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Preface

We prove that complex beliefs dynamics may emerge in linear stochastic models as the
outcome of bounded rationality learning. If agents believe in a misspecified law of motion
(which is correctly specified at the Rational Expectations Equilibria of the model) and update
their beliefs observing the evolving economy, their beliefs can follow in the limit a beliefs
cycle which is not a self-fulfilling solution of the model. The stochastic process induced
by the learning rule is analyzed by means of an associated ordinary differential equation
(ODE). The existence of a uniformly asymptotically stable attractor for the ODE implies
the existence of a beliefs attractor, to which the learning process converges. We prove almost
sure convergence by assuming that agents employ a projection facility and convergence with
positive probability dropping this assumption. The rise of a limit cycle and of even more
complex attractors is established in some monetary economics models assuming that agents
update their beliefs with the Recursive Ordinary Least Squares and the Least Mean Squares
algorithm.

The work for this paper was started while Martin Posch was a research assistant at the
Dynamic Systems project at IIASA. The results were discussed at a joint seminar of the
projects Dynamic Systems and Systems Analysis of Technological and FEconomic Dynamics
in February 1996.

Keywords: Bounded Rationality, Learning, Limit Cycle, Complex Beliefs Dynamics,
Strange Attractors

Classification: (JEL1995) C62, D83, D84, E40



The Rise of Complex Beliefs Dynamics

Emilio Barucci* Martin Posch f

1 Introduction

A large literature has grown up in the last two decades on the emergence of complex dy-
namics in nonlinear deterministic economic models, see for example [Grandmont, 1985,
Grandmont, 1987, Bodrin and Woodford, 1990, Guesnerie and Woodford, 1992]. Complex
dynamics have been obtained as the outcome of dynamical optimization problems under
the assumption of perfect foresight (agents have full knowledge of the economic model) or
by modeling the agents behavior on the basis of some behavioral assumption, on the two
approaches see for example [Boldrin and Montrucchio, 1986] and [Day, 1994]. No results ha-
ve been established in a stochastic environment until now; the stochastic and the complex
dynamics view of the world are perceived to be antithetic both in a theoretical and in an
empirical perspective, see [Brock, 1987].

In this paper we show that complex dynamics (non perfect foresight trajectories) may
emerge in linear stochastic models as the outcome of agents’ bounded rationality learning.
Complex dynamics do not concern directly the state variables of the model, but the agents
beliefs (beliefs complex dynamics). Complexity is not due to an intrinsic complexity of
the economic model but it is the result of the interaction between agents’ learning and the
evolution of the economy.

The models considered in this paper are linear in the state variables and in the agents’
expectations; nonlinearities come from the assumption of bounded rationality: agents do
not know the complete economic model, they form their expectations believing in a linear
misspecified model which is correct only at a perfect foresight solution, outside that solution
the actual law of motion of the economy may be highly nonlinear in agents beliefs; the
analysis is developed in the framework of Self Referential Linear Stochastic (SRLS) models,
see [Marcet and Sargent, 1989b], and can be easily extended to models with hidden state
variables and private information, see [Marcet and Sargent, 1989a].

Observing the evolving economy, agents update their beliefs with a recursive informa-
tion processing rule. Many recursive learning mechanisms have been proposed in the li-
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terature: iterative expectations, [Canio, 1979], recursive ordinary least squares (ROLS),
[Marcet and Sargent, 1989b], ordinary  least  squares  with  finite = memory,
[Grandmont and Laroque, 1991], least mean squares (LMS), [Barucci and Landi, 1995b].
These learning procedures are characterized by different information processing rules and
memory capacities: the ROLS algorithm is the best linear unbiased estimator and is charac-
terized by a long memory, the LMS algorithm is a steepest descent gradient algorithm with
very short memory and a strong behavioral interpretation. }

The learning process may lead to different outcomes: agents’ beliefs can converge to
a point, diverge to infinity, or converge to a beliefs cycle. For the first three learning
mechanisms mentioned above only a REE can be the limit point, LMS learning may al-
so converge to a set of non-RE beliefs, see [Barucci and Landi, 1995b]. Convergence to
a perfect foresight beliefs cycle has been studied in a deterministic framework assuming
that agents are rationally bounded but know the existence of a cycle and form their be-
liefs consistently; for example, if a perfect foresight cycle of order k exists then the agents
use an adaptive scheme of order & and form expectations by looking back & periods, see
[Guesnerie and Woodford, 1991, Marimon and Sunder, 1993, Marimon et al., 1993]. With
the same approach convergence of learning to a cycle has also been shown for nonlinear
stochastic models in [Evans and Honkapohja, 1995b]. For all the three limit behaviors the
average forecasting error either converges or diverges to infinity: if convergence to a REE or
to a perfect foresight cycle is obtained then the average forecasting error converges to zero,
if convergence to a set of non-RE beliefs is obtained then the average forecasting error con-
verges to a value different from zero. If the learning process diverges (beliefs go to infinity),
the square forecasting error goes to infinity, too. ‘

This kind of results contrasts with empirical and experimental evidences. Experimen-
tal economics has shown that the agents’ forecasting error may not go to zero but remain
bounded with an erratic behavior over a long time period, see [Marimon and Sunder, 1993,
Marimon et al., 1993]. This suggests that “adaptive learning might generate endogenously
complex nonlinear trajectories, along which forecasting errors would never vanish”
[Grandmont and Laroque, 1991, pag. 248], see also [Evans, 1985] on this point. The claim
has not been demonstrated in a stochastic framework, such a result has been only obtained
in a deterministic nonlinear hyperinflation model, see [Bullard, 1994]. Our analysis concerns
linear stochastic models. The emergence of complex beliefs dynamics is investigated by
means of the ordinary differential equation (ODE) associated with the learning dynamics.
New results obtained in the stochastic approximation literature have shown that the ODE is
not only relevant for the analysis of the local convergence of a learning mechanism to a statio-
nary solution but also to detect the existence of limit cycles or even more complex dynamics:
every uniformly asymptotically stable attractor of the ODE is contained in the attainable li-
mit sets of the corresponding stochastic process, see [Benaim and Hirsch, 1994, Posch, 1994].
We prove almost sure convergence employing the projection facility and convergence with
positive probability employing results in [Benveniste et al., 1990] with an approach similar
to the one in [Evans and Honkapohja, 1994a].

