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Preface 

We prove that complex beliefs dynamics may emerge in linear stochastic models as the 
outcome of bounded rationality learning. If agents believe in a misspecified law of motion 
(which is correctly specified a.t the Rational Expectations Equilibria of the model) and update 
their beliefs observing the evolving economy, their beliefs can follow in the limit a beliefs 
cycle which is not a self-fulfilling solution of the model. The stochastic process induced 
by the learning rule is analyzed by means of an associated ordinary differential equation 
(ODE). The existence of a uniformly asymptotically stable attractor for the ODE implies 
the existence of a beliefs attractor, to  which the learning process converges. We prove almost 
sure convergence by assuming that agents employ a projection fa.cility and convergence with 
positive probability dropping this assumption. The rise of a limit cycle and of even more 
complex attra.ctors is established in some monetary economics models assuming that agents 
update their beliefs with the Recursive Ordinary Least Squares and the Least Mean Squares 
algorithm. 

The work for this paper was started while Martin Posch was a research assistant at  the 
Dynamic Systems project a t  IIASA. The  results were discussed at a joint seminar of the 
projects Dynamic Syste,ms and Systems Analysis of Technological and Economic Dynamics 
in February 1996. 
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Tlie Rise of Complex Beliefs Dynamics 

Emilio Barvcci* Martin Posch 

1 Introduction 

A large literature has grown up in the last two decades on the emergence of complex dy- 
namics in nonlinear deterministic economic models, see for example [Grandmont, 1985, 
Grandmont, 1987, Bodrin and Woodford, 1990, Guesnerie and Woodford, 19921. Complex 
dynamics have been obtained as the outcome of dynamical optimization problems under 
the assumption of perfect foresight (agents have full knowledge of the economic model) or 
by modeling the agents beha.vior on the basis of some behavioral a.ssumption, on the two 
approaches see for example [Boldrin and Montrucchio, 19861 and [Day, 19941. No results ha- 
ve been established in a stochastic environment until now; the stochastic arid the complex 
dynamics view of the world are perceived to be a.ntithetic both in a theoretica.1 and in a.n 
empirical perspective, see [Brock, 19871. 

In this paper we show that complex dynamics (non perfect foresight trajectories) may 
emerge in linear stochastic models as the outcome of agents' bounded rationality learning. 
Complex dynamics do not concern directly the sta.te varia.bles of the model, but the agents 
beliefs (beliefs complex dynamics). Complexity is not due to an intrinsic complexity of 
the economic model but it is the result of the interaction between agents' learning and the 
evolution of the economy. 

The models considered in this paper are linear in the state variables and in the agents' 
expectations; nonlinearities come from the assumption of bounded rationality: agents do 
not know the complete economic model, they form their expectations believing in a linear 
misspecified model which is correct only at  a perfect foresight solution, outside that solution 
the actual law of motion of the economy may be highly nonlinear in agents beliefs; the 
analysis is developed in the framework of Self Referential Linear Stochastic (SRLS) models, 
see [Marcet and Sargent, 1989b], and ca.n be easily extended to  models with hidden state 
variables and private information, see [Marcet and Sargent, 1989al. 

Observing the evolving economy, agents update their beliefs with a recursive informa- 
tion processing rule. Many recursive learning mechanisms have been proposed in the li- 
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terature: iterative expectations, [Canio, 19791, recursive ordinary least squares (ROLS), 
[Marcet and Sargent, 1989b], ordinary least squares with finite memory, 
[Grandmont and Laroque, 19911, least mean squares (LMS), [Barucci and Landi, 1995bl. 
These learning procedures are characterized by different information processing rules and 
memory capacities: the ROLS algorithm is the best linear unbiased estimator and is charac- 
terized by a long memory, the LMS algorithm is a steepest descent gradient algorithm with 
very short memory and a strong behavioral interpretation. 

