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ROBUST CONTROL OF CONSTRAINED PARABOLIC SYSTEMS WITH 
NEUMANN BOUNDARY CONDITIONS ' 

BORIS S. MORDUKHOVICH and KAIXIA ZHANG 

Department of Mat hematics 
Wayne State University 

Detroit, MI 48202 

E-mail: boris@math.wayne.edu zhang@math.wayne.edu 

Abstract. This paper presents recent results by the authors on minimax robust control 
design of parabolic systems with uncertain perturbations under pointwise state and con- 
trol constraints. The  design procedure involves multi-step approximations and essentially 
employs monotonicity properties of the parabolic dynamics as well as its asymptotics on 
the infinite horizon. The results obtained justify a suboptimal three-positional structure of 
feedback controllers in the Neumann boundary conditions and provide calculations of their 
optimal parameters to  ensure the required state performance and stability under any admis- 
sible perturbations. The  problem under consideration was originally motivated by control 
design in water resources but certaintly admits a much broader spectrum of applications. 

Keywords: robust control, parabolic systems, uncertainty, minimax design, state feedback, 
state-control constraints, suboptimality, and stability. 

1. INTRODUCTION 

This paper is concerned with robust control design of constrained parabolic systems under 
uncertain disturbances (perturbations) and feedback controllers in the Neumann boundary 
conditions. Our interest to such problems was originally motivated by applications to  au- 
tomatic control of groundwater regimes in irrigation networks where the objective was to 
neutralize negative effects of uncertain weather conditions; see 191. Here we consider a more 
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general class of parabolic control systems that have a broad spectrum of practical applica- 
tions. 

Dynamical processes in such systems are described by linear second-order parabolic equa- 
tions with boundary controllers and pointwise state and control constraints. One of the most 
remarkable features of these processes is their functioning in the presence of uncertain pertur- 
bations when only an admissible region is given and no probabilistic information is available. 
A natural approach to control design of uncertain systems is minimax synthesis (principle 

of guaranteed result) that provides the best system performance under worst perturbations 
and ensures an acceptable (at least stable) behavior under any admissible perturbations. 

Such a minimax approach to feedback control design is related to theories of differential 
games and robust H,-control; see [2, 5, 61 and their references. However, we are not familiar 
with any results in these theories that could be directly applied to  the parabolic systems 

considered below under hard (pointwise) control and state constraints. 
In this paper we developed an effective multi-step approximation procedure to  design 

suboptimal feedback controllers for constrained parabolic systems. This procedure is initiated 
in [9, 11.1 for the case of one-dimensional heat-diffusion equations and takes into account 
certain specific features of the parabolic dynamics with infinite horizon. Related results for 

more general parabolic equations with both Dirichlet and Neumann boundary conditions are 
presented in [ll-131. 

This paper contains new results for the case of Neumann boundary controllers. The 
results obtained include a justification of a suboptimal three-positional control structure 

with subsequent optimization of its parameters. The main goal is to ensure the desired 
state performance within required state constraints for all admissible perturbations and to  

minimize the given (energy type) cost functional in the case of maximal ones. Moreover, 
we obtain effective stability conditions to exclude unacceptable self-vibrating regimes for 
nonlinear closed-loop control systems with the given parabolic dynamics and three-positional 
Neumann boundary controllers. 

The paper is organized as follows. In Section 2 we formulate the feedback robust control 

problem of our study and present the main properties of the parabolic dynamics used in 
the sequel. Section 3 is devoted to solving first-order ODE approximation problems under 
maximal perturbations that allows us to justify a suboptimal structure of boundary controls 

in the parabolic system. In Section 4 we optimize parameters of this structure along the 
parabolic dynamics. Section 5 deals with computing a feedback boundary controller that 
ensures the best system behavior under maximal perturbations and keeps transients within 
the required state constraint region for any admissible disturbances on a sufficiently large 
control interval. The concluding Section 6 provides stability conditions for the class of 

nonlinear closed-loop control systems under consideration. 

