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Abstract 

The Rosenzweig-MacArthur food chain model is proved to have homoclinic 

orbits. The proof is in two steps. First we use a geometric approach 

based on singular perturbation and detect singular homoclinic orbits as well 

as parameter combinations for which these orbits exist. Then we show, 

numerically, that for slightly different parameter values there exist also non 

singular homoclinic orbits which tend toward the singular ones when the time 

responses of the three trophic levels are extremely diversified. The analysis 

is performed systematically, without exploiting too deeply the mathematical 

structure of the Rosenzweig-MacArthur model. This is done intentionally, 

in order to facilitate readers interested more in the methodology than in the 

application to food chains. 



1 Introduction 

Tri-trophic food chains have been extensively studied during the last decades. 

The most recent investigations [I], [2], [3] deal with the standard Rosenzweig- 

MacArthur model and show that its bifurcation structure is quite rich. In 

particular, it comprises a complex cascade of intersecting flip and tangent 

bifurcations of cycles delimiting the region of chaotic behavior [3]. 

Although these analyses are restricted to local bifurcations, they clearly 

indicate the existence of global bifurcations. Indeed, homoclinic orbits, i. e., 

orbit's tending toward the same saddle forward and backward in t,ime, have 

been numerically detected in [2], [3]. 

The proof of existence (or non existence) of homoclinic orbits is a stra,tegic 

point for the a'nalysis of any nonlinear dynamical system. In fact, homoclinic 

orbits exist only for pa'rticular pa'rameter combinations and are substituted 

by very special behaviors, including cycles and strange attractors, when the 

para.meters are perturbed generically. Finding homoclinic bifurcations, i. e., 

parameter combinations that guarantee the existence of homoclinic orbits, 

is certainly a very difficult task, even if there have been recent progresses in 

the field [4]. 

Aim of this paper is to show how homoclinic orbits in the Rosenzweig- 

MacArthur model can be easily detected in the case of trophic levels with 



time responses increasing from bottom to top. When this hierarchical order is 

taken to the limit of highly diversified dynamics, the analysis of the system 

can be performed through singular perturbation [5 ] .  Such technique has 

already been used to study the cyclic behavior of tri-trophic food chains 

[6], [7] as well as other problems in population dynamics, like competitive 

coexistence [8] and insect out breaks in forest-ecosystems [9], [lo]. Singular 

perturbation has also been used to detect homoclinic orbits but only in the 

simplest case of second order systems [ll.]. 

The paper is organized as follows. In the next section some background 

information on slow-fast systems and singular orbits is given. In particular, 

singular saddles and singular homoclinic orbits are defined. In Sect. 3 

the Rosenzweig-MacArthur model is presented and its singular orbits are 

determined. Tlie analysis is divided into three steps in order to facilitate 

readers more interested in the methodology than in the application to food 

chains. The conclusion is that singular homoclinic orbits exist for suitable 

parameter values. Then, in Sect. 4 the analysis is completed by looking 

at the non singular case. Numerical experiments show that also in that 

case homoclinic orbits exist for slightly different parameter values and tend 

toward the singular ones when the time responses of prey, predator and 

superpredator are highly diversified. 



2 Slow-fast systems and singular orbits 

Dynamical systems are usually composed of interacting compartments and 

these compa,rtments are very often characterized by highly differentiated time 

responses. Systems of this kind are called slow-fast systems and the case 

considered in this paper is that of third order systems of the form 

where E is a small and positive constant parameter. Thus, the state variables 

z, y and z are, respectively, the fast, intermediate, and slow cornpoile~lt of 

the system. The analysis of slow-fast systems usually refers to the case of 

oiily two dynamically diversified compartments [ 5 ] .  Eqs. ( I ) ,  on the contrary, 

describe a system with a three level hierarchy in its dynamics. Systems of 

this kind have already been described in the literature (see, for example, [6], 

171) 

Orbits of system (1) can be approximated by so-called singular orbits, 

which are easily obtained by concatenating orbits of three very simple first 

order systems, called, fast, intermediate and slow. 

