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Abstract

Classification of terrain cover from satellite radar imagery represents an area of considerable
current interest and research. Most satellite sensors used for land applications are of the imaging
type. They record data in a variety of spectral channels and at a variety of ground resolutions.
Spectral pattern recognition refers to classification procedures utilizing pixel-by-pixel spectral
information as the basis for automated land cover classification. A number of methods have
been developed in the past to classify pixels [resolution cells] from multispectral imagery to a
priori given land cover categories. Their ability to provide land cover information with high
classification accuracies is significant for work where accurate and reliable thematic information
is needed. The current trend towards the use of more spectral bands on satellite instruments,
such as visible and infrared imaging spectrometers, and finer pixel and grey level resolutions
will offer more precise possibilities for accurate identification. But as the complexity of the data

grows, so too does the need for more powerful tools to analyse them.

It is the major objective of this study to analyse the capabilities and applicability of the neural
pattern recognition system, called fuzzy ARTMAP, to generate high quality classifications of
urban land cover using remotely sensed images. Fuzzy ARTMAP synthesizes fuzzy logic and
Adaptive Resonance Theory (ART) by exploiting the formal similarity between the
computations of fuzzy subsethood and the dynamics of category choice, search and learning.
The paper describes design features, system dynamics and simulation algorithms of this
learning system, which is trained and tested for classification (8 a priori given classes) of a
multispectral image of a Landsat-5 Thematic Mapper scene (270 x 360 pixels) from the City of
Vienna on a pixel-by-pixel basis. Fuzzy ARTMAP performance is compared with that of an
error-based learning system based upon the multi-layer perceptron, and the Gaussian maximum
likelihood classifier as conventional statistical benchmark on the same database. Both neural
classifiers outperform the conventional classifier in terms of classification accuracy. Fuzzy
ARTMAP leads to out-of-sample classification accuracies, very close to maximum
performance, while the multi-layer perceptron - like the conventional classifier - shows

difficulties to distinguish between some land use categories.

Keywords: Fuzzy ARTMAP, neural networks, supervised pattern classification, remote

sensing



1. Introduction

Spectral pattern recognition deals with classifications that utilize pixel-by-pixel spectral
information from satellite radar imagery. The literature on neural network applications in this
area is relatively new, dating back only about six to seven years. The first studies established
the feasibility of error-based learning systems such as backpropagation [see Key et al. 1989,
McClellan et al. 1989, Benediktsson et al. 1990, Hepner et al. 1990]. Subsequent studies
analysed backpropagation networks in more detail and compared them to standard statistical
classifiers such as the Gaussian maximum likelithood [see Bischof et al. 1992, Kanellopoulos et
al. 1993, Fischer et al. 1994].

In this paper we analyse the capability and applicability of a different class of neural networks,
called fuzzy ARTMAP, to multispectral image classification. Fuzzy ARTMAP synthesizes
fuzzy logic and Adaptive Resonance Theory (ART) models by describing the dynamics of ART
category choice, search and learning in terms of analog fuzzy set-theoretic rather than binary
set-theoretic operations. The paper describes design features, system dynamics and simulation
algorithms of this learning system, which is trained and tested for classification of a
multispectral image of a Landsat-5 Thematic Mapper (TM) scene (270x360 pixels) from the
City of Vienna on a pixel-by-pixel basis. Fuzzy ARTMAP performance is compared with that
of a backpropagation system and the Gaussian maximum likelihood classifier on the same

database.

The paper is organized in seven sections. Section 2 gives a brief mathematical description of the
unsupervised learning system, called ART 1, which is a prerequisite to understanding the
ARTMAP system. Section 3 shows how two ART 1 modules are linked together to form the
ARTMAP supervised learning system for binary pattern recognition problems. Section 4 leads
to one generalization of ARTMAP, called fuzzy ARTMAP, that learns to classify continuous
valued rather than binary patterns, and to a simplified version of the general fuzzy ARTMAP
learning system, which will be used as general purpose remote sensing classifier in this study.
Section 5 describes the remote sensing classification problem which is used to test the
classifier's capabilities. The simulation results are given in section 6 and compared with those
obtained by the backpropagation network and the conventional maximum likelihood classifier.

The last section contains a summary discussion.

2. Adaptive Resonance Theory and ART 1

The basic principles of adaptive resonance theory (ART) were introduced by Stephen

Grossberg in 1976 as a theory of human cognitive information processing [Grossberg 1976



a,b]. Since that time the cognitive theory has led to a series of ART neural network models for
category learning and pattern recognition. Such models may be characterized by a system of
ordinary differential equations [Carpenter and Grossberg 1985, 1987a] and have been

implemented in practice using analytical solutions or approximation to these differential
equations.
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ART models come in several varieties, most of which are unsupervised, and the simplest are
ART [ designed for binary input patterns [Carpenter and Grossberg 1987a] and ART 2 for
continuous valued [or binary] inputs [Carpenter and Grossberg 1987b]. This section describes
the ART | model which is a prerequisite to understanding the learning system fuzzy ARTMAP.
The main components of an ART | system are shown in figure 1. Ovals represent fields
(layers] of nodes, semicircles adaptive filter pathways and arrows paths which are not adaptive.
Circles denote nodes [processors], shadowed nodes the vigilance parameter, the match criterion
and gain control nuclei that sum input signals. The F; nodes are indexed by i and F5 nodes by |
[categories, prototypes]. The binary vector I=(1,....I;) forms the bottom-up input [input layer
Fo] to the field [layer] F| of n nodes whose activity vector is denoted by X=(X,....X,,). Each
of the n nodes in field [layer] F, represents a class or category of inputs around a prototype
[cluster seed or recognition category] generated during self-organizing activity of ART 1.
Adaptive pathways lead from each F) node to all F» nodes [bottom up adaptive filter], and from

cach Fa node to all Fy nodes [top down adaptive filter]. All paths are excitatory unless marked

with a minus sign.

