remainder of this paper, we denote the 

parameter space of all cj except ch by 9.  



Even without special-purpose algorithms, the D&C algorithm improves on Model I in several 

different ways. First, the D&C algorithm generalizes the linear classification rules in Model I to the 

form (1.1). Second, as the minimization of z1 may yield several non-equivalent classification rules with 

the same minimum training sample misclassification cost, the D&C algorithm includes a secondary 

criterion z2 which serves to  resolve ties in the achievement of zl: 

Minimize z2 = ~2 C(1 1 2) E {CO - 5 C j ~ j j } .  (3.9) 
n2 i E G 2  ~ = 1  

The secondary criterion z2 measures the extent by which the observations are misclassified 

minus the extent by which the observations are classified correctly. As z2 should never affect the 

achievement of zl, z1 and z2 of the modified objective function are optimized lexicographically. 

Third, the model structure can be improved by imposing individual lower ( L C ,  < 0) and upper 
J 

(Uc .  > 0) bounds on each c j  ( j  = 0, ..., 1 ) ,  instead of the bounds of -1 and + 1 used in Model I. If z1 
J 

is the single criterion, the optimal criterion value remains unchanged by imposing individual bounds, 

provided that L C ,  and Uc. have opposite signs, because any classification rule can be converted to an 
J J 

equivalent rule with bounds L C ,  < 0, Uc , > 0, by multiplying all c j  by an appropriate scalar. However, 
.I J 

if z2 is introduced into the model, the choice of L C ,  and Uc , is no longer arbitrary, because the scaling 
3 J 

of c j  affects the type of solution obtained directly. For instance, if z2 < 0, which will be the case for 

most "reasonable" classification rules (Glover, Keene and Duea 1988; Glover 1990; Gochet et al. 1993), 

minimizing z2 implies maximizing I z2 I , introducing a bias towards rules with c j  that are close to  their 

bounds: Thus, the choice of L C  and U C  should reflect reasonable tentative values for cj, for instance 
J J 

values derived using some other classification method. In the current implementation of the D&C 

algorithm, L C .  and Uc , are selected symmetric about 0, one being the value A estimated by the LDF 
J 3 

(if the MP-Lo rule is linear in the original attributes) or the QDF (if the MP-Lo rule is quadratic in the 

original attributes), and the other being - A .  The bounds are then normalized such that 

(L ( =  IU, I = l .  
Co 0 

Fourth, the D&C algorithm implements the recommendation by Soltysik and Yarnold (1992) 

to replace M in (3.2) and (3.3) by observation-specific scalars Mi ( i  = 1, ..., nl + n2). As 
t L C  <_ c j  5 Uc ., we can set M, = x = ~ a x b ~  C j ,  Uc ,(,j}-~co for each i E GI, without affecting 

J 3 J J 
the feasibility of (3.2). Similarly, for i E G2 we can set Mi = U -xi = l ~ i n @ c  Cjj, Uc ,tjj}, without 

Co J J 

affecting (3.3). 

Fifth, we observe that a branch-and-bound algorithm (Hillier and Lieberman 1990, 469-485) 

which branches first on the binary variables ej and gj in Model I, will set each of these variables equal 

to 1 in turn. However, this is equivalent to omitting the ej and gj from Model I altogether, and 

setting each c j  to -1 (or to  LC ,) and + 1 (or to Uc ,) in turn. This solution strategy, adopted in the 
J J 

D&C algorithm, reduces the number of binary variables by 2(t + 1) and involves solving 2(t + 1) 

separate problems P(l), 1 = 1, ..., 2(t + l ) ,  as (1.1) has t + 1 different coefficients c j  (cO, ..., ct). 
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Summarizing, the D&C algorithm solves 2 ( t +  1) problems of the form Model I1 in 

(3.10)-(3.19): 

Model 11: MP-Lo Major Sub-Problem 

Minimize z3 = I x (rj-7s;) + 
i E G 1  

Subject to: 

c j  unrestricted, j = 0, ..., 2; j # h, (3.17) 

where [, = (CjO, ..., (,t)T = [-I, fl(a,), ..., ft(a,)lT, ch is fixed to B (either L or U ), the s, are 
Ch C h  C h  

slack ( i  E GI) or surplus ( i  E G2) variables, s = (sly ..., snl + n2 )T, and 77 is a constant satisfying (3.20), 

The Us, in (3.20) represent the upper bounds of s,, which, using (3.11)-(3.14), can be 
2 

expressed as in (3.21) and (3.22), 

Since si 5 Us ,, Vi E Gl U G2, (3.20) implies (3.23), 
a 

so that the r, ( i  = 1, ..., nl + n2) in the optimal solution are affected only by the minimization of those 

components of z3 which correspond to zl. By substitution, the left-hand side of (3.23) equals (3.24), 



Therefore, once the ri's are fixed (3.24) is a linear transformation of z2 in (3.9), and 

minimizing z3 is equivalent to minimizing zl, followed by minimizing z2 as a secondary objective to 

resolve the case of alternative optimal solutions. In a preliminary experimental comparison (not 

reported here) we found that, due mainly to a tighter model structure, solving the 2(t + 1) Model I1 

problems requires substantially less computational effort than solving the corresponding Model I 

problem. 