The fast system is 



where y and z are frozen at constant values. Thus, the manifold f = 0 is the 

equilibrium manifold of the fast system embedded in the three-dimensional 

space (x, y, z) and singular orbits starting from a generic point (i.e.,  a point 

which is not an equilibrium point of the fist system) have a first segment 

parallel to the x axis. Equilibria of the fast system can be linearly stable or 

unstable (depending upon the sign of f,) so that the manifold f = 0 can be 

partitioned into stable and unstable manifolds, separated by lines which are 

bifurcations of the fast system with respect to y and z. 

In the example shown in Fig.1, the fast system has multiple equilibria, 

and its bifurcations are fold bifurcations. The first piece of t)he singular orbit 

is the fast segment 0 1 connecting the initial point 0 to a stable equilibrium 

point of the fast system. Other fast segments can be present in a siiigular 

orbit. For example, segment 6 7 in Fig.1 is a fast segment initiating at a fold 

point of the fast system. 

The intermediate system is defined on the manifold f (x, y, z) = 0 and is 

described by 

Y = g(x ,y , z )  

where z is frozen at a constant value. This means that all intermediate 

segments of singular orbits are lines obtained by intersecting the manifold 

f = 0 with a, plane parallel to the (x, y) plane. The singular orbit depicted 



in Fig.1 contains four intermediate segments (namely 1 2, 3 4, 5 6 ,  and 7 8). 

These segments terminate at an equilibrium of the intermediate system, i.e., 

on the line f = g = 0, or a t  a bifurcation point of the fast system(e.g., point 

G in Fig.1). 

Finally, the slow system is defined on the manifold f = g = O and is 

described by 

.i. = h (x, y, z )  

The slow segments are therefore pieces of the line f = g = 0 with the direction 

of the flow dictated by the sign of h (see segments 2 3 and 4 5 in Fig.1). They 

terminate either at an equilibrium point (characterized by f = g = lz = O ) ,  

01. at a bifurcation point of the intermediate system (like points 3 and 5 in 

Fig. 1). 

By properly connecting fast, intermediate and slow segments one can 

easily generate singular orbits, as shown in Fig.1. The procedure terminates 

when an equilibrium is reached or when a concatenation point coincicles with 

one of the previously generated points, in which case a singular cycle is 

obtained. The main result of singular perturbation theory is that any orbit 

of system (1) approaches, for E + 0, the corresponding singular orbit. Of 

course, such a result holds provided the functions f , g, and h satisfy suitable 

conditions. For singular orbits not passing through critical points this result 



has been proved by Tikhonov [12], while for singular orbits passing through 

folds the result is proved in [13] (see also [14] for a modern presentation of 

this topic). 

A singular saddle is an equilibrium point with an incoming and an 

outcoming singular orbit. A degenerate, but interesting, singular orbit is 

the singular homoclinic orbit. It can be defined as a singular orbit that 

tends toward the same equilibrium point both forward and backward in 

time. Consistently, the equilibrium point is a singular saddle, which has an 

outcoming singular orbit that returns exactly to it. As in the standard case, 

singular homoclinic orbits can be obtained by varying a strategic parameter 

until a singular saddle collides with a singular cycle. In the next sectioil this 

property is used t,o prove the existence of singular homoclinic orbits in the 

Rosenzweig-hilacArthur model. 

3 Slow-fast food chains 

R.osenzweig-MacArthur model is the most popular model of tri-t'rophic food 

chains [:I.], [2], [3]. It assumes that the prey (x) has logistic growt'h and 

that predator (y) and superpredator ( z )  have Holling type 11 functional 

response. In the majority of food chains, the size of individuals and the time 

they need for reproduction and growth are increasing with the t,rophic level. 