Curpenter and Grossberg designed the ART 1 network using previously developed building
blocks based on biologically reasonable assumptions. The selection of a winner Fa node, the
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top down and bottom up weight changes, and the enable/disable [reset] mechanism can all be
described by realizable circuits governed by differential equations. The description of the ART |
simulation algorithm below is adapted from Carpenter et al. (1991a, b). We consider the case
where the competitive layer F, makes a choice and where the ART system is operating in a fast

learning mode.
Fi-Activation

Each F| node can receive input from three sources: the Fg — F;| bottom-up input; non-specific
gain control signals; and top-down signals from the m nodes [winner-take-all units] of F,, via
an F» — F; adaptive filter. A node is said to be active if it generates an output signal equal to 1.
Output from inactive nodes equals 0. In ART | a F; node is active if at least 2 of the 3 input
signals are large. This rule for Fy activation is called the 2/3 Rule and realized in its
simplest form as follows: The ith F| node is active if its net input exceeds a fixed threshold:
it +g +Z0, Y Wi 1+ W
X :{ ()

0 otherwise,

where I; is the binary Fp—F) input, g; the binary non-specific F; gain control signal, and term

E_jnzl Y, W; the sum of F,—F, signals Y;via pathways with adaptive weights Wj;, and W
(0<W <1) i5 a constant. Hereby the F| gain control g, is defined as
{ | if Fyis active and F, is inactive
g1= (2)
0 otherwise.

It is important to note that F, activity inhibits g;, as shown in figure 1. These laws for F,

activation imply that, if F; is inactive, then

I af =1
0 otherwise.

It exactly one F, node J is active, the sum X W,; in equation (1) reduces to the single

term W . <o that

I ifl;=1and W >W

0 otherwise.



Rules for Category Choice [F; choice]

F» nodes interact with each other by lateral inhibition. The result is a competitive winner-take all
response. The set of committed F; nodes [prototypes] is defined as follows. Let Tj denote the

total input from F; to the jth F, processor, given by

Ty = Tl X Wij s (5)

i=1
where wj; represent the Fy — F3 [i.e. bottom-up or forward] adaptive weights. If some Tj > 0,

detine the F choice index J by

T) = max {Tj}, (6)

j=l..m

Characteristically, J is uniquely defined. Then the components of the F; output vector Y =
(Yq...., Yu) are

I ify=1J

v { )
0 ifj+l.

If two or more indices j share maximal input, then one of these is chosen at random.

Learning Laws: Top Down and Bottom Up Learning

The learning laws as well as the rules for choice and search, may be described, using the

following notation. Let A= (Ay,..., Ap) be a binary m-dimensional vector, then the norm of A
is defined by
IA =20 1AL (8)

Let A and B be binary m-dimensional vectors, then a third binary m-dimensional vector A N B

may be defined by

(ANnB) =1 ifandonlyif Aj=1land B;=1 9)



All ART | learning is gated by Fj activity. That is, the bottom up (forward) and the top down
(backward or feedback) adaptive weights w;; and Wj; can change only when the Jth F; node is

active. Both types of weights are functions of the F; vector X.
Stated as a differential equation, the fop-down or feedback learning rule is

d _
a Vi (X- W) (10)

where learning by Wj; is gated by Y;. When the Y; gate opens [i.e., when Y > 0], then learning
begins and Wj; is attracted to X:

W. > X. (1)

N ]

In vector terms: if Y; > 0, then W, = (Wji1,...,Wj,) approaches X = (Xy,...,X). Such a

learning rule is termed outstar learning rule [Grossberg 1969].

Initially, all Wj; are maximal, i.e.

Wii (0) =1 (12)
Thus [with fast learning where the adaptive weights fully converge to equilibrium values in
response to each input pattern] the top-down [feedback] weight vector Wj is a binary vector at

the start and end of each input presentation. By (3), (4), (9), (11) and (12), the binary F,

activity [output] vector is given by

N =<[I if F,is inactive (13)
INW; if the Jth K node is active

When F> node J is active, by (4) and (10) learning causes
W, =1 W, (old) (14)

In this learning update rule Wjold) denotes W; at the start of the current input presentation. By

(11) and (13), X remains constant during learning, even though | W | may decrease.
The first time an Fy node J becomes active it is said to be uncommitted . Then, by (12) - (14)

W > 1. (15)



The bottom up or forward weights have a slightly more complicated learning rule which leads to
a similar, but normalized result. The combination with F; nodes which undergo cooperative and

competitive interactions is called competitive learning. Initially all F; nodes are uncommitted.
Forward weights wj; in F| — F; paths initially satisfy

wii (0) = . (16)

where the parameters o are ordered according to o>0>...>0t, for any admissible Fy — F

input 1.

Like the top-down weight vector Wy, the bottom-up F; — F, weight vector
wi=(W1y,...,Wip,...,WqJ) also becomes proportional to the F; output vector X when the F
node J is active. But in addition the forward weights are scaled inversely to Il X II, so that

X.

W, —> — 17
0T B Xl (n

with 3 > O [the small number 3 is included to break ties]. This F; — F; learning law [called the

Weber Law Rule, Carpenter and Grossberg 1987a] realizes a type of competition among the

weights W) adjacent to a given F; node J.
By (13), (14) and (17), during learning

1 r\WJ (old)
B+ ITOW ool

(18)

(18) establishes the update rule for forward weights. The wijj initial values are required to be
sufficiently small so that an input I which perfectly matches a previously learned vector wy will

select the F5 node J rather than an uncommitted node. This is accomplished by assuming that

|

(19)
B+ LI

O<(Xj :Wij(0)<

for all F| — F, inputs I. When 1 is first presented, X = I, so by (5), (14), (16), and (18), the
F1—F, input vector T = (T,...,Ty) obeys



Il o if j is an uncommitted node

T(D=ZL, I, wy=7 IINWI (20)

P if j is a committed node.
B+IWi

(20) is termed the choice function in ART 1, where B is the choice parameter and 8 = 0. The
limit 80 is called conservative limit, because small -values tend to minimize recoding during
learning. If B is taken so small then - among committed F, nodes - Tj is determined by the size i
I N Wjlirelative to Il W Il. Additionally, o values are taken to be so small that an uncommitted
F> node will generate the maximum Tj value in (20) only if I I~ W; Il = 0 for all committed
nodes. Larger values of o and B bias the system toward earlier selection of uncommitted nodes
when only poor matches are to be found among the committed nodes [for a more detailed

discussion see Carpenter and Grossberg 1987a].

Rules for Search

It is important to note that ART 1 overcomes the stability - plasticity dilemma by accepting and
adapting the prototype of a category [class] stored in F; only when the input pattern is
"sufficiently similar” to it. In this case, the input pattern and the stored prototype are said to
resonate [hence the term resonance theory]. When an input pattern fails to match any existing
prototype [node] in Fj, a new category is formed [as in Hartigan's (1975) leader algorithm],
with the input pattern as the prototype, using a previously uncommitted F; unit. If there are no
such uncommitted nodes left, then a novel input pattern gives no response [see Hertz et al.
1991].