With respect to the literature on complex dynamics in economics, the main features of



the analysis developed in this paper are:

o linearity of the model at the REE and in disequilibrium with respect to state variables
and agents expectations,

e bounded rationality,
e stochastic environment,
o complex dynamics concern beliefs rather than directly the economic state variables.

The nice thing of our analysis i1s that complex dynamics do not arise because of a simple
behavioral assumption or of a maximizing behavior under perfect foresight. Both, the two
assumptions have been deeply criticized in the literature. In what follows we are in the
middle: agents are not fully rational, i.e. they do not know the complete economic model,
they learn from observations by means of an information processing rule. So the result is
that agents endogenously learn to “believe” in complex beliefs dynamics.

The paper has both methodological aspects (the application of new results obtained in
the stochastic approximation literature to economic theory) and theoretical aspects (the
analysis of complex beliefs dynamics in some macroeconomic models). To comply with these
two goals, we present in Section 2 stochastic approximation results needed in our analysis and
we analyze in Section 3 some macroeconomic models. As we show in Section 3.4, the analysis
can also be extended to a class of nonlinear models obtained in the overlapping generations
framework. In Appendix A we present the class of economic models considered in this paper
and the two learning algorithms employed (the ROLS and the LMS algorithm). In Appendix
B we report the technical conditions on the stochastic process and on the learning process
needed in our analysis referring mainly to [Evans and Honkapohja, 1994a).

2 The Rise of Complex Beliefs Dynamics in Linear
Stochastic Models

To determine the existence of complex dynamics in a learning model, we study the system of
differential equations associated with the learning algorithm, i.e. (30) for ROLS learning and
(35) for LMS learning; from the existence of a uniformly asymptotically stable attractor for
the system of differential equations we deduce the existence of an attractor for the stochastic
approximation process describing the learning rule. The results established in this section
are based on results contained in [Benveniste et al., 1990, Evans and Honkapohja, 1994a,
Benaim and Hirsch, 1995]. Both learning processes considered in our analysis are stochastic
approximation processes of the type

00 = 01+ H (-1, 1) (1)
r, = F(-1)zio1 + G021 )wiog (2)



where 8, € R, n; € RY, z, € IR*, w; is an i.i.d. noise vector, H(-,-) is a function, and
F(-),G(-) are matrices of appropriate dimension. Let D be a fixed subset of R?. Following
[Evans and Honkapohja, 1994a], we require the process to satisfy conditions A1-A3 and B1-
B2 (see Appendix B). Under these conditions the process z, is asymptotically stationary
and thus, there is a locally Lipschitz continuous function ~(f) such that

h(0) = tlim E(H(0,z,))
where T, = F(0)Z,—1 + G(6)w,—1. The limit sets of the process 8; can be characterized by

the corresponding ODE '
6 =n8), 8d€D. (3)
For ROLS learning this differential equation is given by (30), for LMS learning by (35).

An important notion to describe the limit sets of the stochastic process is that of chain
TECUrTence.

Definition 2.1 Let ®,(0) denote the flow induced by (3). A point 8 € IR is called (6,T)
recurrent if § > 0,T > 0 and there is an integer k, points £; € R¢, 0 < j < k, and numbers
t; >T,0<j < k-1 suchthat: ||§—0|| < 6,& =0 and ||® (&) =&l < 6,5 =0,...,k—1.
If 0 is (6,T) recurrent for all § > 0,T > 0 then 8 is called chain recurrent.

Let R(h) denote the set of chain recurrent points of (3). Combining results in
[Evans and Honkapohja, 1994a] and [Benaim, 1993] we get the following theorem:

Theorem 2.1 Let I' C D be a compact uniformly asymptotically stable set of (3). Suppose
that assumptions A and B in Appendiz B are satisfied on D. Denote the domain of attraction
of ' by N and let U C NN D be an open neighborhood of T'.

Then there exists a neighborhood V- C U of T’ and constants By, s such that for a set of
inttial conditions (to = n,0,, € V,2,, = z) we have

(a)
P{min{k 2 n} < 00) < By(1 +2])J(n)

where J(n) is a positive decreasing sequence with im,—o J(n) = 0.

(b) Let A be the event such that the w-limit of the process 8, in (1) is a compact, invariant
subset of R(h). Then
P({min{k > n} <oo}UA) =1.
0k¢U

Proof:

(a) is an immediate consequence of Theorem 1 in [Evans and Honkapohja, 1994a]. The
existence of the required Ljapunov functions follows since T' is uniformly asymptotically
stable. In [Evans and Honkapohja, 1994a] the inequality (a) has been proved for the case
where the asymptotically stable set is just a point.
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(b) By step (ii) of the proof of Theorem 1 in [Evans and Honkapohja, 1994&] on the set
{ming, ¢u{k > n} = oo} the process 0, can be written as

Oir1 = 0 + e R(0) + €

where 352, €; converges almost surely.
Thus, we can apply Theorem 1 in [Benaim, 1993] and (b) follows.O

For a discussion of chain recurrence see [Benaim, 1993]. If (3) defines a flow in ®? which
has isolated equilibria then the chain recurrent sets consist only of fixed points, periodic
orbits and orbit chains of the flow, see [Benaim and Hirsch, 1994, Theorem 1.6]. Thus, if
I' contains only the fixed point 8* whose domain of attraction is N (and no periodic orbits
or orbit chains) then the process almost surely either leaves the domain of attraction or
converges to 8*. If I' contains a limit cycle with orbit p and domain of attraction N (and no
fixed points) then almost surely the w-limit of all paths that stay forever in NV is p: since p
is the only chain recurrent set, the w-limit set for all paths that stay in N is contained in
p, but as the w-limit set is invariant it contains p and hence the w—limit for the paths in
N and p are identical. If I' contains a general attractor, we know from Theorem 2.1 that
the w-limit set of each path that does not leave U is almost surely an invariant subset of
R(h). Thus, if the system of differential equations in (3) has e.g. a strange attractor it will
be contained in the attractor of the stochastic process.