Phytoplankton-zooplankton-fish is a typical example, but almost. all food 

chains belonging to the class plant-herbivore-carnivore have time responses 

increasing along the chain from bottom to top. Thus, a.fter scaling the 

dynamics of the three trophic levels by means of a dimensionless positive 

parameter E, the model takes the form [7] 

Y = EY = EYG (x, y, z )  

where the ten parameters r, K, a,, b,, c,, di, i = 1 ,2  are positive. Alodel (2) 

has two particular features: (i) it is a positive model because f = z F ,  

g = yG, h = z H ;  (ii) F does not depend upon z  and H  depends only 

upon y. Property (i) implies that model (2) has invariant coordinate axes 

and that the equilibrium manifold of the fast and intermediate systems are 

the union of trivial and nontrivial manifolds. Property (ii) simplifies the 

analysis, as shown in the following. 

3.1 Prey dynamics 

The fast system (eq. (2a) with y = const.) has the trivial equilibrium 

manifold x = 0 and the nontrivial equilibrium manifold F = 0, which is 



the parabola 

in the (x, y) space. For bl < K such a parabola is like in Fig.2: its maximum 

and its point of intersection with the y axis is 

For y = ymaX the fast system has a fold bifurcation, while for y = yo it 

has a transcritical bifurcation. The trivial manifold is stable above point yo 

because f, = F = (y - yo), while the nontrivial manifold is stable on the 

right branch of the parabola because f, = xF, = xFyyx and KJ is positive. 

Thus, the fast segments of the singular orbits are oriented like in Fig.2. 

3.2 Predator dynamics 

The intermediate system (eq. (2b) with z = const.) is defined on the manifold 

f = 0, i.e., on x = 0 and F = 0, and intermediate segments of singular orbits 

lie in a plane parallel to the (x, y) plane. It is therefore useful to represent 

the behavior of the intermediate system in such a plane, where the manifold 

F = 0 is the parabola shown in Fig.2. 



Four cases of interest are presented in Fig.3 for increasing values of z. 

The manifold G = 0 varies with z, while the parabola F = 0 is independent 

upon z. Since G > 0 [G < 0] above [below] the manifold G = 0, the direction 

of the flow of the intermediate segments is immediately identified (see two 

arrow orbits on the parabola and on the y axis). The intermediate system 

has three or four equilibria: the origin and the points indicated by A, B and 

K. In the same figure two singular orbits of the (fast-intermediate) system, 

obtained by properly concatenating fast and intermediate segments, are also 

shown. They start from points 1 and 2 and tend toward an equilibrium 

point or toward the singular limit cycle (V y,,, y,i, R). More precisely, in 

Fig.3a (small value of z) both singular orbits tend toward the singular limit 

cycle. In Fig.3b the first singular orbit tends toward the limit cycle while 

the ot,her tends toward the equilibrium K: there are therefore two singular 

attractors in this case. In F ig .3~  both singular orbits tend toward point 

K which is a globally stable equilibrium for the (fast-intermediate) system. 

Finally, in Fig.3d (high value of z) there are two singular attractors,namely 

the equilibrium points A and K. For higher values of z, points A and B of 

Fig.3d disappear through a fold bifurcation and point K becomes a globally 

stable equilibrium point for the (fast-intermediate) system. 

It must be noted that point ymi, of the singular limit cycle in Fig.3 is 

below point yo. This means that the intermediate segment of the singular 

11 



orbit starting from y,,, lies partly on the unstable equilibrium manifold of 

the fast system. In other words, the singular orbit develops at intermediate 

speed along the stable trivial branch of the equilibrium manifold of the fast 

system, reaches the transcritical point yo, and then develops further along 

t,he unstable branch of the same manifold. This somehow counterint uit ive 

fact ca,n be justified by noting that in an &-neighborhood of point (0, ymi,) 

of Fig.3 both x and F are order E so that x is order E~ while y is order E ,  so 

that the orbit of system (2) develops almost vertically along the y axis. This 

holds until point y,,, is reached where the increment of x accumulated below 

point yo compensates the decrement of x from y,,, to yo. The relationship 

between y,,, and y,,, is given by the following integral equation (see [15], 

[lCi], as well as [17], [18] for more general forms) 

Taking into a,ccount eqs. (2a), (2b) and (3) such a relationship can be 

given the form 

Moreover, it can be proved [16] that the function y,in (z), implicitly defined 

by eq. (5), is decreasing with respect to  z. 