A dimensionless parameter p with O < p < 1 which is termed vigilance parameter establishes a
matching [similarity] criterion for deciding whether the similarity is good enough for the input
pattern to be accepted as an example of the chosen prototype. The degree of match [similarity]
between bottom-up input I and top-down expectation Wj is evaluated at the orienting subsystem
of ART | [see figure 1] which measures whether prototype I adequately represents input pattern
I. A reset occurs when the match fails to meet the criterion established by the parameter p.

[n fast-learning ART 1 with choice at Fs, the search process may be characterized by the

following steps:

Step 1: Select one Fpnode J that maximizes T; in (20), and read-out its top-down
[feedback] weight vector Wy,



Step 2: With I active, compare the Fy output vector X = I n W; with the Fy — F; input

vector I at the orienting subsystem [see figure 1].
Step 3A: Suppose that I » Wj fails to match I at the level required by the p-criterion, i.e. that

IX1=1InW;ll<pllLIl (21

This mismatch causes the system to reset and inhibits the winning node J for the
duration of the input interval during which I remains on. The index of the chosen
prototype [F» node] is reset to the value corresponding to the next highest F; — F,
input T;. With the new node active, steps 2 and 3A are repeated until the chosen

prototype satisties the similarity [resonance] criterion (21).
Step 3B: Suppose that I » Wy meets the similarity [match function] criterion, i.e.
XM= NIAW;llZplLI (22)

then ART | search ends and the last chosen F; node J remains active until input 1
shuts off [or until p increases].

In this state, called resonance, both the feedforward (F1 — F2) and the feedback (F2 — F1)
adaptive weights are updated if I~ W (old) =W, o1d) . If p is chosen to be large [i.e. close to 1],
the similarity condition becomes very stringent so that many finely divided categories
[classes] are formed. A p—value close to zero gives a coarse categorization. The vigilance level

can be changed during learning.

Finally, it is worth noting that ART 1 is exposed to discrete presentation intervals during which
an input is constant and after which Fy and F; activities are set to zero. Discrete presentation
intervals are implemented by means of the F; and F; gain control signals [g), g»]. Gain signal
2> 1s assumed [like g; in (2)] to be O if Fy is inactive. When Fy becomes active, g and F»
signal thresholds are assumed to lie in a range where the F; node which receives the largest

input signal can become active.



3. The ARTMAP Neural Network Architecture

ARTMAP is a neural network architecture designed to solve supervised pattern recognition
problems. The architecture is called ARTMAP because it maps input vectors in R" [such as
[eature vectors denoting spectral values of a pixel] to output vectors in R"™ [with m<n],
representing predictions such as land use categories, where mapping is learned by example
[Tom pairs {A(p), B" } of sequentially presented input and output vectors p=1,2,3.... and B
is the correct prediction given AP, Figure 2 illustrates the main components of a binary
ARTMAP system. The system incorporates two ART I modules, ART, and ART,,. Indices a
and b identify terms in the ART, and ART,, modules, respectively. Thus, for example p, and py,

denote the ART, and ART,, vigilance (similarity) parameters, respectively.

During supervised learning ART, and ART}read vector inputs A and B. The ART,
complementing coding preprocessor transforms the vector A=(Aj,...,Ap,) into the vector "=
(A, AC) at the ART, field F(; where A€ denotes the complement of A. The complement coded

input I" to the recognition system is the 2na-dimensionable vector

I'= (A, AC) = (Alv”vAnu; AIC""’ A(n:a)’ 29
where
AC:=1-A. . (24)

Complement coding achieves normalization while preserving amplitude information [see
Carpenter et al. 1991a]. I"is the input to the ART, field Fl. Similarly, the input to the ART},
field F} is the vector 1" =(B, BC).

If ART, and ART}y were disconnected, each module would self-organize category groupings for
the separate input sets {A(p)} and {B(p) }, respectively, as described in section 2. In an
ARTMAP architecture design, however, ART, and ART, are connected by an inter-ART
module, including a map field that controls the learning of an associative map from ART,
recognition categories (i.e. compressed representations of classes of examplars A™) 10 ART},
recognition categories (i.e. compressed representations of classes of examplars B'"). Because
the map field is the interface, where signals from F; and F‘i interact, it is denoted by FP . The
nodes of Fe have the same index j [j=1,...,my] as the nodes of FS because there 1s a one-to-

one correspondence between these sets of nodes.

9
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Figure 2: Block Diagram of an ARTMAP System

ART, and ART}, operate as outlined in section 2 with the following additions. First, the ART,
vigilance [similarity] parameter p, can increase during inter-ART reset according to the match
tracking rule. Second, the map field F* can prime ARTy. This means, if F* sends nonuniform
input to FE_’ in the absence of an FB - Fl,) input B, then FS remains inactive. But as soon as
an input arrives, Fg selects the node J receiving the largest F* Fg input. Node J, in turn,
sends to FT the top-down input weight vector W,? . Rules for the control strategy, called match

tracking, are specified in the sequel [Carpenter et al. 1991a].

Let X" = (X,....X;,) denote the F| output vector and Y?= (Y7 ,....Yma) the F; output
vector. Similarly, let denote X° = (th ,...,X:h) the th output vector and Y = LYo
the F';I output vector. The map field F* has m; nodes and binary output vector X" Vectors

R i ih . .
X", Y". X", Y° and X™ are set to the zero vector, 0, between input presentations.

10



d ab . . . . .
The F’_)l —F* adaptive weights zy; with k=1,...,m, and j=1,...,my, obey an outstar learning law

. : b b .
similar to that governing the Fo— F| weights, namely

0 ab
% 7 = Yo XP - 74) (25)

Each vector (zgy,...,zkmb) is denoted by zy. According to the learning rule established by (25),
the F5 — F* weight vector zy approaches the map field F activity vector X" if the K-th F
node is active. Otherwise zx remains constant. If node k has not yet learned to make a
prediction, all weights zy; are set equal to 1, using an assumption, analogous to equation (12),

i.e. ij(O)Zl for k=l,...,ma, and j=l,...,mb.

. . . ab .
During resonance with ART, category K active, ZK—>Xq . In fast learning, once K learns to

predict the ART), category J, that association is permanent [i.e. z, = | and Zy; = Owithj %]

for all time].
The F* output vector X obeys

Y’ ~zy  if the K-th Finode is active and Fg is active

X ZK if the K-th F3node is active and Fg is inactive (26)
Y° if FS is inactive and Fg 1s active
0 if F; i$ inactive and Fg is inactive.