In the following we consider the case of limit cycles. First of all we need the following
definition:

Definition 2.2 A deterministic sequence 8, € IR* is called asymptotically cycling if its
w-limit is a closed curve.

From Theorem 2.1 and the above arguments we get the following corollary:

Corollary 2.1 Assume that the flow induced by (8) admits a uniformly asymptotically stable
limit cycle p. Let U denote a neighborhood of p which is a subset of the domain of attraction
of p and such that conditions A and B in Appendiz B hold on U. Then

1. there ezist constants By, s and a neighborhood V. C U of p such that for the process
(1)-(2) with initial conditions (to = n,0,, € V,z,, = )

P(8, is asymptotically cycling) > 1 — By (1 + |z|°) J(n),

where J(n) is a positive decreasing sequence with lim,_ J(n) = 0;

2. there ezists a neighborhood V. C U of p such that if we modify the process (1)-(2) by
introducing a projection facility such that whenever the process 0; leaves the set V it is
moved back to V, then for all initial conditions (8,, € V,to > 0,z,, = x) the process 6,
is almost surely asymptotically cycling.



Finally we consider a non generic case. The flow induced by (3) has a continuum of
periodic orbits as for example in a system of linear differential equations with pure imagi-
nary eigenvalues or in the Lotka-Volterra framework. In this context the concept of chain
recurrence is not applicable. Instead, we use the notion of invariant of motion to prove
cycling.

Theorem 2.2 Let 8, € IR? and in addition to conditions A and B in Appendiz B assume
that H(-,-) and w; are bounded on D, that x, is stationary, and 7, is of order 1/t. Assume
the flow of h(8) has a continuum of cycles around a fired point 0™ and an invariant of motion
Q(0) : R — R exists satisfying

1. Q € C*(D) and the second derivatives are bounded;

2. (VQ,h) =0, VYzeD;

3. Q6)>0, VzeD;

4. 0% is a global strict minimum point of Q(-) and the only critical point.

Then there is a neighborhood V' of 6 and an n > 0 such that, for all initial conditions
to >n and 0, € V, 0, is asymptotically cycling with positive probability.

Proof:
This is a consequence of Propositions 4 and 5 in [Posch, 1994] and of Theorem 1 in
[Benaim, 1993].0

One can actually show that each open set of periodic orbits is attained in the limit with
positive probability (see [Posch, 1994]).

3 Some Economic Models

In this section we discuss some economic models where agents’ bounded rationality learning
leads to non perfect foresight complex beliefs dynamics; specifically we show that the beliefs
dynamics may be characterized by a continuum of cycles or an asymptotically stable limit
cycle to which agents’ beliefs converge.

The first example (Section 3.1) is a very simple model which leads to a system of linear
differential equations for agents beliefs. For a particular set of parameters there exists a
continuum of cycles. In this (non generic) case the learning process converges to a cycle
which is randomly selected. In the second example (an open economy model) we show
beliefs convergence to a limit cycle, which we determine using the Theorem of Hopf (Section
3.2). In the third example (Section 3.3) we show the presence of a limit cycle in a model
with forward looking expectations, agents take expectations of a random variable with one,
two and three steps ahead. In Section 3.4 we extend the analysis to a class of nonlinear
models which are quite common in the overlapping generations literature.
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The above analysis can be developed both for ROLS and LMS learning. However, since
the system of differential equations associated with ROLS learning is of dimension higher
than the one associated with LMS learning, it is much harder to analyze its phase portrait,
and thus to prove the existence of cycles for ROLS learning.

3.1 Examplel

Let us consider the following model

pt = aEy(piy1) + vEi(digr) + vy

dy = X+ 6E(piy1) + Y(E(digr) — d) + wy,

where v; and w; are two bounded white noise variables and F,; denotes expectation taken by
the agents at time ¢. In the following we assume «,v,A,9 > 0, 6 < 0 and d > 0. Agents
believe in the following misspecified law of motion (perceived law of motion):

Pt = Pot + wi,
dy = Bit + wa.

Thus, agents believe that the two random variables are two constants plus noise. Inserting
agents expectations in the system we obtain the following actual law of motion:

pr = afor + vBu + U
dy = A+ 6Bor + (B — d) + w.
The analysis can be developed in the SRLS models framework by setting

Zy = [Pc,dt, 1]T7 21t = [Pt»dt]T, zpy =1, u = [Ue,we]T

Bo T affe + 5 1 0
lm]’ (B) luaﬁow(ﬂl—d) VIE= 19 1]
A(B)" =[0,0,1]
and B(B) is a null vector. The model has only one REE B* which is given by
ﬂ* — 'Y!wz—/\]
0 = SEFE-T)(1-a)
[ﬂ* — (1—c)(yd—)) ] :
1T -1 (i-a)

The system of differential equations to be studied to determine the limit behavior of LMS
learning is linear and is given by

dB[ (o= 1)ffo + 751 ]

At [ A+ 8+ (¥ — 1) - pd ()

Let us remark that the differential equation for ROLS learning is similar to the one of LMS
learning; we have only to add one dimension for the updating of the information matrix R.
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Bl B]

Figure 1: Two simulations of learning in Example I.