The learning process may lead to different outcomes: agents' beliefs can converge to 
a point, diverge to infinity, or converge to a beliefs cycle. For the first three learning 
mechanisms mentioned above only a REE can be the limit point, LMS learning may al- 
so converge to a set of non-RE beliefs, see [Barucci and Landi, 1995bl. Convergence to 
a perfect foresight beliefs cycle has been studied in a deterministic framework assuming 
that agents are rationally bounded but know the existence of a cycle and form their be- 
liefs consistently; for example, if a perfect foresight cycle of order k exists then the agents 
use an adaptive scheme of order X- and form expectations by looking back k periods, see 
[Guesnerie and Woodford, 1991, Marimon and Sunder, 1993, Marimon et al., 19931. With 
the same approach convergence of learning to a cycle has also been shown for nonlinear 
stochastic models in [Evans and Honkapohja, 1995bl. For all the three limit behaviors the 
average forecasting error either converges or diverges to infinity: if convergence to a REE or 
to a perfect foresight cycle is obtained then the average forecasting error converges to zero, 
if convergence to a set of non-RE beliefs is obtained then the average forecasting error con- 
verges to a value different from zero. If the learning process diverges (beliefs go to infinity), 
the square forecasting error goes to infinity, too. 

This kind of results contrasts with empirical and experimental evidences. Experimen- 
tal economics has shown that the agents' forecasting error may not go to zero but remain 
bounded with an erratic behavior over a long time period, see [Marimon and Sunder, 1993, 
Marimon et al., 19931. This suggests that "adaptive learning might generate endogenously 
complex nonlinear trajectories, along which forecasting errors would never vanish" 
[Grandmont and Laroque, 1991, pag. 2481, see also [Evans, 19851 on this point. The claim 
has not been demonstrated in a stochastic framework, such a result has been only obtained 
in a deterministic nonlinear hyperinflation model, see [Bullard, 19941. Our analysis concerns 
linear stochastic models. The emergence of complex beliefs dynamics is investigated by 
means of the ordinary  di f ferent ial  equation (ODE) associated with the learning dynamics. 
New results obtained in the stochastic approximation literature have shown that the ODE is 
not only relevant for the analysis of the local convergence of a learning mechanism to a statio- 
nary solution but also to detect the existence of limit cycles or even more complex dynamics: 
every uniformly asymptotically stable attractor of the ODE is contained in the attainable l i -  
mit sets of the corresponding stochastic process, see [Benaim and Hirsch, 1994, Posch, 19941. 
We prove almost sure convergence employing the projection facility and convergence with 
positive probability employing results in [Benveniste et al., 19901 with an approach similar 
to the one in [Evans and Honkapohja, 1994al. 

With respect to  the literature on complex dynamics in economics, the main features of 



the analysis developed in this paper are: 

a linearity of the model a t  the REE and in disequilibrium with respect to state variables 
and a.gents expectations, 

a bounded ra,tionality, 

a stochastic environment, 

a complex dynamics concern beliefs rather than directly the economic state variables. 

The nice thing of our a.nalysis is that complex dynamics do not arise because of a simple 
behavioral assumption or of a. ma.ximizing beha.vior under perfect foresight. Both, the two 
assumptions ha.ve been deeply criticized in the 1itera.tux-e. In what follows we are in the 
middle: a.gents a.re not fully ra.tiona1, i.e. they do not know the complete economic model, 
they learn from observations by means of an information processing rule. So the result is 
that agents endogenously learn to  "believe" in complex beliefs dynamics. 

The paper has both methodological aspects (the appl i~a~tion of new results obta.ined in 
the stochastic approxima.tion literature to  economic theory) and theoretical a.spects (the 
a.nalysis of complex beliefs dynamics in some macroeconomic models). To comply with these 
two goals, we present in Section 2 stocha.stic approximation results needed in our analysis and 
we analyze in Section 3 some macroeconomic models. As we show in Section 3.4, the analysis 
can also be extended to  a class of nonlinear models obta.ined in the overlapping generations 
framework. In Appendix A we present the class of economic models considered in this paper 
and the two learning algorithms employed (the ROLS and the LMS algorithm). In Appendix 
B we report the technical conditions on the stochastic process and on the learning process 
needed in our analysis referring mainly to  [Evans a.nd Honkapohja, l994al. 