When ART, makes a prediction that is incompatible with the actual ART}, input [i.e. z; is
disconfirmed by Yb], then this mismatch triggers on ART, search for a new category as
follows. At the start of each input presentation the ART, vigilance [similarity] parameter p,
cquals a baseline vigilance P, . The map field vigilance parameter is p,. If a mismatch at

ab . .
F™ occurs, i.e. if
ab b
X" < pap ML (27)
then match tracking is triggered to scarch a new F; node. Match tracking starts a cycle of p,
adjustment and increases p, until it is slightly higher than the F{ match value 1A ~ Wl

', where Wf(l denotes the top-down F; - F? ART, weight vector (W']l ,...,W,?.d). Then

IXN=11" A Wi ll < py IV (28)



where 1" is the current ART, input vector and K is the index of the active F; node. When this
occurs, ART, search leads either to ARTMAP resonance, where a newly chosen F; node K
satisfies both the ART, matching criterion [see also equation (21)]:

IX =0T A Wi Il 2 py 1T (29)
and the map field matching criterion:
IX®0= 1Y Az ll > pab Yl (30)

or, if no such node K exists, to the shut-down of F;] for the remainder of the input presentation
[Carpenter et al. 1993].

4. Generalization to Fuzzy ARTMAP

Fuzzy ARTMARP has been proposed by Carpenter et al. (1991b) as a direct generalization of
ARTMAP for supervised learning of recognition categories and multidimensional maps in
response to arbitrary sequences of continuous-valued [and binary] patterns not necessarily
interpreted as fuzzy set of features. The generalization to learning continuous and binary input
patterns is achieved by using fuzzy set operations rather than standard binary set theory
operations [see Zadeh 1965]. Figure 3 summarizes how the crisp logical ARTMAP operations
ol category choice, matching and learning translate into fuzzy ART operations when the crisp
(non-fuzzy or hard) intersection operator (M) of ARTMAP is replaced by the fuzzy intersection
or [component-wise] minimum operator (A). Due to the close formal homology between
ARTMAP and fuzzy ARTMAP operations [as illustrated in figure 3], there is no need to
describe fuzzy ARTMAP in detail here, but for a better understanding it is important to stress
differences to the ARTMAP approach.

Fuzzy ARTMAP in its most general form inherits the architecture as outlined in figure 2 and
cmploys two fuzzy ART modules as substitutes for the ART 1 subsystems. It is noteworthy
that fuzzy ART reduces to ART 1 in response to binary input vectors [Carpenter at al. 1993].
Associated with each F; [Fg] node k=1,....m, [j=1,....mp] is a vector Wy [ij] of adaptive

weights which subsumes both the bottom-up and top-down weight vectors of ART 1.

Fuzzy ARTMAP dynamics are determined by a choice parameter 8 > 0, a learning parameter

ve [0.1]; and three vigilance [similarity] parameters: The ART, vigilance parameter p,, the
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ARTy, vigilance parameter pp and the map field vigilance parameter py, with Py, Pb, Pab
€ [0,1]. The choice functions Tx(A) and T;(B) are defined as in figure 3, where the fuzzy

intersection (A) for any n-dimensional vectors S=(S;,...,S,) and T=(T,,...,T})) is defined by

(S /\T)l:mlin (S, Tp). 31
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Figure 4: The Fuzzy ARTMAP Classifier: A Simplified ARTMAP Architecture

The fuzzy choice functions Tx(A) and T;(B) (see figure 3) can be interpreted as a fuzzy
membership of the input A in the k-th category and the input B in the j-th category,

respectively. In the conservative limit (i.e. B — 0) the choice function Ty(A) primarily reflects

the degree to which the weight vector W, is a fuzzy subset of the input vector A. If

) a
I A\H’Vkll 1 (32)
Wl

then Wy is a fuzzy subset of " and category k is said to be a fuzzy subset choice for input "
When a fuzzy subset exists, it is always selected over other choices. The same holds true for
Ti( Ih). [Carpenter et al. 1992]. Resonance depends on the degree to which I° [[b] 1s a fuzzy set
of Wy [WE], by the matching criteria [or functions] outlined in figure 3. The close linkage
between fuzzy subsethood and ART choice, matching and learning forms the foundations of the
computational features of fuzzy ARTMAP [Carpenter et al. 1992]. Especially if category K is a
fuzzy subset ART, choice, then the ART, match function value p, is given by
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Once search ends, the ART, weight vector W is updated according to the equation

Wi tnewy = ¥ (A A Witold)) + (1= ¥Y) W cold) (34)
and similarly the ARTy, weight vector VVJb:

W}" (new) = Y (B A ij(old)) +(1-7v) ij(old) (35)

where y = | corresponds to fast learning as described in figure 3.

The aim of fuzzy ARTMAP is to correctly associate continuous valued ART, inputs with
continuous valued ARTy, inputs. This is accomplished indirectly by associating categories
formed in ART, with categories formed in ART,,. For a pattern classification problem at hand,
the desired association is between a continuous valued input vector and some categorical code
which takes on a discrete set of values representing the a priori given classes. In this situation
the ART}y network is not needed because the internal categorical representation which ARTy
would learn already exists explicitly. Thus, the ARTy, and the map field F*® can be replaced by

asingle F" as shown in figure 4.

5. The Spectral Pattern Recognition Problem

The spectral pattern recognition problem considered here is the supervised pixel-by-pixel
classification problem in which the classifier is trained with examples of the classes [categories]
to be recognized in the data set. This is achieved by using limited ground survey information
which specifies where examples of specific categories are to be found in the imagery. Such
ground truth information has been gathered on sites which are well represented of the much
larger area analysed from space. The image data set consists of 2,460 pixels [resolution cells]
selected from a Landsat-5 Thematic Mapper (TM) scene [270 x 360 pixels] from the city of
Vienna and its northern surroundings (observation date: June 5, 1985; location of the center:
16°23' E, 48°14' N; TM Quarter Scene 190-026/4). The six Landsat TM spectral bands used
are blue (SB1), green (SB2), red (SB3), near IR (SB4), mid IR (SBS) and mid IR (SB7),
cxcluding the thermal band with only a 120m ground resolution. Thus, each TM pixel
represents a ground area of 30 x 30 m? and has six spectral band values ranging over 256

digital numbers (8 bits).