Since the differential equation for R is decoupled and has a globally asymptotically stable
fixed point, the limit dynamics of ROLS learning can be reduced to the plane (8o, 3), where
it is described by the system of differential equations in (4).

For ¢ =2 — o and (o — 1)(¢p — 1) — §v > 0 the Jacobian J of (4) evaluated at the REE
has pure imaginary eigenvalues. Thus, for these parameter values the solutions of (4) are
the REE, and a continuum of cycles surrounding it.

An invariant of motion for this system is given by Q(8o, 81) = (B — B*)T MT M(B - B*),
where M is the inverse of the 2 x 2 matrix consisting of the imaginary and real part of the
eigenvectors of J. Since for fixed B the state variables p,, d; are stationary, we can apply
Theorem 2.2. Hence, the process is with positive probability asymptotically cycling.

To the above model the following interpretation can be given: think of p, and d; respec-
tively as the price and the dividend of a stock at time t. The first equation represents the
classical no-arbitrage condition with 0 < a = v < 1. The second equation describes the firm
dividends policy: the firm deciding at time ¢ the amount of dividends to be paid considers
both the agents expectations of the dividends and of the price of the stock in the next period.
If agents expect a dividend larger than d then the firm accommodates this opinion raising
the dividends, ¢» > 0, if the agents expect an increase in the stock price (a positive capital
gain) then the firm decides to decrease the amount of dividends to be paid.

Figure 1 shows two runs of the learning process with the parameters a = 0.5, ¢ =
1.5,0 = -1,y =2, A =3,d =1, vy, w; are two uniformly distributed random variables on
the interval [—3,3] and the process is started at the REE with ¢, = 10. Notice, that at each
run a different cycle is selected.



3.2 Example II

Let us consider the following open economy model analyzed in [McCallum, 1989, Chapter
14]

B = b[Ei_1(et1 — €1) — Eri(pegr — po)] + ba(pe — er) + vy
—pr = C+ CQEt_1(6t+1 - 6[) + €.

where v;, €¢; are independent white noise variables, satisfying condition Bl in Appendix B.
FE,_1 denotes expectation taken by the agents at time t — 1. The model is a standard open
economy 1.5/ LM model, p; is the log of the domestic money price of domestic goods, e, is the
log of the home country exchange rate. With respect to the formulation in [McCallum, 19¢ /]
we assume that agents take expectations on the basis of the information set at time t — 1.
Let us assume that the agents believe in the law of motion

P = ﬁét + Boei-1 + wie,
e = P, + Breir + wa

where wy;, wy; are white noise. The dynamics of the model is described in terms of the SRLS
models framework as follows

zi = [pe, e, l]T» Z1e = [ptaet]Ta 2o = [ey, I]Ta Uy = [U“E“O]T’ B" = . /3(’]
B By
T(B)T = 2 _52(512_/31) —C —afih }
RSB I (g — ) MEASEALE _ o, i,

L —10
T_| %
VB) = [ 0 1 0 ] ’
A(B)=10,0,1]", B(B) =[0,0,0]".
We prove existence of a non perfect foresight beliefs limit cycle for LMS learning assuming
C = B = 0; For C and B non zero the analysis can only be done numerically. With

B = C = 0 the system simplifies essentially: the vector z,; becomes a scalar and the
perceived law of motion becomes '

e = Poeror +wii,

ee = Pre—1 + wo.

Thus, the beliefs matrix B is reduced to a two dimensional vector and we have

2t =2 = [phet]T7 2t = €y Up = ['Utaﬁt]Ta BT = [ g? :l 3

9



—co(B1 = ) ]

TBT: 2 _ 1_2 0
( ) [ 0alf, ~ 1=y 4o ﬁb2 B tbo] —02(512 —51)

1o
vy =%

2
v

A(B), B(B) are null matrices. By a simple computation we have M,,(B) = ﬁw, where

o? denotes the variance of v, and T5(B) is the second component of T'(B). The system
of differential equations associated with the LMS learning process (33) is (35), and in this
particular case we have

BD = Mz2 (3) [-02(512 - 51) - 50] : (5)
B = My (B) [d[B7 = B — B2+ o] — ca( B2 — By) — B,
where d = %j The model has four REEs

{~-Ty I3+ T
B*:<1 23+2>

2dC2 ’ 2d62
Ih+T, I's— F2)
x4 7
B ( 2d62 ’ 2d62 ( )
L3 1 1
B~ = (1——,1——) (8)
Co Cy
B**** — (O’ O) (9)

where
F1:262+d(62—1), F2:\/d[—462+d(1—262+6%)], F3:d(1+C2)

Let D, = {B € IR?*||T4(B)| < 1} denote the set where ¢, is an asymptotically stationary
stochastic process. M,,(B) is well defined on D, and positive. On D, the system (5) can be
analyzed dropping the positive scalar M,,(B) since this does not change the phase portrait,
see [Hofbauer and Sigmund, 1988, pag. 92|. Thus, we consider the system

Bo = —c2(Bf — Br) — Bo (10)
g = d[ﬂf - b —53 + Do) —C2(512 —B1) — b

We will prove existence of a limit cycle for (10), using the Theorem of Hopf. To this end,
we consider the Jacobian of (5) evaluated at a point B € IR? obtaining

,] _ —l C2<1—2/31)
BTl d(1 =28 —l—d4c+2(d—c)f |

Evaluating Jp at the third and the fourth REE, it is easy to see that the eigenvalues are
always real, and therefore no Hopf bifurcation can occur. However, for the first REE things
are different, and the following Proposition can be stated:

10



Proposition 3.1 Let k > 1,d;, = % (1 — \/1“““"'(6;5262”4"'4"5). Then for all sufficiently
small € >0, ¢y = kdy, d = dy, — € the ODE (10) has a uniformly asymptotically stable limit
cycle around the REE B* such that in a neighborhood of the limit cycle, conditions A and B
(see Appendiz B) are satisfied and thus Corollary 2.1 applies. Hence, beliefs updated with the
LMS algorithm converge given appropriate initial conditions to the limit cycle with positive
probability. '

Proof.