2. PROBLEM FORMULATION AND BASIC REPRESENTATIONS 

Let R c Rn be a bounded open set with the closure clR. Assume that the boundary r of 

R is a C"-manifold of dimension n - 1 and that locally R lies on one side of r. Let a0 and 



. . 
a;j, 2, 1 = 1,2 , .  . . , n ,  be given real-valued functions with the properties ao, a;j E Cm(c lR) ,  

a i j ( x )  = a j ; ( x )  V i ,  j = 1,. . . , n ,  x E R;  

Observe that the linear operator 

a 
A : =  - C -( 

a 
a x ;  ai j (x)%) + ~ o ( x )  i , j=l  

is self-adjoint and uniformly strongly elliptic on L 2 ( R )  due to (2.1). 
In this paper we study the following parabolic system with the Neumann boundary 

conditions: 

- + Ay = w ( t )  a.e. in Q := (0 ,  T )  x R 

y(0, x )  = 0,  x E R 
a y  

( a y  + -)lc = u ( t ) ,  C := (O,T] x R 
~ V A  

a 
where a > 0 and the normal derivative - is defined by 

~ V A  

In what follows we treat w ( - )  as an uncertain disturbance perturbing the system, and u ( . )  
as a control that can be chosen to achieve a required system performance. It is well known 

that for each ( u ,  w )  E L2(0 ,  T )  x L2(0,  T )  system (2.3) has a unique generalized solution in 

the sense of [7].  Moreover, it follows from [8] that this solution y = y( t ,  x )  is continuous on 

clQ := [0, TI x clR. 
- 

Given positive numbers a ,  a, b, and b, we define the sets of admissible controls u ( - )  and 

admissible uncertain perturbations w( . )  by, respectively, 

Uad := { u  E ~ ~ ( 0 ,  T )  I u ( t )  E [-a,&] a.e. t E [0, T I ) ,  

Wad := { w  E L ~ ( o , T )  I w ( t )  E [-b, b] a.e. t E [0, T I ) .  

Suppose that so E R is a given point at which one measures the system performance 

and that 17 > 0 is an assigned constant. We consider the following minimax feedback control 
problem: 

minimize J ( u )  = max l o -  lu(y( t ,  x o ) )  ldt 
w ( ' ) E  wad 

over u ( . )  E Uad subject to (2.3) with the pointwise state constraints 



and the feedback control law formed by 

through the Neumann boundary conditions in (2.3). 

We always assume that there exists at least one triplet (u, w, y) E Uad x Wad x C(c1Q) 
such that it is feasible to problem (P), i.e., satisfies all the constraints. 

Note that we do not have any available information about uncertain perturbations w(t) 
except the given boundary { -b ,  b )  of their admissible values. The objective in (P) is to find a 
feedback control function u = u(y) E I-a,g] of the intermediate state y = y(t,  xo) that keeps 
the system performance within the constraint region (2.4) for all admissible perturbations and 
minimizes the given cost functional in the case of worst perturbations. This is a minimax 
robust control problem for uncertain distributed parameter systems under hard state and 
control constraints. Problems of this kind are among the most difficult ones in the control 
theory, and we are not familiar with any effective methods to solve such problems in full 
generality. Let us describe an approach to  solving (P) that takes into account certain specific 
features of parabolic systems and allows us to compute a feasible suboptimal (in some sense) 
feedback control. 

Our approach employs the Fourier series spectral representation of solutions to the parabolic 
system (2.3). To this end we consider the eigenvalue problem 

involving eigenvalues X and eigenfunctions 9. It is well known (see, e.g., [:I.]) that under the 
general assumptions made there exists a sequence of solutions {Ak, v k ) k E ~  to (2.6) such that 

{vk)kEN is a complete orthonormal basis in ~ ~ ( 0 )  and 

X k  = c k i  + o ( k i )  for some c > 0. 

Consider the numbers 

PX := /n vk(x)dx and vi := v t ( ~ ) d g c  

where dg( denotes the surface measure. The following result [7, 81 provides the basic spectral 
representation of solutions to  the parabolic system (2.3). 

Proposition 1.  Let (u, w) E L2(0, T) x L2(0, T). Then the corresponding solution y(t,  x) of 
system (2.3) is continuous on clQ and is represented in the form 



where the series converges strongly in L 2 ( R )  for each t E [ O ,  TI .  

Employing the maximum principle for parabolic equations (cf. [4] ) ,  one gets monotonic- 
ity properties of transients in (2.3) with respect to both controls and perturbations that play 

a crucial role in what follows. 