The results presented in this subsection are summarized in Fig.4, where 

the equilibria and limit cycles of the (fast-intermediate) system are shown in 

the three-dimensional space (x, y, z) .  The surface densely covered by limit 

cycles is called cycle manqold from now on. The four dots indicate the four 

bifurcation points of that system with respect to z. The four plots in Fig.3 

are slices not passing through the four dots of this three-dimensional diagram. 

3.3 Superpredator dynamics 

The slow system (eq. (2c)) can now be used to det,ermine t,he slow segments 

of the singula,r orbits. Since i > 0 [< 0] above [below] the manifold (plane) 

it is straightforward to conclude that the line x = K, y = 0 in Fig.4 is a slow 

segment of singular orbit developing from the right to the left, as well as t,he 

lowest part of the line F = G = 0. By contrast, the highest part of the same 

line develops from the left to  the right. 

3.4 Singular homoclinic orbit 

The intersection of the plane H = 0 with the line F = G = 0 is an equilibrium 

point. If parameters are such that plane (6) is below point 2 in Fig.4, the 

equilibrium is a singular saddle S because one fast segment tends to it and 

13 



one intermediate segment (as well as the slow segment F = G = 0) comes 

from it. Fig.5 shows the singular orbit coming out from the singular saddle S. 

The first segment S A is at intermediate speed and is followed by a segment 

A B at slow speed and then by a new intermediate segment bringing the 

orbit on the cycle manifold. The coordinates ZA and z~ of points A and B 

are related one to  each other by the following integral equat,ion (similar t,o 

es. (5)) 

which gives rise to 

Once the singular orbit is on the cycle manifold, it stays on it and develops 

slowly to  the right by covering it densely, because i > 0 (recall that point 

2 is above point S and that y,i, (z) is decreasing with respect to z). When 

the singular orbit reaches point 2 it abandons the cycle manifold and goes to 

point Q with a segment at intermediate speed. Then, again, a slow motion 

develops from Q to R, where (see eq. (7)) 

From point R the singular orbit goes on the cycle manifold and develops 

on it for the second time until point 2 is reached. Thus, a singular cycle is 

14 



closed, as clearly indicated in Fig.5. From the same diagram it is also clear 

that a singular homoclinic orbit is obtained if parameters are such that the 

saddle S coincides with point 2. In such a case the outcoming segment of 

the saddle is 2 Q and the incoming segment is P 2. 

4 Numerical results 

From the above discussion, it follows that the singular homoclinic orbit 

is completely identified by four relationships, namely the three equations 

F (z, y) = G (z, y, z) = H (y) = 0 and eq. (5) with y,,, substituted by y 

(this equation forces point S to coincide with point 2 in Fig.5). These four 

equations have in general one solution if one parameter is left free. Once a 

solution of these four equations has been obtained, eq. (8) with z(2 equal 

to  the z coordinate of the saddle can be used to derive z ~ .  In this way the 

singular homoclinic orbit is fully identified geometrically. 

Once a singular homoclinic orbit has been obtained, one can continue 

the solution of the four above mentioned equations and produce singular 

homoclinic bifurcation curves in any two dimensional parameter space. Fig.6 

shows one of these singular bifurcation curves (dashed line) in the parameter 

space (K, r). Of course, the interest in such a singular bifurcation curve relies 

upon the conjecture that for nearby parameter values there exist homoclinic 



orbits of system (2) with small values of E.  A proof of this conjecture has 

been given in [ll] for the simple case of second order systems but is not 

yet available for third order systems (1) with generic functions f ,  g, and 

h. On the other hand, a proof constrained to the specific food chain model 

considered in this paper would be of very scarce interest. For this reason, 

only numerical results are presented here to prove that the conjecture holds 

for system (2). 