3.2. Partitioning the Global Model 

The major contribution of the D&C algorithm is that it greatly improves solution efficiency by 

dividing e into several sub-spaces, and solving the resulting partial models separately. Before 

discussing the partitioning strategy of the D&C algorithm, we turn our attention to the special case of 

perfectly separated training samples. 

3.2.1. The Case of Perfect Separation 

If it is possible to determine a rule for which all training sample observations are classified 

correctly, we can obtain perfect separation of the groups in the training sample. In this case, it is not 

necessary to divide the global model into partial models, and the optimal solution of Model 11, with 

secondary criterion z2, can be found by solving Model I11 in (3.25)-(3.30). Therefore, the D&C 

algorithm solves Model I11 prior to creating 2(2 + 1) Model I1 problems. 

Model III: Perfect Separation Model 

Minimize z4 = - si - Sir 

Subject to: 

LC. I c j  I Uc ., j = 0, ..., 2, 
3 3 

c j  unrestricted, j = 0, ..., t, 

Model I11 has t + 1 structural variables, nl slack variables, n2 surplus variables, nl + n2 

constraints and 2(2+ 1) simple bounds. The D&C algorithm solves the dual of Model 111, which has 

substantially less constraints (excluding simple bounds), using the simplex method for bounded 

variables (Hillier and Lieberman 1990, pp. 58-111, 302-304). Perfect separation is possible if the 
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optimal solution is finite. If the dual yields an unbounded solution, perfect separation in the training 

sample is impossible, and the D&C algorithm proceeds with partitioning the global model. 

3.2.2. Global Model Partitioning Strategy 

As noted above, after checking whether the training sample is perfectly separable, the first step 

in the D&C algorithm is to divide the original MP-Lo problem into 2(t + 1) major Model I1 sub- 

problems P(I) ( I  = 1, ..., 2(t + I)) ,  in which all c j  are treated as variables, except for ch, which is fixed 

at one of its bounds. Let e(I) C st+' be the parameter space of all cj associated with P(0, and let 

Y( I )  c st be the parameter space of the c j  ( j  = 0, ..., t; j # h) of P(I) that are not fixed. 

The second step is to divide Y(I )  into r sub-spaces Y1(I), ..., Y,(I), with "tight" constraints. If a 

sub-space does not contain solutions that are close to the global optimal solution, the computational 

loss due to a loose formulation tends to be relatively mild. However, it is important to have very tight 

formulations for sub-spaces which contain solutions that are close to the global optimum. Thus, rather 

than partitioning Y(I )  into sub-spaces of equal size, the D&C algorithm creates larger sub-spaces in 

regions with solutions that have relatively high training sample misclassification costs and smaller ones 

in regions with solutions for which the misclassification costs tend to be lower. The D&C algorithm 

generates a set of reasonably good solutions %(I), and uses the characteristics of these solutions in order 

to partition Y(I )  effectively. %(I) is comprised of the the crN best among N sample solutions (0 < cr < 1) 

in Y( I ) ,  determined using a limited breadth-first branch-and-bound search strategy. The values of N 

and cr are selected by the analyst. 

Y( I )  is partitioned into rectangular regions which are parallel to the principal axes of variation 

of %(I). The principal axes of variation are determined using principal component analysis (Morrison 

1990, pp. 312-342). The initial sub-space Y1(I), built around the centroid of %(I), is a t-dimensional 

square region with sides of length SZO(I). The volume of Y1(I) should be a function of the anticipated 

effort required to solve each problem. One important factor affecting this effort is the number of 

misclassified observations in the optimal solution. The D&C algorithm uses the number of 

misclassifications in the incumbent solution ( i . e . ,  the best solution found so far) as a proxy of the 

number of misclassifications in the optimal solution, and SZO(I) is inversely related to this quantity. 

SZO(I) is also inversely related to the difference between the objective value of the incumbent solution 

and the objective value of the linear relaxation of the sub-problem P(I) under consideration. The 

rationale for the latter is that if these objective function values are similar (close), the branch-and- 

bound algorithm will be able to quickly fathom most of the nodes of its search tree, in which case it is 

not necessary to have a very tight formulation and a larger value for SZO1(I) suffices. 

As we move away from the centroid along the principal axes of %(I), the side length along the 

kth dimension SZk(l) of the subspaces Y,(I), a = 2, ..., r, is increased by a factor IFTk(I) > 1, k = 1, ..., 
2 ,  which is is inversely related to the contribution of the kth principal component of %(I) to the total 

variance of %(I), as measured by the corresponding eigenvalue vk(l). Proceeding in this way, the 
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volume of the sub-spaces Ya(I) increases a t  successively higher rates, as we move from Y1(I) along 

directions which contribute less to the total variance of %(I). Figure 1 illustrates a typical partition of 

Y(1) for t = 2. 