Proposition 2. Let (u; ,  w;)  E L2(0,  T )  x L2(0,  T )  and let y ; ( - )  be the corresponding gener- 
alized solution to (2.3) for i = 1, 2. Then 

if u ~ ( t )  2 ~ ( t )  and w l ( t )  2 w2(t) for all t E [0, TI .  

Remember that the control objective is to keep transients within the given state con- 

straints under any admissible perturbations. Then Proposition 2 infers that the bigger 
magnitude of a perturbation is, the more control of the opposite sign should be applied to 

neutralize the perturbation and ensure the required state performance. This makes us to 

consider feedback control laws with the compensation property 

~ ( y )  <u( j j )  if y 2 j j  and y . u ( y )  < O  V y , j j ~  R. (2.8) 

The latter property implies that 

i.e., the compensation of bigger (by magnitude) perturbations requires more cost with re- 

spect to the maximized cost functional in (P). This allows us to seek a suboptimal control 
structure in (P) by examining the control response to feasible perturbations of the maximal 
magnitudes w ( t )  = b and w ( t )  = -b for all t E [O,T]. 

3. APPROXIMATION PROBLEMS 

In this section we develop multi-step approximation procedures to justify an acceptable 

structure of feasible suboptimal controls for problem (P). 
Let u = u ( y )  be a given feedback control law in (P). Then for any given perturbation 

w = w ( t )  we have an open-loop control realization u ( t )  = u ( y ( t ,  so)) due to system (2.3). 
We consider only feasible pairs ( u ,  w )  E Uad x Wad such that the corresponding transient 

y ( t ,  xo)  satisfies the state constraints (2.4). For any natural number N = 1,2, . . . we denote 

and conclude that for all t E [0, TI 

y N ( t ,  .) + Y ( t ,  .) strongly in L 2 ( R )  as N t oo 



due to Proposition 1. Moreover, considering y N ( t ,  x )  at the point of observation x = x o ,  we 
N 

get y N ( t , x 0 )  = y k ( t )  with 
k= 1 

Thus Proposition 1 allows us to approximate the original parabolic system (2 .3)  by systems 
of ordinary differential equations. 

In what follows we assume that the eigenvalues in (2.6) satisfy the conditions 

that always hold, e.g., when A = A is the Laplacian. One can observe that under (3.1) the 
first term asymptotically dominates in the series (2.7) as t + a. On this basis, we examine 
the case of N = 1 in the above ODE system to justify a suboptimal control structure for the 
original problem. 

Taking into account the discussion after Proposition 2 as well as the symmetry  of (P) 
relative to the origin, we consider the following open-loop optimal control problem with the 
admissible control set 

in response to the upper level maximal perturbation w ( t )  = b on [0, TI: 

T 
( P I )  minimize j ( u )  = - / u ( t ) d t  

0 

over u ( . )  E Uad subject to 

= - X I Y  + ~ i ( x o ) ( ~ l b  + v l u ( t ) )  a.e. t E [0, TI 

and the state constraint 

The symmetric case of w ( t )  = -b in the lower boundary level can be considered similarly 
and actually can be reduced to ( P I ) .  

Note that the presence of state constraints relates ( P ~ )  to the class of most complicated 

optimal control problems for ODE systems. It is well known that in general their solutions 
involve Bore1 measures that make them fairly difficult for applications; see [3]. We avoid such 
difficulties by developing an approzimation procedure in the vein of [lo] to replace ( P I )  by a 

parametric family of standard optimal control problems with no state constraints. To solve 



approximation problems we employ the Pontryagin maximum principle [15] that provides 
necessary and suficient conditions for optimality of approximating solutions. It occurs that 
optimal controls to approximation problems contain both bang-bang and singular modes. 
Passing to the limit, we obtain in this way an exact solution to the state-constrained problem 
( P I )  that does not involve any measure. The results obtained show that the state constraint 
(3.3) in ( P I )  turns out to be a regularization factor. Such a surprising conclusion is due to 
the specific of problems like ( P I )  reflecting the parabolic dynamics. The reader can find more 
details in [ll, 141 where similar results are proved for approximation problems corresponding 
to Dirichlet boundary controls. 