The purpose of the multispectral classification task at hand is to distinguish between the eight
categories of urban land use listed in Table 1. The categories chosen are meaningful to photo-
interpreters and land use managers, but are not necessarily spectrally homogeneous. This
prediction problem, used to evaluate the performance of fuzzy ARTMAP in a real world
context, is challenging. The pixel-based remotely sensed spectral band values are noisy and
sometimes unreliable. The number of training sites is small relative to the number of land use
categories [one-site training case]. Some of the urban land use classes are sparsely distributed in
the image. Conventional statistical classifiers such as the Gaussian maximum likelihood
classifier have been reported to fail to discriminate spectrally inhomogeneous classes such as C6
|see, e.g., Hepner et al. 1990]. Thus, there is evidently a need for new more powerful tools
[Barnsley 1993].

Table 1: Categories Used for Classification and Number of Training/Testing Pixels

Category Description of the Category Pixels
Number Training Testing
Cl Mixed grass and arable farmland 167 83
C2 Vineyards and areas with low vegetation cover 285 142
C3 Asphalt and concrete surfaces 128 64
C4 Woodland and public gardens with trees 402 200
(O] Low density residential and industrial areas (suburban) 102 52
C6 Densely built up residential areas (urban) 296 148
C7 Walter courses 153 77
C8 Stagnant water bodics 107 54
Total Number of Pixels for Training and Testing 1.640 820

ldeally, the ground truth at every pixel of the scene should be known. Since this is impractical,
one training site was chosen for each of the eight above mentioned land use categories. The
training sites vary between 154 pixels [category: suburban] and 602 pixels [category: woodland
and public gardens with trees]. The above mentioned six TM bands provide the data set input
for each pixel, with values scaled to the interval [0,1]. This approach resulted in a data base
consisting of 2,460 pixels [about 2.5 percent of all the pixels in the scene] that are described by
six-dimensional feature vectors, each tagged with its correct category membership. The set was
divided into a training set [two thirds of the training site pixels] and a testing set by stratified
random sampling, stratified in terms of the eight categories. Pixels from the testing set are not
used during network training {parameter estimation] and serve only to evaluate out-of-sample
test [prediction, generalization] performance accuracy when the trained classifier is presented

with novel data. The goal is to predict the correct land use category for the test sample of pixels.



Ideally, a good classifier is one which after training with the training set of pixels is able to
predict pixel assignments over much wider areas of territory from the remotely sensed data
without the need for further ground survey [see Wilkinson et al. 1995]. The performance of any
classifier, thus, depends upon three factors: the adequacy of the training set of pixels and,
therefore, the choice of the training sites; the in-sample performance of the classifier; and the
out-of-sample or generalization performance of the trained classifier. Of these three factors, the

first is often outside the control of the data analyst, and thus outside of the scope of this paper.

6. Fuzzy ARTMAP Simulations and Classification Results

In this real world setting, fuzzy ARTMAP performance is examined and compared with that of
multi-layer perceptron and that of the conventional maximum likelihood classifier. In-sample
and out-of sample performance is measured in terms of the fraction of the total number of
correctly classified pixels [i. e. the sum of the elements along the main diagonal of the

classification error matrix|.

During training and testing, a given pixel provides an ART, input A=(A|, A3, Az, A4, As, Ag)
where A is the blue, A, the green, Aj is the red, A4 the near infrared, As and Aq the mid
infrared [1.55-1.75 um and 2.08-2.35 um, respectively] spectral band values measured at each
pixel. The corresponding ART}, input vector B represents the correct land use category of the

pixel's site:

([ (1,0,0,0,0,0,0,0) for mixed grass and arable farmland; category |
(0,1,0,0,0,0,0,0) for vineyards and areas with low vegetation cover; category 2
(0,0,1,0,0,0,0,0) for asphalt and concrete surfaces; category 3
(0,0,0,1,0,0,0,0) for woodland and public gardens with trees; category 4
(0,0,0,0,1,0,0,0) for low density residential and industrial areas; category 5
(0,0,0,0,0,1,0,0) for densely built-up residential areas; category 6
(0,0,0.0,0,0,1,0) for water courses; category 7

L (0,0,0,0,0,0,0,1) for stagnant water bodies; category 8

A

o~}
Il

During training vector B informs the fuzzy ARTMAP classifier of the land use category to
which the pixel belongs. This supervised learning process allows adaptive weights to encode
the correct associations between A and B. The remote sensing problem described in section 5
requires a trained fuzzy ARTMAP network to predict the land use category of the test set pixels,

given six spectral band values measured at each pixel.

Fuzzy ARTMAP is trained incrementally, with each spectral band vector A presented just once.
Following a search, if necessary, the classifier selects an ART, category by activating an F;

17



node K for the chosen pixel, and learns to associate category K with the ART), land use
category of the pixel. With fast learning (y=1), the class prediction of each ART, category K is
permanent. If some input A with a different class prediction later chooses this category, match
tracking will raise vigilance p, just enough to trigger a search for a different ART, category. If
the finite input set is presented repeatedly, then all training set inputs learn to predict with 100%

classification accuracy, but start to fit noise present in the remotely sensed spectral band values.

All the simulations described below use the simplified fuzzy ARTMAP architecture outlined in
ligure 3, with three parameters only: a choice parameter B>0, the learning parameter y=1 [fast
learning], and an ART, vigilance parameter p,€ ]J0,1]. In each simulation, the training data set
represents 1,640 pixels and the testing data set 820 pixels. Fuzzy ARTMAP was run with five
different random orderings of the training and test sets, since input order may affect in-sample
and out-of-sample performance. All simulations were carried out at the Department of Economic
Geography (WU-Wien) on a SunSPARCserver 10-GS with 128 MB RAM.