The Jacobian of the system evaluated at B* is

—1 -1-5
Jor = -2+ 4H2 2444 (E -]

2

We want to find parameter values ¢;,d such that Jg. has purely imaginary eigenvalues,
i.e. Trace(Jp+) = 0 and Det (Jg-) > 0. To simplify calculations we set ¢, = kd. For the

determinant then we get
I 1 T
Det (Ju:) = = (1 o —2> .
Thus, for £ > 1 and d < 0 the determinant is strictly positive and ¢, < d < 0. Setting the
trace equal to zero we obtain

d(3C2 - d)
ry=———=. : 11
2 d—C2 ( )

Let us remark that the right hand side has to be positive, this happens if ¢, < d < 0. Take
squares in (11) and divide the whole equation by cyd. It follows that the trace of Jp« is equal
to zero if ¢; < d < 0 and

P2—c)+d* (2 —4e)+d(2¢2 - ) +4c2 =0,
substituting ¢; = k d, we obtain
AR +d2—4k+2k) +d* (—k+2k — k)] =0. (12)

Thus, we have only to solve a second order polynomial obtaining the solution

1 V1I—4k+6k* —Tk*+4k°
di(k)=—[1-
®= ( =k )

The second root of (12) is positive and therefore it cannot satisfy the conditions for the
determinant to be positive and the trace equal to zero. It easily follows that for all & > 1,
di(k) < 0 holds. Thus, for all ¥ > 1 and d = dn(k),c; = kdi the eigenvalues of Jg. are
imaginary. Since for £ > 1 and d,(k) < 0 we have

d Trace(J) dp(k—1)(1 —dnk)

14 = 5 <0, (13)

11



from the Theorem of Hopf it follows that at these parameter values a Hopf bifurcation occurs.

Let B*(k) denote the REE B* in (6) for the parameter values d = dy(k), c; = kdu(k).
To determine if the resulting periodic orbit is stable, we apply the normal form calculation
given in [Guckenheimer and Holmes, 1983, pag. 152]. To this end, we make a change of
coordinates such that B*(k) is moved to the origin and such that the differential equation

(10) takes the form
] [0 —u]f= flz,y)
[y]_[# OHy]+[9<f’y)}’

where y is the imaginary part of the eigenvalues of Jg«(x). Thus, we set

z | _ Bo + B
HE !

where A is a matrix consisting of the imaginary and real part of the eigenvectors of Jge«(x).
The Hopf bifurcation at & > 1 is stable if for the resulting functions f and ¢

a(k) = foy (fez + fuy) = G2y (Goz + yy) — foz Goz + fuy Gyy <O (14)
where the subscripts denote partial derivatives, which are evaluated at B*(k). A plot of a(k)
(which is a quite complicated function of k), shows that (14) holds for all £ > 1.

Hence, we have proved that for all £ > 1 and a sufficiently small ¢ > 0 there is an
asymptotically stable periodic orbit around the REE B*(k) for d = di(k)—c and ¢; = k di(k).

To transfer the results we derived for (10) to the original differential equation (5) we
have to assure that B*(k) € D,. Again, a plot of §;(k) as function of k£ shows that this is
the case for all £ > 1. For sufficiently small ¢ also the limit cycle lies in D,. It follows that
in a neighborhood of the limit cycle, the stationarity condition Bl is satisfied. The other
conditions of Appendix B are trivially satisfied. Thus, we can apply Corollary 2.1 to see
that beliefs tend to the limit cycle. O

The parameter restrictions require d < 0. This implies that b3 < 0 and b; > 0, i.e. the IS
curve is downward sloping (the marginal propensity to save exceeds the marginal propensity
to invest, see [Sargent, 1987, pag. 54]). So we have that if both the IS and the LM curve
are downward sloping then agents learn to believe in a non perfect foresight beliefs limit
cycle.

Figure 2 shows a simulation of the learning process with the parameters b, = 0.609808, b, =
-1, ¢ = —6.09808, vy, w; are two uniformly distributed random variables on the interval
[—1,1] and the initial conditions are (foty, F1t,,t0) = (B*,500). In the graph we moved the
REE B* to the origin. (For technical reasons the plot was generated using the learning
process till ¢ = 3 - 10° and then continued by the solution of the ODE).

3.3 Example III

Let us consider the following model

Ty = aoxi—1 + a1 By (z0) + a2 By (y1) + asFio1(Te41) + asEy 1 (z442) + 0
Y = b By () + bo By (yr) + wr,

12



Figure 2: A simulation of learning in Example II.

where v, and u; are two white noise variables satisfying condition Bl in Appendix B and
F,_, denotes expectation taken by the agents at time ¢t — 1. Agents believe in the following
(misspecified) law of motion:

Ty = BoTio1 + wie

Yi = Buzi1 + war

Inserting the agents’ perceived law of motion in the above system we obtain

Ty = aoZimy + a1 oo + a2t + asflri-r + asfyximr + v
yi = b1 fuii—1 + bafrerio1 + wy.