Theorem 3. Let p lp l (xO)b  > kq. Assume in addition that either 

Then system (3.2),  (3.3) is controllable, i.e., there is u(-) E such that the corresponding 
trajectory of (3.2) satisfies the state constraint (3.3). Moreover, problem ( P I )  admits an 
optimal control of the form 

where i1 = min{r1, T) with r1 computed in (3.4). 

Note that in (3.5) we have only one switching from the original bang-bang level to an 
intermediate singular mode. For the symmetric problem ( E l )  in which the system is operated 
under the lower level maximal perturbation w ( t )  = -b, one can obtain the corresponding 
results from Theorem 3 by changing signs of the state and control variables. 

According to the above discussions, the optimal controls derived for problems ( P I )  and 
( E l )  can be viewed as first-order suboptimal solutions to the open-loop control problems aris- 
ing from the original problem (P) under the maximal perturbations w ( t )  = b and w ( t )  = -b. 
In the next section we admit this simple structure justified as a suboptimal control struc- 
ture for the original problem under maximal perturbations and then optimize its parameters 
along the parabolic dynamics over a large control interval. 

4. OPTIMAL CONTROL UNDER MAXIMAL PERTURBATIONS 

Let us consider the following optimal control problem for the original parabolic system 
(2.3) under the upper level maximal perturbation w ( t )  = b on [0, TI: 



T 
(P) minimize J ( U )  = - J u( t )d t  

0 

subject to system (2.3),  state constraint (3.3),  and boundary controls 

u ( . )  E Uad of the form 

We choose the Neumann boundary control structure (4.1) according to the results in 

Section 3 that justify its suboptimality under maximal perturbations. To solve ( P )  one 

should find optimal parameters ii E [ O , Z ]  and T E [O,T] in (4.1) which keep the state 

constraint (3.3) along the parabolic dynamics (2.3) and minimize the given cost functional. 

In what follows we suppose that the control interval [0, TI is sufficiently large and examine 

the asymptotics of optimal solutions as T + oo based on assumption (3.1). It turns out 

that under this assumption optimal processes in ( P )  possess a kind of turnpike property that 

simplifies the solution while passing to the infinite horizon. 

To formulate the main results we need to introduce the following numbers 

that are positive under the assumptions made in the next theorem. 

Theorem 4. In addition to the basic assumptions let us suppose that vl > 0 and 

Consider the transcendental equation 

which has a unique solution T = T ( T )  E ( 0 ,  T )  for all T sufficiently large. Then any control 
(4.1) with 

is feasible to ( P )  for all positive T 5 T ( T )  being optimal to this problem when T = 7 ( T ) .  
Moreover, T ( T )  1 7 as T + oo where the asymptotically optimal switching time 7 is computed 

by 

The proof of this theorem follows the scheme of [ l l ,  141 for the case of Dirichlet boundary 

conditions. Let us observe that control (4.1) with parameters (4.3) and (4.4) is feasible for 



problem (P) on the interval [0, TI with an arbitrary large T. Moreover, ? is the maximal one 

among all switching times in (4.1) that keep the state constraint (3.3) on the whole infinite 

interval [O, 00). Therefore, this asymptotically optimal control with the infinite horizon is 
suboptimal for the given problem (P) on [0, TI where T is sufficiently large. 

Similar results hold for the symmetric optimal control problem (P) corresponding to the 
lower level maximal perturbation. This problem consists of minimizing the cost functional 

J ( u )  = lT u(t)dt subject to  the parabolic system (2.3) with w(t) = -b on [0, TI, admissible - 

boundary controls 0 5 u(t)  5 a of the form 

0 for O < t < r  
u(t) = 

u for T 5 t 5 T, 

and the state constraint -7 < y(t) for all t E [0, TI. 
Utilizing symmetric arguments, we justify the optimality of control (4.5) with the position 

and the switching time T = 1(T) satisfying (4.2) for -b. One has r(T) 1 1  as T -t oo where 

the asymptotically optimal switching time is computed by 

5. FEEDBACK CONTROL DESIGN FOR THE PARABOLIC SYSTEM 

Let us go back to the original feedback control problem (P) and assume hereafter that 
its initial data satisfy all the assumptions in Theorem 4 as well as the symmetric ones for 

the lower level maximal perturbation w(t) = -b. Based on the results above, we consider 
the following three-positional feedback control law in (2.5): 

that obviously satisfies the compensation property (2.8). We have established that structure 
(5.1) is suboptimal (optimal in the first order) with respect to the objective in (P) under the 
realization of the maximal boundary perturbations w(.) = b and w(.) = -b. Furthermore, 

we computed optimal control parameters corresponding to the maximal perturbations with 
their asymptotics on the infinite horizon. Now our goal is to determine optimal parameters 
of the feedback control law (5.1.) ensuring the desired behavior of the closed-loop system 