........................................ 

Figure 1 About Here 

3.2.3 Solution Strategy 

Let Ya(I) be some sub-space created by partitiomng Y(I). The partial sub-problem of Model I1 

restricted to Ya(I) requires the introduction of a set of t simple bounds in order to restrict the non-fixed 

coefficients cj ( j  = 0, ..., t; j # h) to Ya(I). This is done by applying the change of variable 

transformation (yl, ..., yt + = y = Uc, where U is a (t  + 1) x ( t  + 1) matrix, such that uij ( i  # t + 1, 

j # h) is the coefficient of cj  on the ith principal component of %(I), uh = (0, ..., 0, and 

ut + l ,  = 0, for j # h. The first t elements of y represent the principal axes of variation of %(I),  and 

yt + 
= ch. The partial sub-problem for Ya(O is given as Model IV. 

Model IV: Partial SubProblem 

Minimize z5 = ~ 2 C ( 1  12) C (ri-17s;)l (3.31) 
i E G~ n2 i t G~ 

Subject to: 

L y j S  y j  5 Uy ., j= 1, ..., 1, 
3 

B - 
Y t  + 1 - BCh7 

yj unrestricted, j = 1, ..., 1, 

Constraint set (3.32) is derived from (3.1 1) and (3.12). Specifically, Pi = (Pi l l  ..., 

Pi , t  + 
= u-'[, for i E G1, and Pi = -u-'[; for i E G2. Constraint set (3.33) corresponds directly 

with (3.13). If Ya(I) is located within the interior of Y(4, (3.33) is never binding. Constraint set (3.34) 

restricts each yj to the region of Y,(I). Algorithm IV details how L and U can be computed. The 
j Y j  

values of the Mi are defined by (3.39)-(3.42). Whereas (3.39) and (3.40) correspond with the original 

restrictions on the cj, (3.41) reflects that c = (co, ..., cJT must lie inside Ya(C). 



Model IV has t continuous structural variables, nl + n2 slack variables, nl + n2 binary 

variables, nl + n2 + 2t constraints and 22 simple bounds. Solving Model IV using the branch-and- 

bound algorithm implies solving successive LP models (linear relaxations of MIP models) in which 

some of the ri are fixed to 0, others are fixed to 1, and yet others are converted into continuous 

variables bounded between 0 and 1. Each linear relaxation has nl + n2 + 22 rows and, depending on 

how many ri are fixed, between 22 and nl + n2 + 22 columns. Koehler and Erenguc (1990) developed a 

model similar to  Model IV with linear relaxations of only t rows. Koehler and Erenguc first express the 

ri in terms of the remaining variables, and then solve the dual of the revised model, which has as many 

constraints as coefficients to  be estimated and can be solved very efficiently. Applying this approach to 

the linear relaxations of Model IV leads to Model V. 

Model V: Reformulated Linear Relaxation - Primal 
t x Pi jy j  + + l P i ,  t + 1 + S ,  

Minimize z6 = ~ ~ 1 1 2 1 1 )  n1 ( x j - I  

Mi -71s; i E G1 

Subject to: 

t x P i j y j  + S ,  > -By(  + 1 4 i , t +  V i E G1 U G2, for which r, is not fixed, (3.45) 
j = 1 t 

L~~ 5 x U T : ~ , ~ Y ~  5 uCj, j =  0, ..., t; j #  h, (3.46) 
k = 1  

L y j  5 yj 5 Uy ,, j  = 1, ...? 4 
3 

y . unrestricted, j  = 1, ..., t, 
3 

The scalars Mi in Model V are calculated using (3.39)-(3.42). Some of the ri are fixed, either 

to 0 or 1, and the corresponding constraints in (3.44) are derived from (3.32). The constraints (3.45) 

apply to those ri which are not fixed, and are derived from (3.32) and the fact that r, > 0. Theorem 
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3.1 shows that in the optimal solution to Model IV all ri 5 1, so that it is not necessary to include 

these constraints explicitly. 

Theorem 3.1. 

Let (y*, s*, r*) be an optimal solution to Model IV, in which some of variables ri are fixed to 0, others 

to 1, and the remaining ones satisfy ri 2 0, rather than (3.37). Then it follows that r;' 5 1, b' 

i E G1 u G2. 

Proof: Suppose that (y*, s*, r*) is an optimal solution and r k  > 1, for some m. From (3.32), (3.34), 

(3.41) and (3.42) it follows that s k  2 M,(rk-1). Hence, s, and r, can be reduced by As, and Ar,, 

respectively, and still remain feasible, as long as As, = M,Ar, and As, 5 sk ,  thus reducing the 
n c 2  i 

objective function value by ( I '(L -  AS, if m E G~ or by '2'" I 2 ) ( ~  - if 
"1 M, "2 M, 

m E G2, which are positive quantities because ~- , l - .q  > 0 by (3.20). Therefore, (y*, s*, r*) cannot be 

optimal, so that we conclude by contradiction that Theorem 3.1 is true. 