2 The Rise of Complex Beliefs Dynamics in Linear 
Stochastic Models 

To determine the existence of complex dynamics in a learning model, we study the system of 
differential equations associated with the learning algorithm, i.e. (30) for ROLS learning and 
(35) for LMS learning; from the existence of a uniformly asymptotically stable attractor for 
the system of differential equations we deduce the existence of an attractor for the stochastic 
approximation process describing the 1ea.rning rule. The results established in this section 
a.re based on results contained in [Benveniste et al., 1990, Evans and Honkapohja, 1994a, 
Benaim and Hirsch, 19951. Both learning processes considered in our analysis are stochastic 
approximation processes of the type 



where O t  E IR" qt E R+, x t  E Rk, wt is an i.i.d. noise vector, H ( . ,  .) is a function, and 
F ( . ) ,  G(.) are matrices of appropriate dimension. Let D be a fixed subset of SR" Following 
[Evans and Honkapohja, 1994a1, we require the process to satisfy conditions A1-A3 and B1- 
B2 (see Appendix B).  Under these conditions the process x t  is a,symptotically stationary 
and thus, there is a locally Lipschitz continuous function h(6) such that 

l z (6 )  = lim E ( H ( 0 ,  2 t ) )  
t-oo 

where zt = F(O)Z~-~ + G ( O ) W ~ - ~ .  The limit sets of the process Ot can be characterized by 
the corresponding ODE 

6 = h(6), 0 E D. (3) 

For ROLS learning this differential equation is given by (30), for LMS learning by (35) .  
An important notion to  describe the limit sets of the stochastic process is that of chain 
recurrence. 

Definition 2.1 Let Qt(0)  denote the pow induced by (3). A point 0 E R % s  called (6, T) 
recurrent if S > 0, T > 0 and there is an integer k, points tj E Zd, 0 < j 5 k ,  and numbers 
t j  > T, 0 5 j 5 k-1 such that: Ilto-dIl < S , t k  = 6 and I ( @ t , ( [ j ) - [ j + l l I  < S , j  = 0, . . . ,  k-1. 
If 0 is (6, T)  recurrent for all S > 0, T > 0 then 6 is called chain recurrent. 

Let R ( h )  denote the set of chain recurrent points of (3). Combining results in 
[Evans and Honkapohja., 1994a.l and [Benaim, 19931 ure get the following theorem: 

Theorem 2.1 Let c D be a compact uniformly asymptotically stable set of (3). Suppose 
that assumptions A and B in  Appendix B are satisfied on D .  Denote the do,main of attraction 
of r by N and let U C N n D be an open neighborhood of r. 

Then there exists a nt:ighborhood V c U of r and constants B1, s such that for a set of 
initial conditions (to = n ,  Ot0 E If, xto = x) we have 

lulzere J ( n )  is a positive decreasing sequence with limn,, J ( n )  = 0. 

(b) Let A be the event such that the w-limit of the process Ot in  (1) is a compact, invariant 
subset of R(1z). Then 

P({min{k > n} < m} U A) = 1. 
@k $u 

Proof: 
(a)  is a.n irnmedia.te consequence of Theorem 1 in [Evans and Honkapohja., 1994aI. The 

existence of the required Ljapunov functions follows since r is uniformly asymptotically 
stable. In [Evans a.nd Honkapohja., 1994al the inequality (a )  has been proved for the case 
where the asymptotically stable set is just a point. 



(b)  By step ( i i )  of the proof of Theorem 1 in [Evans and Honkapohja, 1994al on the set 
{minOkpu{k > n )  = oo) the process Ot  can be written as 

where C,"O=, f t  converges almost surely. 
Thus, we can apply Theorem 1 in [Benaim, 19931 and (b)  fol1ows.o 

For a discussion of chain recurrence see [Benaim, 19931. If (3) defines a flow in g2 which 
has isolated equilibria then the chain recurrent sets consist only of fixed points, periodic 
orbits and orbit chains of the flow, see [Benaim and Hirsch, 1994, Theorem 1.61. Thus, if 
I? contains only the fixed point 0' whose domain of attraction is N (and no periodic orbits 
or orbit chains) then the process almost surely either leaves the domain of attraction or 
converges to  O*. If I? contains a limit cycle with orbit p and domain of attraction N (and no 
fixed points) then almost surely the w-limit of all paths that stay forever in N is p: since p 
is the only chain recurrent set, the w-limit set for all paths that stay in N is contained in 
p, but as the w-limit set is inva.riarit it contains p and hence the w-limit for the paths in 
N and p are identical. If I? contains a genera.1 attra.ctor, we know from Theorem 2.1 that 
the w-limit set of each path that does not leave U is almost surely an invariant subset of 
R ( h ) .  Thus, if the system of differential equations in (3) has e.g. a strange attractor it will 
be contained in the attractor of the stocha.stic process. 