(2.3), (2.5), (5.1). 
Let the positions ii and u in (5.1) be computed by formulas (4.3) and (4.6), respectively. 

Under the assumptions made one obviously has u(.) E Uad for any control realization u(t)  = 



u ( y ( t ,  xo ) )  corresponding to an arbitrary w( . )  E Wad. Moreover, these control positions 
ensure the transient stabilization as t + CCI within the required state interval [-77, 771 for 

any admissible perturbations. However, the state constraints (2.4) may be violated for 

some t E [0, TI if the dead region [-a, a] is not properly designed. The next theorem 
determines optimal values of a and a such that the closed-loop control system exhibits the 
best possible behavior under the maximal perturbations and keeps transients within the given 
state constraints for any admissible perturbations on a large control interval [0, TI .  The proof 

is based on the transient monotonicity with respect to both controls and perturbations; cf. 

Theorem 5.  Under the assumptions made we consider the feedback control (5.1) with ii and 
u computed in (4.3) and (4.6),  respectively. Let 

where 7 ( T )  and z ( T )  are the corresponding unique solutions to (4.2) and its counterpart for 

-b. - Then the control law (5.1) is feasible for any perturbations w ( . )  E Wad and optimal 
in the case of maximal perturbations when T is suficiently large. Moreover, a ( T )  a and 

g ( T )  a as T + oo where the positive numbers 

form the maximal dead region [-a, a] under which feedback (5.1) keeps the state constraints 
(2.4) on the infinite horizon [0, oo) for any admissible perturbations. 

6. STABILITY O F  THE FEEDBACK CONTROL SYSTEM 

Let us consider the closed-loop control system 

where u = u ( y )  is the three-positional feedback controller defined in (5.1). Note that al- 
though the parabolic equation in (6.1) is linear, the closed-loop system (6.1) is highly non- 
linear with respect to the state y due to discontinuity of the feedback control law (5.1). 



One of the most important characteristics of closed-loop dynamical systems is their sta- 

bility in the sense of maintaining the initial stationary regime after terminating all the per- 

turbations. Such a stability is an obligatory condition for a normal functioning of any 
automatic control system. We are going to consider the nonlinear control system (6.1) from 
this viewpoint. 

Note that (6.1) is a distributed parameter system where controls acting in the Neumann 
boundary conditions are formed by the current intermediate state y ( t ,  xo). This generates 

an inertia of the control system and essentially affects its stability. One can easily see that 
if y ( t ,  xo) is strictly inside of the dead region [-a, a] at the time to  of terminating all the 
perturbations, then system (6.1) maintains the stationary regime yo(x) - 0 as t -4 oo. This 
means the stability in the small of the initial state y = 0 that is not suficient for a normal 

functioning of the nonlinear control system (6.1) since it does not exclude self-vibrating 

regimes. 

Complications may arise when y ( t ,  xo) reaches the boundary of the dead region while the 
latter is not sufficiently wide. Indeed, in such cases the transient trajectory moves back and 
forth between the dead region boundaries under switching control positions in (5.1) with 
no external perturbations w(-). The next theorem provides effective conditions that exclude 

such an auto-oscillation and thus ensures the required stability of the closed-loop control 
system (6.1). The proof of this theorem is based on a variational approach to stability that 
is possible due to monotonicity properties of the parabolic dynamics; see [ll, 141 for more 
details. 

Theorem 6 .  The closed-loop system (6.1), (5.1) with arbitrary control parameters (ii, u, a, a) 
is stable if 

Furthermore, let b 5 1! and let (al,a1) be computed by 

i.e., they are the first-term approximations of the asymptotically optimal dead region bounds 

in (5.2) and (5.3). Then the stability condition (6.2) can be written as 
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