The example can be analyzed in the SRLS models framework by setting

Zy = [xt,yt]T7 Z1t = [‘rtvyt]Ta Zot = Tt, Ut = [Ut,wt]T
Po T ao + a180 + a2 + asfy + asfs I 0
B = T(B) = V(B) =
[51  T(B) b1Bo + b2/ » V(B) 01}’
and A(B), B(B) are null matrices. For M,,(B) we have
2
M.,(B) -

T 1 —(ap + @1 fo + asf + asfE + asB3)?
The REE are obtained as solutions of the third order polynomial equation

asb
ap + (aq — % — 1)Bo + asfBE + asffs = 0.
2

13



The behavior of LMS learning can be studied by means of the following system

ﬁ - M ao + a1 8o + a2 + azfBE + aaBBy — Bo
dt

=(5) bifo + b281 — B (15)

The existence of a limit cycle depends on the parameters of the model. Here we consider the
case ag = a3 = 0, such that the origin is a REE. If ag # 0 the system can be reduced to the
former case by a change of coordinates. The proposition also holds for az # 0 sufficiently
small in absolute value, as we can observe by continuity arguments.

Proposition 3.2 Let the parameters of the model satisfy the following conditions:
(a) ag=0,a; >0,a,>0,a3 =0, a4 <0, by <0, b <1,
(b) a1+b2 >2, (a1 —1)(b2—'1)—b1a2 >0,
() F< %

(d) There exists a ¢ > 0 such that

> max{(al — Db bl(b'z_al)Q}, (16)

¢ 2(14 ’8(14(b2—1)

1
c < - 17
¢ 80.2, ( )
1 2¢c 260.4
L L 18
2 b, 9T Ty, (18)

Then the ODE (15) has only one fized point. It is unstable and surrounded by a uniformly
asymptotically stable limit cycle. In a neighborhood of the limit cycle, conditions A and B
(see Appendiz B) are satisfied and thus Corollary 2.1 applies. Hence, beliefs updated with
the LMS algorithm converge with positive probability given appropriate initial conditions to
the limit cycle.

Proof.
The proof is in two steps.

Step I
Let s(B) = |a18o + a281 + a4f33]. Consider the restriction of the ODE to the set D, = {B €
IR?* : s(B) < 1}. By condition (a) ag = a3 = 0 and thus s(B) is just the absolute value
of the first component of T'(B). Hence, on D, the process zy; is asymptotically stationary.
We show that there exists a uniformly asymptotically stable (and thus, positively invariant)
compact subset I' of D,.

Define the function

o(B) = (b1 B3 + a2 57). (19)
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By condition (a) (0,0) is a global minimum and the only critical point of v(B) . Thus, for
c € IRt the sets v™!([0,c]) are neighborhoods of (0,0) that shrink with decreasing c. We
show that for ¢ satisfying condition (d) we have

() T = o7 ((0,d) € {B: 5(B) < 1},
(i1) the set I' is positively invariant for the flow defined by (15).

ad (i) Since s(B) < |a18o+ aafB3| + |azB1| =: |51(Bo)| + |s2(B1)| it is sufficient to show that
for all B € I' we have

|s1(Bo)| <
ls2(B1)] <

(20)

Y

(21)

NN

For all B € " we have

/jO € [_ 2_:) 2—:] = [ﬂcaﬂc]a ﬁl € |:_\/§a \El .
V —0 V —0 a as

Now for all such 3; we have
[2¢
|32(ﬂ1)|<a2 ‘——<1/2,
as

where the last inequality follows from (17). To show (20}, note that by (18) |s1(5.)]| =
S8 = /2 Ja
There it takes the value \/; which is less than 3 by (c). Thus, (20) holds.

ad (1)

Let 2¢(B) denote the time derivative of the function (19) along the solutions of (15)

a; — 2ca5

< 3. Additionally, |s;(8;)| has only one local maximum on IR.

DBy = (Yo, M., (B) (T(B) - B)) (22)

dt
= M, (B)[=B5bi(ar — 1+ as ) + az (by — 1)B]]. (23)

To prove the invariance of I' we show that on the boundary of F > < 0 holds. For all B €
D, we have M,,(B) > 0. Thus, to study the sign of 2(B) on D, it sufﬁces to consider the right

factor of (23). The boundary of I" can be written as V, = {(ﬂo, 4,/ %t ﬂo) | Bo € [Be, B ]}

Thus, the term M,:(B)% on V_ is given by

f(Bo) := =b1 32 (a —b2+a4ﬂ3)+2(b2—1)6 (24)
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where f € [, 5] Now, by (16) we have f(8) = f(B) = 2e(a — 1 — 22%) < 0.
The function f(fB) has two local maxima on IR. At both of them f(f) takes the value
A% + 2(62 — 1) € which again by (16) is less than zero. Thus, (24) and hence 2 is
negative for all Fy defining the first coordinate of a point in V..
Step 1II
Existence of cycles. First, note that the origin is the only fixed point of (15). The fixed points
are the roots of a polynomial of order three. By conditions (a) and (b) it follows straight
forward that (15) has only one real root (which corresponds to the fixed point (0,0)).
Since on the positively invariant set I' M,,(B) > 0 (see Step I}, the system (15) can be
analyzed dropping the positive scalar M,,(B), this does not change in fact the phase portrait,
see [Hofbauer and Sigmund, 1988, pag. 92]. The Jacobian of the simplified system evaluated

at the origin is
ap —1 asg
b by —1 |’

Thus, by condition (b) the fixed point is a source. Hence, I' is a compact positively invariant
set containing a source. Since the origin is the only fixed point, by the Poincare-Bendixson
theorem there exists a periodic orbit in I'. Since the differential equation is analytical, outside
a neighborhood of the fixed point also the associated Poincare mapping is analytical. Hence,
there are only finitely many periodic orbits. By a counting argument it follows that one of
them has to be asymptotically stable.

Conditions A and Bl are trivially satisfied on T'. Since M,,(B) < | on I' also condition
B2 holds.O

Let us remark that the classical Liénard equation and Van der Pool equation can be
obtained in (15) by choosing proper parameters.

The model can be thought as an extension of the model analyzed in
[Evans and Honkapohja, 1994b]. To the scalar model in [Evans and Honkapohja, 1994b] we
have added a second variable, y;, which can be interpreted as a sunspot driven by the agents’
expectation for its future value and with the feature that it affects positively via its expec-
ted value the evolution of x; which in turns has a negative effect via its expectation on the
evolution of y,.