Classification Error

Training Time in Epochs

Figure 5: In-Sample and Out-of-Sample Classification Error During Training
(B=0.001. y=1.0, p,=0.001)

Numver of ARTa Categories

Training Time in Epochs
Figure 6: Effect of Choice Parameter 3 on the Number (m,) of ARTa Categories
(y=1.0, p,=0.001)
Table 2 summarizes out-of-sample performance [measured in terms of classification accuracy]
on |5 simulations, along with the number of ART, categories generated and the number of
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epochs needed to reach any asymptotic training set performance [i. e. about 100% in-sample
classification accuracy; figure 5 shows how in-sample and out-of-sample performance changes
dcpending on the number of training epochs of fuzzy ARTMAP]. Each run had a different,
randomly chosen presentation order for the 1,640 training and the 820 testing vectors. The
choice parameter P was set, first, near the conservative limit at value B=0.001, and then at the
higher values of B=0.1 and B=1.0. These B-value inputs were repeatedly presented in a given
random order until 100% training classification accuracy was reached. This required six to eight
cpochs in the cases of f=0.001 and B=0.1, while for B=1.0 eight to ten epochs were
necessary. There seems to be a tendency that the number of epochs needed for 100% training
set performance is increasing with higher B-values. All simulations used fast learning [y=1.0],

which generates a distinct ART, category structure for each input ordering. The

Table 2: Fuzzy ARTMAP Simulations of the Remote Sensing Classification
Problem: The Effect of Variations in Choice Parameter [} [pa=0.0]

Choice Parameter Out-of-Sample Number of Number of
B Performance F2 Nodes Epochs

B=0.001
Run 1 98.54 125 6
Run 2 99.26 116 8
Run 3 99.51 121 6
Run 4 99.39 126 6
Run § 99.75 148 7
Average 99.29 127 6.5

B=0.1
Run 1 99.26 126 7
Run 2 99.90 115 6
Run 3 99.36 115 7
Run 4 99.51 124 7
Run § 99.26 127 7
Average 99.26 121 7

B=1.0
Run 1 99.98 218 10
Run 2 98.17 202 8
Run 3 98.90 212 8
Run 4 98.50 236 10
Run § 98.40 232 10
Average 98.75 220 9




Table 3: Fuzzy ARTMAP Simulations of the Remote Sensing Classification
Problem: The Effect of Variations in Vigilance p, [B = 0.001]

Vigilance In-Sample Out-of-Sample Number of
{Similarity) Performance Performance Fl Nodes
Parameter py

Pa =0.95
Run 1 97.014 96.20 285
Run 2 97.00 96.20 298
Run 3 96.15 95.60 276
Run 4 96.21 95.36 276
Run § 95.06 94.39 286
Average 96.36 95.82 284
pa =0.75
Run 1 93.00 92.00 52
Run 2 92.26 93.29 47
Run 3 91.82 90.00 42
Run 4 93.00 93.04 53
Run 5 90.31 91.83 53
Average 92.08 92.03 50
pa =0.50
Run 1 92.20 91.40 43
Run 2 90.20 89.51 43
Run 3 94.45 94.76 44
Run 4 93.35 93.42 43
Run 5 92.98 93.90 45
Average 92.62 92.59 44
pa =0.0
Run 1 90.70 90.60 35
Run 2 92.26 91.22 44
Run 3 90.97 90.30 34
Run 4 91.95 90.73 40
Run 5 92.56 92.44 32
Average 91.69 91.06 37

20



number of F; nodes ranged from 116 tol148 in the case of f=0.001, 115 to 127 in the case of
3=0.1, and 202 to 236 in the case of B=1.0. This tendency of increasing number of ART,
categories with increasing B-values and increasing training time is illustrated in figure 6. All
simulations used p,= 0.0 which tends to minimize the number of FS nodes compared with
higher p,-values not shown in Table 2. The best average result [averaged over five independent
simulation runs] was obtained with B=0.01 and 6.5 epoch training [99.29% classification
accuracy]. All the 15 individual simulation runs reached an out-of-sample performance close to
100% [range: 98.40 to 99.90%].

Table 3 shows how in-sample and out-of-sample performance changes depending on the
number of F; nodes with p,=0.95, 0.75, 0.50 and 0.0. In these simulations, learning is
incremental, with each input presented only once [in ART terminology: one epoch training].
The choice parameter is set to f=0.001. The best overall results, in terms of average in-sample
and out-of-sample performance were obtained with an ART, vigilance close to one [96.36%
and 95.82%, respectively]. For p,=0.0 the in-sample and out-of-sample performances decline
to 91.69% and 91.06%, respectively. But the runs with p,= 0.0 use much fewer ART,
categories [32 to 44] compared to pa= 0.95 [276 to 298 ART, categories], and generate stable
performance over the five runs. Increasing vigilance creates more ART, categories. One final
note to be made here is that most fuzzy ARTMAP learning occurs on the first epoch, with the
lest set performance on systems trained for one epoch typically over 92% that of systems

cxposed to inputs for six to eight epochs (compare Table 3 with Table 2).

Table 4: Fuzzy ARTMAP Simulations of the Remote Sensing Classification
Problem: The Effect of Variations in Training Size [pa= 0.0, § = 0.001]

Number of In-Sample Out-of-Sample Number of
Training Pixels Performance Performance F% Nodes
164 83.2 80.1 19
1,640 93.0 92.0 33
16,400 993 99.2 135
164.000 99.3 99.2 225

Table 4 summarizes the results of the third set of fuzzy ARTMAP simulations carried out, in
terms of both in-sample and out-of-sample performance along with the number of F; nodes.
The choice parameter [3 was set near the conservative limit at value p=0.001 and ART, vigilance
at p,= 0.0. Training lasted for one epoch only. As training size increases from 164 to 164,000
pixel vectors both in-sample and out-of-sample performances increase, but so does the number
ot ART, category nodes. In-sample classification accuracy increases from 83,2% to 99,3%,
and out-of-sample classification accuracy from 80.1% to 99.2%, while the number of ART,

category nodes increases from 19 to 225. Each category node k requires six learned weights
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W, in Art,. One epoch training on 164 training pixels creates 19 ART, categories and so uses
72 ART, adaptive weights to achieve 80.1% out-of-sample classification accuracy [820 test
pixels], while one epoch training on 164,000 pixels requires 225 ART, categories and, thus,
[,350 ART, adaptive weights to arrive at an out-of-sample performance of 99,2%. Evidently,
the fuzzy ARTMAP classifier becomes arbitrarily accurate provided the number of F; nodes

increases as needed.