Instead of Model V, the D&C algorithm solves its computationally more efficient dual, Model 

VI. 

Model VI: Reformulated Linear Relaxation - Dual 

Maximize z7 = C B y t + l i , t + w i  + C M i ~ i +  
iEG1UG2 i€G1uG2:  r , = 1  

Subject to: 

wi 2 0, b' i E G1 U G2 for which r, is not fixed, (3.55) 

The optimal values for Models V and VI, z: and z;, respectively, differ by a constant, as shown 

in (3.58), 



Model VI has t rows, nl + n2 + 41 columns and nl + n2 simple bounds. The dual variables 8 3  

and B f correspond with the primal constraints that impose the original lower and upper bounds on the 

c j  coefficients, the y; and y f  with the primal constraints associated with the boundaries of Y,([), and 

the w, with the primal constraints that determine the contribution (through si and ri) of each 

observation to the objective function. 

For sub-spaces located within the interior of Y(0, the initial bounds on the c j  are satisfied 

automatically, in which case the 8; and B f can be eliminated from Model VI. We can verify which of 

these variables need to  be included in the model formulation, by checking whether (3.59) or (3.60) 

holds. 

If (3.59) holds for a given sub-space Y,([), then = lu;; yk 2 L C ,  can never be violated, so 
3 

that 6; can be omitted from Model VI. 

Similarly, if (3.60) is satisfied, then C L = lu;:Yk < Uc , is always satisfied and 6f can be 
3 

omitted from Model VI. Furthermore, if c is restricted to a sufficiently narrow sub-space of its domain, 

it is possible to identify sets of observations that will be misclassified or classified correctly. For 

instance, observation i will always be classified correctly if (3.61) holds, and we can set ri = 0. 

Conversely, observation i will always be misclassified if (3.62) holds, and we can set ri = 1. 

t 

C jP i  j 7  uy jP, j) + B Pi, t + I > 0, 
j = 1  y t + 1  

We also know that if (3.63) is true, observation i will always be assigned to G1, so that we can 

set ri to 0 if i E G1 or to 1 if i E G2. If (3.64) holds, observation i will always be assigned to G2, and 

we can set ri to 1 if i E G1 or to 0 if i E G2. 
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In Model VI, those w ,  variables corresponding to observations for which the group assignment 

is not yet fixed (i.e., r ,  is variable) are forced to be nonnegative by (3.55). If observation a is forced to 

be classified correctly - either by pre-checking, or in the course of the branch-and-bound search - and 

r ,  is fixed to 0, the corresponding constraint of the form (3.55) is removed from the model. If 

observation a is forced to be misclassified and r, is fixed to 1, the associate constraint (3.55) is removed 

from the model and the constant Mi is added to the objective coefficient of w,. 

4. THE DIVIDE AND CONQUER ALGORITHM 
We are now ready to outline the steps of the D&C algorithm. 

Algorithm I: The Main Algorithm 

Step 1: Determine the global bounds L C ,  and Uc , for each cj, j = 0, ..., 2, and normalize the c j  such 
that ILc I = 1. 3 3 

0 

Step 2: Solve the dual of Model 111. If the optimal solution 4 is finite, the groups are perfectly 
separable and the classification function that yields perfect separation while mimimizing z2 
was found. Otherwise, go to Step 3. 

Step 3: Formulate the 2(2 + 1) Model I1 sub-problems P(I), 1 = 1, ..., 2(2 + I ) ,  fixing each ch to LC 
h and Uc in turn, and use the procedure described in Algorithm I1 to solve the corresponding 

h linear relaxations. Denote the space of the cj that are not fixed by Y(I). 

Step 4: Sequence the P(I) in increasing order of the optimal objective function value 5 found in Step 

For 1 = 1 to 2(2+ 1) do  Steps 5 through 9: 

Step 5: Use the procedure described in Algorithm I11 to generate N solutions for model P(I). Create 
the set %(I) with the best a N  of these solutions. 

Step 6: Reorder P(I) in increasing order of the optimal objective function values 4 found in Step 5. 

Step 7: Compute the principal components of %(I). Determine the inverse of the (2 + 1) x (2 + 1) 
matrix U defined by y = Ue, where yk (k = 1, ..., 2) equals the kth principal component of 
%(I), and yt equals the coefficient ch that is fixed in P(I). 

Step 8: Use the procedure in Algorithm IV to partition Y(I) into several sub-spaces Ya(I), a = 1, ..., r. 

Step 9: Use the procedure described in Algorithm V to solve Model IV for each sub-space Ya(I). 

Step 10: Stop. The current solution is optimal for the MP-Lo classification problem, using z2 as the 
secondary objective. 