In the Dornbush overshooting model framework, [Dornbusch, 1976}, analyzed under boun-
ded rationality in [Evans and Honkapohja, 1994b, Section 5 ], the variable z; is the price
level, the second variable y; can be interpreted as a sunspot about the health of the gover-
nment finance, a sunspot which is driven by the expectation that the agents have about its
future level, negatively affected by the agents’ expected price level and with a positive effect
on the price level via its expected value.

Figure 3 shows a simulation of the learning process with the parameters a; = 1.2, a3 =
0.12, a3 = 0.1, a4 = =3, by = —1.5, by = 0.9, v;, w; are two uniformly distributed random
variables on the interval [-3, 3] and the initial conditions are (o, f14,,t0) = (0,0, 50). (For
technical reasons the plot was generated using the learning process till ¢ = 310° and then
continued by the solution of the ODE). On the left there is a plot of a solution of the
corresponding ODE starting close to the fixed point (0,0).
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Figure 3: A simulation of learning in Example Il and the corresponding ODE.

3.4 Example IV

The analysis can be extended to stochastic nonlinear models of the type analyzed
in [Evans and Honkapohja, 1995a, Evans and Honkapohja, 1995b]. Let us consider the class
of nonlinear models

Ve = EJF (yee1)] + v

where y; is a random vector of dimension n, v; is a vector of bounded i.i.d random variables
and F(-) is a nonlinear continuously differentiable function. With respect to the analysis in
[Evans and Honkapohja, 1995a, Evans and Honkapohja, 1995b] which presents only a scalar
model, we have augmented the dimension: in one dimensional models we cannot observe
limit cycles or other complex dynamics as for example strange attractors. In what follows
we concentrate our attention on steady state solutions. We introduce the notation

Y(8) = EJF(6 + w)]

where 8 € IR".
A Rational Steady State solution takes the form

= 0 + v, with 8 € IR" such that § = Y(E).
Let us assume that agents believe in the following misspecified law of motion
Ye = 011 + vy,
according to [Evans and Honkapohja, 1995a] the ROLS and the LMS updating rule are de-

scribed by the following nonlinear stochastic difference equation

0= 0,1+t [F(0i1 +v:) — 0,21].
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This is again a stochastic process of the type studied in Section 2 and thus its limit
behavior is described by the following system of differential equations

0=Y(0)—0 | (25)

and the results of Section 2 apply. Depending on the model and on the dimension of the
vector of state variables a large variety of dynamics can emerge in (25). Depending on F(-)
and in particular on Y(-), if the state vector is of dimension 2 then we can observe limit
cycles, if the state vector is of dimension 3 then we can even observe chaotic dynamics.

4 Conclusions

In the literature, complex dynamics have been obtained in deterministic economic models
assuming that agents have complete knowledge of the economy or assuming that they follow a
naive behavior. In this paper we have proved the existence of complex dynamics in stochastic
linear models with forward looking expectations assuming that agents are rationally bounded;
the models are not characterized per se by complex dynamics, agents learn to believe in
complex beliefs dynamics because they learn from the evolution of the economy and they
believe in a misspecified economic model. Complex dynamics concern agents’ beliefs rather
than the state variables of the model and are induced by bounded rationality learning.

We have shown the rise of complex beliefs dynamics in some macroeconomic models.
Specifically, we have shown that some open economy macroeconomics models, as well as
overlapping generations models, are characterized by non perfect foresight complex dynamics.

We think the result obtained in this paper offer new perspectives to the analysis of
complex dynamics in economics: it is not necessary to assume a deterministic environment
to obtain complex dynamics, also in a stochastic environment we can observe them; complex
dynamics concern agents’ beliefs rather than economic variables.
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A Bounded Rationality Learning in Linear Rational
Expectations Models

The class of models analyzed in this paper is the one of SRLS models, the models are linear
in economic variables and in agents expectations and are characterized by linear REE; for
non-RE agents beliefs, the law of motion of the economic model may be highly nonlinear in
agents beliefs. Following [Marcet and Sargent, 1989b], we describe the economic variables
at time ¢ by an n dimensional vector of random variables z;. We denote by two subvectors
of z, the set of economic variables that agents are interested in, z;; € IR™, and the set of
economic variables, zo; € IR™, that agents think are relevant to predict the first subvector
of variables. The vector z; can be written, without loss of generality, as follows’

«= ()= ()
1t Zat
where the superscript ¢ expresses the complement with respect to z. As in
[Marcet and Sargent, 1989b], we assume that the agents’ perceived law of motion is line-

ar and is expressed as

Zie = BtTZ2(t—1) + wy (26)

where B, € IR™*™ is the parameter matrix representing agents’ beliefs and w; is a white
noise component. The law of motion perceived by the agents in (26) causes the actual law
of motion for the vector z; to be given in a general setting by

om0 T(B)T 254 V(BT

i 0 5 ) 8 ) R
where u; € IR™ is a white noise vector. Given the economic model, zy, z9; and the operators
T(:), A(+), B(+), V(-) are defined. Assuming that the agents’ perceived law of motion is given
by (26), the instantaneous forecasting error is €, = 21, — z{,, where z{, is the expected value
of z1; according to (26). A REE is a fixed point for T'(B): B* such that T(B*) = B*. Note
that the data generating process in (27) does not imply that z is a stationary process. As
in [Marcet and Sargent, 1989b], we restrict our attention to the beliefs set D, for which the
stochastic process is stationary. To take into account the case of the presence of constants
in the perceived law of motion, the set D, is defined as the set of beliefs for which the above
stochastic process, rewritten properly as z; = L(B;)zi_1 + E(B;)u, is stationary, on this
point see [Chang et al., 1995].