Table 5: Performance of Fuzzy ARTMAP Simulations of the Remote Sensing
Classification Problem: Comparison with the Multi-Layer Perceptron and
the Gaussian Maximum Likelihood Classifier

Classifier Epochs* Hidden Units/ ART, Adaptive Weight In-Sample Out-of-Sample Computation
Categories Parameters Classification Classification Costs
Accuracy Accuracy (in terms of
CPU time)

Fuzzy 8 116 812 100.00 99.26 2.1

ARTMAP

Multi-Layer 92 14 196 92.13 89.76 15.1

Perceptron

Gaussian - - - 90.85 85.24 1.4

Maximum

Likelihood

“one pass through the training data set

Fuzzy ARTMAP: B =00.1,y= 1.0, py = 0.0, asymptotic training

Multi-Layer-Perceptron:  logistic hidden unit activation, softmax output unit activation. nctwork pruning. cpoch
hased stochastic version of backpropagation with epoch size of three. lcarning rate vy =
0.8

Finally, fuzzy ARTMAP performance is compared with that of a multi-layer perceptron
classifier as developed and implemented in Fischer et al. [1994], using the same training and
lesting set data. Table 5 summarizes the results of the comparison of the two neural classifers in
terms of the in-sample and out-of-sample classification accuracies and the CPU-time along with
the number of epochs [i. e. one pass through the training data set] and the number of hidden
units/ART, category nodes [a hidden unit is somewhat analoguos to an ART, category for
purposes of comparison] to reach asymptotic convergence. The fuzzy ARTMAP classifier has
been designed with the following specifications: choice parameter near the conservative limit at
value B=0.001, learning parameter y=1.0, constant ART, vigilance p,=0.0, repeatedly
presentation of inputs in a given order until 100% training set performance was reached.
Stability and match tracking allow fuzzy ARTMAP to construct automatically as many ART,
categories as are needed to learn any consistent training set to 100% classifications accuracy.
The multi-layer perceptron classifier is a pruned feedforward network with 14 logistic hidden
units and eight softmax output units, using an epoch-based stochastic version of the
backpropagation algorithm (epoch size: 3 training vectors, no momentum update, learning
parameter y=0.8). The Gaussian maximum likelihood classifier based on parametric density
estimation by maximum likelihood was chosen because it represents a widely used standard for

comparison that yields minimum total classification error for Gaussian class distributions.
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Figure 7: The Fuzzy ARTMAP Classified Image

The fuzzy ARTMAP classifier has an outstanding out-of-sample classification accuracy of
99,26% on the 820 pixels testing data set. Thus the error rate (0.74%) is less than 1/15 that of
the multi-layer perceptron and 1/20 that of the Gaussian maximum likelihood classifier. A more
careful inspection of the classification error [confusion] matrices [see appendix] shows that
there is a significant confusion between the urban [densely built-up residential areas] and water
courses land use categories in the case of both the multi-layer perceptron and the Gaussian
maximum likelihood classifiers, though the multi-layer perceptron outperforms the Gaussian
maximum likelihood algorithm by 5 per cent points. The fuzzy ARTMAP neural network
approach evidently accommodates more easily a heterogeneous class label such as densely built-
up residential areas to produce a visually and numerically correct map, even with smaller

numbers of training pixels [see figure 7].

The primary computational difference between the fuzzy ARTMAP and the multi-layer
perceptron algorithms is speed. The backpropagation approach to neural network training is

extremely computation-intensive, taking about one order of magnitude more time than the time
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for tuzzy ARTMAP, when implemented on a serial workstation. Although this situation may be
alleviated with other, more efficient training algorithms and parallel implementation, it remains
one important drawback to the routine use of multi-layer perceptron classifiers. Finally, it
should be mentioned that in terms of total number of pathways [i.e. the number of weight
parameters] needed for the best performance, the multilayer perceptron classifier is superior to
fuzzy ARTMAP, but at the above mentioned higher computation costs and the lower

classification accuracies.

Finally, it should be mentioned that in terms of total number of pathways [i.e. the number of
weight parameters] needed for the best performance, the multilayer perceptron classifier is
superior to fuzzy ARTMAP, but at the above mentioned higher computation costs and the lower

classification accuracies.

7. Summary and Conclusions

Classification of terrain cover from satellite radar imagery represents an area of considerable
current interest and research. Satellite sensors record data in a variety of spectral channels and at
a variety of ground resolutions. The analysis of remotely sensed data is usually achieved by
machine-oriented pattern recognition techniques, of which classification based on maximum
likelihood, assuming Gaussian distribution of the data, is the most widely used one. We
compared fuzzy ARTMAP performance with that of an error-based learning system based i. .
the multi-layer perceptron and the Gaussian maximum-likelihood classifier as conventional
statistical benchmark on the same database. Both neural network classifiers outperform the
conventional classifier in terms of map user's, map producer's and total classification
accuracies. The fuzzy ARTMAP simulations did lead by far to the best out-of-sample

classification accuracies, very close to maximum performance.

Evidently, the fuzzy ARTMAP classifier accommodates more easily a heterogenenous class
label such as "densely built-up residential areas" to produce a visually and numerically correct
urban land use map, even with smaller numbers of training pixels. In particular, the Gaussian
maximum likelihood classifier tends to be sensitive to the purity of land use category signatures

and performs poorly if they are not pure.

The study shows that the fuzzy ARTMAP classifier is a powerful tool for remotely sensed
image classification. Even one epoch of fuzzy ARTMAP training yields close to maximum
performance. The unique ART features such as speed and incremental learning may give the
fuzzy ARTMAP multispectral image classifier the potential to become a standard tool in remote

sensing especially when it comes to use data from future multichannel satellites such as the 224

24



channel Airborne Visible and Infrared Imaging Spectrometer [AVIRIS], and to classifiying
multi-data and multi-temporal imagery or when extending the same classification to different
images. In conclusion, we would like to mention that the classfier leads to crisp rather than
luzzy classifications, and, thus, looses some attractivity of fuzzy pattern recognition systems.

This is certainly, one direction for further improving the classifier.
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Appendix A: In-Sample and Out-of-Sample Classification Error Matrices of the Classifiers

An error matrix is a square array of numbers set out in rows and columns which expresses the number of pixels assigned to a particualr category relative to the actual
category as verified by some reference (ground truth) data. The columns represent the reference data, the rows indicate the categorization generated. It is important to
note that differences between the map classification and reference data might be not only due to classification errors. Other possible sources of errors include errors in
interpretation and delineation of the reference data, changes in land use between the data of the remotely sensed data and the data of the reference data (temporal error),
variation in classification of the reference data due to inconsistencies in human interpretation etc.