In Steps 4 and 6 of Algorithm I, P(I) is ordered in increasing order of the objective values 5 of 

the incumbent solutions for Model 11. The purpose of the ordering is to solve the models which are 

more likely to have good solutions first, so that solutions with low objective function values may be 

identified relatively fast. Proceeding in this manner renders the D&C algorithm faster, because the 
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pre-checking process can quickly eliminate several models from consideration, speeding up the branch- 

and-bound algorithm for the remaining models. 

Algorithm I1 describes the procedure used to solve the linear relaxation of Model 11. Algorithm 

I11 details how to generate an initial set of solutions %(I) for each sub-problem P(C). Algorithm IV 

describes the procedure to partition Y(C) into sub-spaces Y1(C), ..., Y,(C). Algorithm V describes the 

procedure used to solve the model associated with each sub-space. 

Algorithm 11: Solving the Linear Relaxation of Each Major Sub-problem 

Step 1: Use equations (3.63) and (3.64) to determine which observations are always classified 
correctly when ch = BCh, and set the associated variables r; = 0. 

Step 2: Use (3.63) and (3.64) to determine which observations are always misclassified if ch = 
( i . e . ,  either L or U ), and let the corresponding ri = 1. B ~ h  

h Ch 

Step 3: Formulate and solve Model VI without the 73 and the f variables and with U = I, where I 
is the (2 + 1) x (2 + 1) identity matrix. 

Algorithm 111: Generating An Initial Set of Solutions %(I) For Each Sub-problem 

Step 1: Use equations (3.63) and (3.64) to determine which observations are always correctly 
classified if ch = B , and let the corresponding ri = 0. 

Ch 

Step 2: Use equations (3.63) and (3.64) to determine which observations are always misclassified if 
ch = Bch, and let the corresponding r, = 1. 

Step 3: Generate a set of solutions for problem P(I) using a limited breadth-first, branch-and-bound 
search. Start by treating all r, variables not fixed in Steps 1 and 2 as free variables. At each 
level of the search tree, set one of the r, equal to 1, in turn. 

Step 4: For each of the linear relaxations in Step 3, formulate and solve Model VI without the 73 
and the 7f variables and with U = I. Determine %(I) as the set of a N  best among the 
solutions found. 

Algorithm IV: Partitioning the Space of the Non-Fixed Coefficients Y(I) 

Step 1: Select values for SZO(C) and IFTk(l), k = 1, ..., 2, determine the centroid c of the set %(I), 
and compute y = UF, where U is described in Step 7 of Algorithm I. 

Step 2: Create Yl(C) by setting SZk(C) = SZO(C), k = 1, ..., 2. Set the bounds L and Uy , to the 
following values: Lyj =Y~-o.ssz~(I), u = B~ + o . ~ s z ~ ( c ) ,  j = 1, ..., 2. j 3 

j 

Step 3: Create Y2(C), ..., Y,(C) by changing the bounds Ly , and Uy ,. Start from Y1(C) and move 
towards the boundaries of Y(C). Each time a move 1s made along a direction associated with 
the f h  principal component of %(C), multiply the side lengths SZk(C) by the factor IFTk(l), 
k = 1, ..., j. Stop when Y(C) is totally covered by the sub-spaces created in this step. 

Algorithm V: Solving a Partial Sub-problem 

Step 1: Use equations (3.59) and (3.60) to find the boundaries of Y(C) that are active in the current 
sub-space Y(1). 



Step 2: Use equations (3.61), (3.63) and (3.64) to determine which observations are always classified 
correctly when ch = Bch and c is restricted to Y',(4. Set the associated variables r, equal to 0. 

Step 3: Use equations (3.62), (3.63) and (3.64) to determine which observations are always 
misclassified when ch = Bc Restrict the coefficients c j  that are not fixed to Y',(I), and set 

h' 
the corresponding variables r, equal to 1. 

Step 4: Solve Model IV by the branch-and-bound algorithm. Use the formulation in Model VI to 
solve each linear relaxation derived from Model IV. Include only the variables 8 3  and 8 3  
associated with the boundaries of Y'(I) that are active in Y',(I). 

5. COMPUTATIONAL EXPERIMENTS 
The D&C algorithm described in Section 4 is implemented in the C +  + programming 

language. The code is available from the authors upon request. Some of the functions used in this 

code were developed by Koehler and Erenguc (1990), who were kind enough to share the source code of 

their programs. Other functions are our original work, and yet others are adapted from Koehler and 

Erenguc's (1990) code. In this section, we report the results of simulation experiments to assess the 

relative computational performance of the D&C algorithm, the two fastest existing MP-based 

algorithms for solving MP-Lo classification problems, one developed by Banks and Abad (1991) (B&A), 

the other by Koehler and Erenguc (1990) (K&E), and the adapted Warmack-Gonzalez algorithm as 

implemented by Soltysik and Yarnold (1994) (S&Y). The S&Y algorithm is not MP-based. 