The learning mechanisms considered in our analysis are ROLS learning and LMS learning.
Let {a:} be a positive, non-decreasing sequence of real numbers, with oy — 1 as t — oo.

Define Btﬂ and Ry, as

W
]

BH_] = Bt -+ D;—:%Rt_l {Z2t—1Z2T1_1 [T(Bg) - Bt] + ZQI_IU?V(Bg)}

D [sJFS| (28)
oy = Rt 58 (2], - 25
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If a; = 1 Ve, then the ROLS algorithm is obtained, otherwise the Weighted ROLS algo-
rithm is obtained. A projection facility is needed to ensure almost sure convergence, see
[Marcet and Sargent, 1989b]. Let D, C Dy € RM*(m2)* the algorithm generating beliefs
becomes

(Biy1, Ri1) = (Bet1, Rig) if (Bj+1,R_t+1) e D,
LA some value in Dy if (Biyr, Rug1 )ED)

where the set D, is closed and D; is open and bounded so that if B € D; then (R, B) € D;.
The learning algorithm defined in (28)-(29) applied to SRLS models has been studied
by means of the Ljung’s method, see [Ljung, 1977]. Under some assumptions, the method

(29)

associates with the learning scheme (28)-(29) an ordinary differential equation that almost
surely mimics the behavior of (Byy1, Riy1) as t — oo:

@8] - &

where M,,(B) = lim;_oo E{zztzgt}. The sets D, and D, are chosen such that trajectories of
the differential equation in (30) with initial condition (B, Ry) € D, never leave the closed
set Dy.

The fixed points of the differential equation in (30) correspond for the first ny rows to the
REE of the SRLS model in (27). Stability of the differential equation at (B*, M_,(B*)) means
that learning based on the ROLS algorithm converges almost surely to the REE, thanks to
the projection facility. On the other side, instability means that ROLS learning does not
converge to the REE, see [Marcet and Sargent, 1989b]. The stability of the system in (30)
can be analyzed locally in a neighborhood of a fixed point by means of the following simpler
system of differential equations

dB
— =T(8)-B. (31)

The Least Mean Squares algorithm is the simplest learning mechanism developed in the ad-
aptive control/signal processing literature, see [Widrow, 1971, Widrow and Stearns, 1985].
The application of the LMS algorithm as a learning mechanism and the proofs of the re-
sults reported below are provided in [Barucci and Landi, 1995b]. The LMS algorithm is a
procedure which updates the beliefs matrix B; to minimize the error variance function

6(B) = Efc <7

where E{-} is the expectation operator and ¢((B) € R™*™. Assuming that the error
components are not correlated, the matrix function £(B) is diagonal, its ¢-th component
(&i(B:) € IR) is the expected square of the i-th component of the error forecasting vector e,

L(B)=E{e}}i=1,...,n;,

the minimization of {(B) corresponds to the minimization of the sum of the &(4;), i =
1,...,n;. Because of the absence of correlation among errors, the LMS algorithm for the

20



matrix B can be defined with respect to each component of z; and therefore to each column
B; € IR™ of B minimizing the i-th component of the function ¢(B).

The LMS algorithm looks for a minimum point of the MSE function according to the
steepest descent gradient procedure taking at time ¢ the scalar €7; as an estimate of &;(6;),
i =1,...,n;. Therefore the LMS updating rule for the :-th column 3, of B, is

~

Bi+1,i = Bri — 2ni€ i Vigr,i (32)

where 14 is a decreasing function of t. Let us notice that agents are not able to compute the
“true” gradient because they do not know the “true” law of motion of the model,i.e. T'(B),
they know only that their estimate enters linearly the error expression. For the analysis of
the algorithm with an exact computation of gradient see [Barucci and Landi, 1995a]. The
LMS algorithm for the SRLS model in (27) implies the following updating rule

Bz+1,.i = 5:,1' + 277t [Zz(t—l)ng(t_l) (Ti(/jt,i) - ﬁz,i) + 22(:-1)“{‘4(5;,1')] . (33)

As in [Marcet and Sargent, 1989b] we invoke the projection facility, let us define the sets
D, C Dy C IR™*™ . The algorithm for generating beliefs B,y is

Bt+1 =

{ Bt if By € Dy (34)

some value in Dy if By gD,

Given some regularity assumptions we have proved in [Barucci and Landi, 1995b] by apply-
ing the Ljung theory that the LMS updating rule can be analyzed in the limit by means of
the following differential equation

dB
— = M-,(B) - (T(B) - B). (35)

Let us remark that convergence to a non REE occurs if there exists a B € IR*2*™ such that
B? #+ T(B°) and M,,(B°)(T(B°)—B°) = 0, that is M,,(B°) is not a full rank matrix. Dropping
the assumption of non correlation among the forecasting error components the analysis can
still be developed assuming that agents are interested in minimizing independently the n;
error variances.
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B1
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Conditions on the Stochastic Process
n: is a deterministic non-increasing sequence satisfying Y52, 7. = oo and 352, 72 < co.

For any compact subset ) C D there are constants C} and ¢; such that V8 € () and
Vi, |H(6,z)| < Cy (1 + |z|n).

For any compact subset () C D the function H(6,z) satisfies for all 8,6 € @ and
r1, 22,z € IRF the conditions

(1) |H(0,.’1§1) - H(H 1'2” < L |.’131 - .'132|,
(i) |H(6,0) — H(0',0)| < L,|0 — 0|,
(iii) |20 — SHED)| < 1,]0 — 0],

for some constants L, L.

wy 1s 1dentically and independently distributed with finite absolute moments,
ile. E(Jw|?) <ooforallg=1,2,3,...

For any compact subset Q C D

sup |G(8)] < M and sup |F(0) < gq<1,
feQ

for some matrix norm |- |, and F(8),G(0) satisfy Lipschitz conditions on Q).
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