Three homoclinic bifurcation curves of system (2) corresponding to three 

different values of E are shown in Fig.6. They have been produced in two 

steps. First, an homoclinic orbit for a small value of E has been obtained 

by simulation (see point A in Fig.6 and Fig.7a). Then, this orbit has been 

used as initial solution to produce a homoclinic bifurcation curve through 

continuation (this method is described in [4] and has been implemented 

in HOMCONT, an AUTO86 (see [19]) driver described in [20]). The two 

other bifurcation curves shown in Fig.6 has been produced in the same 

way. Only segments of the curves for E = 0.05 and E = 0.1 are shown in 

the figure because the complex geometry of the homoclinic orbit made the 

computations particulary hard. 

Four homoclinic orbits are shown in Fig.7. The first (Fig.7a) corresponds 

to point A in Fig.6 (E = 0.05, K = 2.4778, r = 4.0) and is very similar to 

the singular orbit shown in Fig.5. The second and the third (Figs.7b,c) 
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corresponds to points B and C of Fig.6, respectively, (B : E = 0.1, 

K = 2.09, r = 4.0 ; C : E = 0.2, K = 1.8632, r = 4.0), and are characterized 

by a smaller number of loops. These figures confirm that for E + 0 the 

homoclinic orbit tends toward the singular homoclinic orbit. Of course, for 

higher values of E the homoclinic orbit might change its form and become an 

homoclinic orbit t.o a complex saddle like the one shown in Fig.7d that has 

been obtained by continuation starting from point C' in Fig.6. 

Conclusion 

The standard Rosenzweig-MacArthur model of tri-trophic food chains has 

been proved to have homoclinic orbits for suitable values of it's parameters. 

The proof is based on a very simple and elegant geometric approach derived 

from singular perturba,tion a'nalysis. The approach allows one to prove only 

t,he existence of singular homoclinic orbits and has therefore been int,egrated 

by extensive numerical a.nalysis. 

The approach can certainly be applied to many other third order nonlinear 

systjems and is potentially of great value in population dynamics, where 

finding the consequences of the interactions between very fast and very slow 

components of complex ecosystems is a problem of major concern [21]. 
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Figure legends 

Figure 1 

A singular orbit of system (1). Single, double and triple arrows indicate slow, 

intermediate and fast segments of the singular orbit. The function f [h] is 

negative [positive] above the manifold f = 0 [h = 01, while g is positive on 

the right of the manifold g = 0. 

Figure 2 

Fast (three arrows) segments of singular orbits in the space (x, y). Heavy 

[dashed] lines indicate the stable [unstable] equilibrium ma,nifold of tthe fast 

syst,em. 

Figure 3 

Fast (three arrows) and intermediate (two arrows) segments of singular orbits 

of the fast-intermediate system (z increases from (a) to (d)). 

Figure 4 

Cycles and equilibria of the fast-intermediate system. 

Figure 5 

The singular saddle S and its singular outcoming orbit. 



Figure 6 

Singular homoclinic bifurcation curve (dashed line) and homoclinic 

bifurcation curves (continuous line) of system (2) for E = 0.05, E = 0.1, 

and E = 0.2. Parameter values are a l  = 513, bl = 113, c l  = 513, 

d l  = 4/10, a2 = 1/20, b;? = 112, ~2 = 1/20, d2 = 1/100. 

Figure 7 

Four homoclinic orbits of system (2): (a), (b), (c) and (d) correspond 

respectively to points A, B, C and D in Fig.6. The orbit in (d) is a homoclinic 

orbit to a complex saddle obtained for E = 1.0, the saddle has eigenvalues 

A1 = -2.2144, A2,3 = 0.0766 f i0.0331. 
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