Initially, in Table 1 we compare the computational effort of the D&C algorithm with the 

results reported in B&A and K&E, in terms of the number of LPs, major pivots and pricings. The 

S&Y algorithm cannot be compared in terms of statistics pertaining to MP operations. All of the 

results in Table 1 refer to problems with 100 training sample observations (nl = n2 = 50) and 3 

independent, identically distributed attributes. The attributes of the observations in GI are normally 

distributed with a mean of 0 and a variance of 1, whereas those in G2 follow the normal distribution 

with a mean of 0.6 and a variance of 2. The misclassification costs and prior probabilities are assumed 

to be equal across groups. 

Table 1 About Here 

The results reported by K&E are based on 100 replications, while the B&A and D&C 

experiments involve 20 replications. The figures in Table 1 indicate that the D&C algorithm is much 

more efficient computationally than the K&E and B&A algorithms. The computational effort of the 

D&C algorithm is greatly reduced, with on average about 35 times less LPs solved, 4.5 times less 

pivots and 90 times less pricings than K&E, and with about 5 times less LPs and 3 times less pivots 

than Banks and Abad. Koehler and Erenguc reported an  average CPU time for their algorithm of 3 

minutes on an IBM 3090/400 mainframe. On average, the D&C algorithm required 18 CPU seconds 

on a 486 DX2 (66 Mhz), DX2 Personal Computer with 16MB of RAM. Banks and Abad did not 
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report solution times or pricing information for their algorithm. 

The two right-most columns of Table 1 provide information on the average number of sub- 

problems created (SBP-CRT) and actually solved (SBP-SLV) by the D&C algorithm. Not all sub- 

problems created are actually solved, since it is possible to recognize a priori that some sub-regions of 

the coefficient space cannot contain solutions with a lower training sample cost than the current 

incumbent solution. The two right-most columns do not apply to the B&A and K&E algorithms, since 

these did not divide the original problem into sub-problems. 

Soltysik and Yarnold (1994) report experimental results which show that, a t  least for data  

conditions similar to those studied by Koehler and Erenguc (1990) and Banks and Abad (1991), with 

100 training sample observations and 3 attributes), the S&Y algorithm is considerably faster than the 

MP-based B&A and K&E algorithms. Therefore, we performed an  experiment to measure the relative 

efficiency of the D&C and S&Y algorithms, comparing the CPU time required to find the linear MP-Lo 

classification rule using PC implementations of both algorithms, run on a 486 DX2 (66 Mhz), DX2 

Personal Computer with 16MB of RAM. Since the S&Y algorithm is not based on MP models, the 

two algorithms can be compared only in terms of CPU times. 

In our experiments, we analyzed problems with 2, 3, 4 and 5 attributes. The attributes of the 

training sample observations in GI were generated from the multivariate normal distribution with 

mean vector p = (0, ..., o ) ~  and variance-covariance matrix C = I, and those in G2 from the 

multivariate normal distribution with p = (1, ..., and C = I. This data  condition corresponds with 

the "high discrimability problems" considered by Soltysik and Yarnold (1994). The training samples 

generated were balanced. Intitially, we generated and solved problems with a total of 50 and 100 

observations. Subsequently, as long as none of the problems required more than 10 CPU minutes to 

solve, we extended the computational experiment to larger training samples, in increments of 100 

observations. The largest problem considered had two attributes and 1,000 observations in the training 

sample. All of the classification rules used were linear, and the computational results are based on 10 

replications for each data  condition. The computational results of our experiments are summarized in 

Tables 2-5. 

................................................ 

Figure 2 and Tables 2-5 About Here 

The figures in Tables 2-5 clearly show that the time required to determine the MP-Lo 

classification rule increases exponentially as a function of the training sample size. For instance, when 

the training sample size is doubled from 50 to 100 observations, the mean solution time of the S&Y 

algorithm increases from 10.7 to 263.2 seconds for 4-attribute problems, and from 45.4 to 4,200 seconds 

for 5-attribute problems. Although the computational effort for the D&C algorithm is much less, the 

exponential growth in computational burden is evident for this algorithm as well, with an increase from 

5.3 to 29.5 and from 3.5 to 78.5 seconds for 4-attribute and 5-attribute problems, respectively. The 
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exponential growth for the case of 3-attribute problems is displayed graphically in Figure 2. 

The exponential growth becomes more dramatic as the number of attributes increases. For 

instance, when the training sample size for 2-attribute problems is increased from 50 to  100, the CPU 

time grows by a factor of about 2.5 (from 0.5 to 1.4 and from 0.4 to 0.9 seconds for the D&C and the 

S&Y algorithm, respectively). For 4-attribute problems, the corresponding growth factors are 5.6 

(D&C) and 24.5 (S&Y), and for 5-attribute problems are 22.7 (D&C) and 92.4 (S&Y). 