Table Al: In-Sample Performance: Error Classification Matrices

(a) Fuzzy ARTMAP (b) Multi-Layer Perceptron
Ground Truth Categories Classifier's Categories Ground Truth Categories Classifier's Categories
C1 (o2 a @ G Co 7T G Total Cl1 Q a oz} C5 C6 7 C8 Total
C1 167 0 0 0 0 0 0 0 167 C1 157 10 0 0 0 0 0 0 167
Q 0 285 0 0 0 0 0 0 285 (o] 1 282 0 0 2 0 0 0 285
c 0 0 128 0 0 0 0 0 128 a 0 0 128 0 0 0 0 0 128
4 0 0 0 402 0 0 0 0 402 (07) 4 0 0 389 9 0 0 [4] 402
(63 0 0 0 0 102 0 0 0 102 Cs 0 0 2 2 98 0 0 0 102
Co 0 0 0 0 0 293 3 0 296 Cé 0 0 1 0 0 260 25 10 296
c7 0 0 0 0 0 5 148 0 153 c7 0 0 0 0 0 60 93 0 153
8 0 0 0 0 0 0 0 107 107 3 0 0 0 0 0 3 0 104 107
Total 167 285 128 402 102 298 151 107 1.640 Total 162 292 131 191 [¢2] 323 118 114 1.640
(c) Gaussian Maximum Likelihood
Ground Truth Categories Classifier's Categories

C1 « c 4 Cs Co c (6] Total

Cl1 16} 5 0 1 0 0 0 0 167

«Q 0 284 0 0 I 0 0 0 285

a 0 0 124 0 4 0 0 0 128

C4 0 4 0 383 13 0 0 0 402

Cs 0 0 0 0 102 0 0 0 102

C6 0 0 3 0 0 214 62 17 296

c7 0 0 0 0 0 37 116 0 153

8 0 0 0 0 0 3 0 104 107

Total 161 293 127 386 20 254 178 121 1.640




Table A2: Out-of-Sample Performance Error Classification Matrices

(a) Fuzzy ARTMAP (b) Multi-Layer Perceptron
Ground Truth Categories Classifier‘s Categories Ground Truth Categories Classifier*s Categories

C1 2 a3 (e} Cs Cé 7 (] Total Ci Q2 a 4 Cs C6 7 (®] Total

C1 83 0 0 0 0 0 0 0 83 C1 79 4 0 0 0 0 0 0 83
(o7 0 142 0 0 0 0 0 0 142 Q I 134 6 0 1 0 0 0 142
a 0 0 64 0 0 0 0 0 64 a 0 0 64 0 0 0 0 0 64
4 0 0 0 200 0 0 0 0 200 4 3 2 0 194 1 0 0 0 200
s 0 0 0 0 52 0 0 0 S2 Cs 0 3 0 0 49 0 0 0 52
Cé 0 0 0 0 0 146 2 0 146 Co6 0 0 0 0 0 115 30 3 148
(07 0 0 0 0 0 2 75 0 77 7 0 0 0 0 (¢} 29 48 0 T
(0] 0 0 0 0 0 0 0 54 54 (0] 0 0 0 0 0 1 0 53 54
Total 83 142 64 200 52 148 77 54 820 Total 83 143 70 194 51 145 78 56 820

6¢

(¢) Gaussian Maximum Likelihood

Ground Truth Categories Classifier‘s Categories

C1 Q 3 4 Cs C6 7 8 Total
C1 80 3 0 0 0 0 0 0 83
Q2 0 141 0 0 1 0 0 0 142
a 0 0 62 0 1 1 0 0 64
4 1 3 0 191 5 0 0 0 200
(o] 0 5 0 0 47 0 0 0 52
Cé 0 0 1 0 2 73 64 8 148
7 0 0 0 0 0 24 53 0 77
(0] 0 0 0 0 0 2 0 52 54

Total 81 152 63 191 56 100 117 60 820




Appendix B: In-Sample and Out-of-Sample Map User’s and Map Producer’s Accuracies of the Classifiers

Table B1: In-Sample Map User's and Map Producer's Accuracies

Category Name Map User's Accuracy Map Producer's Accuracy

Fuzzy Multi- Gaussian Fuzzy Multi- Gaussian

ARTMAP Layer Maximum ARTMAP Layer Maximum

Perceptron Likelihood Perceptron Likelihood
C1 Mixed grass & arable farmland 100.0 94.0 96.4 100.0 96.9 95.1
Q2 Vineyards & areas with low vegetation cover 160.0 98.9 99.6 100.0 96.9 96.9
a3 Asphalt & concrete surfaces 100.0 100.0 96.9 100.0 97.7 97.7
(o Woodlands & public gardens with trees 100.0 96.8 95.8 100.0 99.5 97.7
cs Low density residential & industrial areas (suburban) 100.0 96.1 100.0 100.0 89.9 87.3
Cé Densely built up residential & industrial areas (urban) 99.0 878 723 98.3 80.5 79.8
c Water courses 96.7 60.8 75.8 98.0 78.8 78.8
0] Stagnant water bodies 100.0 97.2 97.2 100.0 91.2 85.8

Note: Map user's accuracies for land use categories are calculated by dividing the number of correctly classified pixels in each category
[i.e. the main diagonal elements of the classification error matrix] by the row totals.

Map producer’s accuracies for land use categories are calculated by dividing the numbers of correctly classified pixels in each
category [i.e. the main diagonal elements of the classification error matrix] by the columns totals.



Table B2: OQut-of-Sample Map User's and Map Producer's Accuracies

Category Name Map User's Accuracy Map Producer’s Accuracy

Fuzzy Multi- Gaussian Fuzzy Multi- Gaussian

ARTMAP Layer Maximum ARTMAP Layer Maximum

Perceptron Likelihood Perceptron Likelihood
Cl1 Mixed grass & arable farmland 100.0 95.2 96.4 100.0 95.2 98.8
(] Vineyards & areas with low vegetation cover 100.0 944 99.3 100.0 93.7 92.8
a Asphalt & concrete surfaces 100.0 100.0 96.9 100.0 914 98.4
(0] Woodlands & public gardens with trees 100.0 97.0 95.5 100.0 100.0 100.0
(65 Low density residential & industrial areas (suburban) 100.0 94.2 90.4 100.0 96.1 839
(87 Densely built up residential & industrial areas (urban) 98.6 7.7 493 98.6 79.3 73.0
7 Water courses 974 623 68.8 974 61.5 453
(0. Stagnant water bodies 100.0 98.1 96.3 100.0 86.9 86.7

Note: Map user's accuracies for land use categories are calculated by dividing the number of correctly classified pixels in each category
[i.e. the main diagonal elements of the classification error matrix] by the row totals.

Map producer’s accuracies for land use categories are calculated by dividing the numbers of correctly classified pixels in each
category [i.e. the main diagonal elements of the classification error matrix] by the columns totals.