This computational behavior has two important consequences: (1) for "small problems," with 

few attributes and small training samples, it is possible to determine MP-Lo classification rules very 

quickly. However, for "larger problems" the computer resources required become prohibitive; (2) the 

training sample size for which it is possible to find MP-Lo rules within a "reasonable" time strongly 

depends on how many attributes the problem has. For 2-attribute problems, training samples with 

more than 1,000 observations can still be analyzed, but the limit on the training sample size decreases 

quickly as the number of attributes increases. 

Although the S&Y is faster than the D&V algorithm for "small" problems ( i . e . ,  for 2-attribute 

problems with less than 200 observations and 3-attribute problems with less than 50 observations), it is 

evident from Tables 2-5 that the solution time of the S&Y algorithm grows faster than that of the 

D&C algorithm, as the training sample size and the number of number of attributes increases. For 

example, for 4-attribute problems with more than 200 observations and 5-attribute problems with more 

than 100 observations, the D&C algorithm is over 50 times faster than the S&Y algorithm. This 

impressive improvement in relative efficiency of the D&C algorithm is due to the fact that, whereas the 

solution times of the S&Y algorithm explode quickly, even for moderate numbers of attributes, the 

D&C algorithm is able to moderate this effect by judicially dividing the problem into sub-problems, 

thus reducing the computational burden and facilitating the solution of substantially larger size 

problems within a reasonable time. 

In order to better understand the effect of training sample size on the CPU times required by 

both algorithms, we regressed the logarithms of the CPU seconds, ln(T), against the logarithms of the 

number of training sample observations, ln(n), for each number of attributes considered. The 

estimated regressions, with the standard errors within brackets below the coefficient estimates, are 

presented in Table 6. 

.............................. 
Table 6 About Here 

The high R~ values of between 85 and 98 percent reveal a strong linear relation between ln(T) 

and ln(n), implying an  exponential relationship between the original variables, T and n. The effect of 

the number of attributes on the rate of exponential growth of the CPU time for the S&Y algorithm is 

shown by the increase of the coefficient of ln(n). For the S&Y algorithm, this coefficient increases from 

2.57 for 2-attribute problems to 6.59 for 5-attribute problems; for the D&C algorithm it increases from 



19 

1.73 to 4.20. As the coefficients of ln(n) for the D&C algorithm are always smaller than the 

corresponding coefficients for the S&Y algorithm, the regression models confirm the notion that the 

growth rate of the computational effort for the D&V algorithm is slower than that for the S&Y 

algorithm. 

We can also use the regression models in Table 6 to estimate the maximum training sample 

sizes that could be solved within a given amount of time T, using a 486 DX2 (66 Mhz) PC. The 

estimates of the largest training sample sizes that can be solved in 10, 60, 600 and 3,600 CPU seconds 

are presented in Table 7. 

............................................... 

Figure 3 and Table 7 About Here 

Table 7 illustrates that a small reduction in the growth rate of the solution time can yield a 

dramatic improvement in computational efficiency. For instance, in ten CPU minutes (600 seconds) 

the D&C algorithm is able to solve problems with about three times more observations than the S&Y 

algorithm. Problems with 5 attributes and 100 observations would take about one CPU hour (3600 

seconds) and one CPU minute (60 seconds) using the S&Y and D&V algorithm, respectively. The 

projection for the case of 4-attribute problems are shown in Figure 3. 

In spite of these promising results, the current implementation of the D&C algorithm is still 

unable to  find solutions to some common pattern recognition problems involving more than 1,000 

observations and more than 10 attributes, within a reasonable amount of time. Furthermore, for these 

problems the availability of faster hardware would not have a significant impact, as the increase in 

training sample size that can be analyzed associated with a given reduction of the computational 

requirement is less than proportional. For instance, for 5-attribute problems a tenfold increase in CPU 

time is not enough to double the maximum training sample size that can be handled. However, further 

reductions in the growth rate of the CPU solution time can increase the size of problems that can be 

analyzed substantially. 

Our current research focuses on how to improve and fine-tuce the D&C algorithm. It is our 

belief that future implementations of the D&C algorithm will have a considerably lower growth rate of 

CPU time, and will facilitate the solution of considerably larger problems, particularly problems with 

larger numbers of attributes, than is currently feasible. 

6. CONCLUSIONS 
In this paper, we introduce the Divive and Conquer (D&C) algorithm, a special-purpose 

algorithm for solving MP-Lo classification problems. Our computational tests show that, except for 

small sample sizes - in which case there are no computational difficulties anyway - the D&C 

algorithm solves the MP-Lo classification problem much faster than previously proposed algorithms, 

MP-based and non-MP-based alike. By partitioning the problem into smaller sub-problems, the D&C 
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algorithm reduces the computational effort required dramatically. As, in comparison with existing 

special-purpose algorithms, the D&C algorithm greatly reduces the exponential growth rate of the 

computational requirements as a function of the training sample size and the number of attributes, it 

contributes significantly to  the field of MP-Lo classification analysis, facilitating the analysis of much 

larger training sample data  sets than previously possible. 

The current research can be extended in several different ways. First, it is worthwhile to 

explore parallel implementations of the D&C algorithm, improving the computational efficiency even 

further. Second, the D&C algorithm can be refined in several respects. It appears particularly useful 

to focus on improvements which reduce the exponential growth rate of the computational requirements. 

Third, whereas the D&C algorithm solves to optimality, it may be possible to develop tabu-search 

heuristics that provide close approximations to the optimal solution of large MP-Lo classification 

problems. 
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Figure 1: A Typical Partition of J(I) 
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Figure 2: Average Computational Effort for the D&C and S&Y Algorithms, %Attribute Problems 
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Figure 3: Projected Etelationship of Computational Effort and Maximum Training Sample Sizes 
for the D&C and S&Y Algorithms, 4Attribute Problems 

0 .  I 

10 60 600 3600 

CPU Solution Time 



28 

Table 1: Computational Effort of the BEA, K&E and D&C Algorithms 

Table 2: Execution Times (CPU Seconds) for the D&C and S&Y Algorithms: 
Problems with Two Attributes 

Algorithm 

K&E 

B& A 

D&C 

Table 3: Execution T i e s  (CPU Seconds) for the D&C and S&Y Algorithms: 

Number of Major Pivots 

53,485 
16,673 

35,739 
15,077 

12,099 
4,266 

Number of LPs 

Mean 61,821 
Std. 30,515 

Mean 8,940 
Std. 5,242 

Mean 1,707 
Std. 1,040 

Number of 
Observations 

50 
100 
200 
300 
400 
500 

Problems with ~ h r e e  Attributes 

Pricing 

15,478,800 
6,609,405 

- 
- 

172,027 
64,372 

D&C 
Mean Min Max 

0.5 0.4 0.8 
1.4 0.9 1.9 
4.0 2.9 5.1 
8.4 6.5 10.8 

14.0 11.5 16.4 
20.6 16.5 25.8 

Table 4: Execution T i e s  (CPU Seconds) for the D&C and S&Y Algorithms: 
Problems with Four Attributes 

S&Y 
Mean Min Max 

0.4 0.2 0.6 
0.9 0.5 1.5 
4.5 3.4 7.4 

14.9 11.2 21.5 
35.3 24.6 50.8 
67.2 49.1 93.4 

Number of 
Observations 

Number of 
Observations 

SBP-CRT 

- 
- 

- 
- 

2,565 
606 

S&Y 
Mean Mean Min Max 

D&C 
Mean Min Max 

5.3 0.6 15.2 
29.5 11.3 66.0 

181.5 70.0 311.3 
488.2 307.9 788.1 

SBP-SLV 

- 
- 

- 
- 

290 
94 

S&Y 
Mean Min Max 

10.8 1.9 17.4 
263.2 103.4 436.2 

9,076.6 4,732.2 13,999.3 
- - 



Table 5: Execution Times (CPU Seconds) for the D&C and S&Y Algorithms: 
problems with ~ i v e  Attributes 

Number of 
Observations Mean Mean Min Max 

Table 6: Estimated Regression Models (Computational Effort vs. Training Sample Size) 

Two-Attribute Problems 

S&Y Algorithm 

l n ( T )  = -11.74 + 2.571n(n) 
( .224)  ( .037)  

R2 = 0.98 

D&C Algorithm 

ln (T)  = -7.65 + 1.731n(n) 
( .130)  ( . 0 2 2 )  

R2 = 0.98 

Three-Attribute Problems 

S&Y Algorithm 

l n ( T )  = -14.01 + 3.681n(n) 
( .340)  ( .081)  

R2 = 0.98 

D&C Algorithm 

ln (T)  = -8.10 + 2.201n(n) 
( .244)  ( . 0 4 6 )  

R2 = 0.98 

Four-Attribute Problems 

S&Y Algorithm 

l n ( T )  = -16.99 + 4.911n(n) 
( .765)  ( .168)  

R2 = 0.97 

D&C Algorithm 

ln (T)  = -9.94 + 2.841n(n) 
( .826)  ( . 1 6 8 )  

R2 = 0.88 

Five-Attribute Problems 

S&Y Algorithm 

ln (T)  = -22.12 + 6.591n(n) 
(1 .415)  ( .331)  

R2 = 0.95 

D&C Algorithm 

ln (T)  = -15.65 + 4.201n(n) 
(1 .505)  ( .324)  

R2 = 0.85 
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Table 7: Estimates of Largest Training Sample S i  That Can be Analyzed with a 486 PC at 66 MHz 

Number of 
Attributes 

2 

3 

4 

5 

Algorithm 

S&Y 
D&C 

S&Y 
D&C 

S&Y 
D&C 

S&Y 
D&C 

CPU Time (Seconds) 
10 

234 
311 

84 
114 

5 1 
74 

40 
72 

600 

1150 
3310 

257 
736 

117 
316 

75 
19 1 

60 

470 
876 

137 
258 

73 
140 

53 
110 

3600 

2308 
9310 

419 
1664 

169 
596 

99 
293 