In the following we consider the ca.se of limit cycles. First of all we need the following 
definition: 

Definition 2.2 A deterministic seq,uence Bt E IR%s called asymptotically cycling if its 
w-limit is a closed curve. 

From Theorem 2.1 and the above a.rguments we get the following corollary: 

Corollary 2.1 Assume that the J o ~ u  induced by (3) adrnits a uniformly asymptotically stable 
limit cycle p.  Let U denote a neighborlzood of p ~uhich is a subset of the domain of attraction 
of p and such that conditions A and B i n  Appendix B hold on U .  Then 

1. there exist constants B2, s and a neiglzborhood V c U of p suclz tlzat for the process 
(1)-(2) with initial conditions ( t o  = n ,  Oto  E V, xto = LC) 

P(Ot is asymptotically cycling) > I - B2 (1 + lxls) J ( n ) ,  

where J ( n )  is a positive decreasing sequence with lim,,, J ( n )  = 0; 

2. tlzere exists a neighborlzood V c U of p such that if we modify the process (1)-(2) by 
introducing a projection facility suclz that whenever the process Ot leaves the set V it is 
moved back to V, then for all initial conditions (Ot0  E V, to > 0, xt, = x)  the process Ot 
is almost surely asymptotically cycling. 



Finally we consider a non generic ca.se. The flow induced by (3) has a continuum of 
periodic orbits as for example in a system of 1inea.r differential equations with pure imagi- 
nary eigenvalues or in the Lotka-Volterra framework. In this context the concept of chain 
recurrence is not applicable. Instead, we use the notion of invariant of motion to prove 
cycling. 

Theorem 2.2 Let Ot E lR2 and in  addition to conditions A and B i n  Appendix B assume 
that H ( . ,  .) and wt are bounded o n  D ,  that xt  is stationary, and qt is of order l l t .  Assume 
the flow of h(8) has a continuum of cycles around a fixed point 8' and an  invariant of motion 
Q(0) : !Rd --+ '$2 exists satisfying 

1. Q E C2(D) and the second deriuatives art bounded, 

2. (VQ,  h )  = 0, b'x E D; 

3. Q(0) 2 0, b'x E D ,  

4. 0' is a global strict m i n i m u m  point of Q(.)  and the only critical point. 

Tlzen there is  a neiglzborl~ood V of 0* and an  n > 0 such that, for all initial conditions 
to > rL and Bt, E V ,  Ot is asymptotically cycling with positive probability. 

Proof: 
This is a. consequence of Propositions 4 and 5 in [Posch, 19941 and of Theorem 1 in 

[Bena.im, 19931. 

One can actually show that each open set of periodic orbits is attained in the limit with 
positive probability (see [Poscti, 19941). 

3 Some Economic Models 
In this section we discuss some economic models where agents' bounded ra.tionality learning 
leads to non perfect foresight complex beliefs dynamics; specifically we show that the beliefs 
dynamics may be characterized by a continuum of cycles or an asymptotically stable limit 
cycle to which agents' beliefs converge. 

The first example (Section 3.1) is a very simple model which leads to a system of linear 
differential equations for agents beliefs. For a particular set of parameters there exists a 
continuum of cycles. In this (non generic) ca.se the learning process converges to a cycle 
which is randomly selected. In the second example (an open economy model) we show 
beliefs convergence to a limit cycle, which we determine using the Theorem of Hopf (Section 
3.2). In the third example (Section 3.3) we show the presence of a limit cycle in a model 
with forward looking expectations, agents take expecta,tions of a random variable with one, 
two and three steps ahead. In Section 3.4 we extend the a,na,lysis to a class of nonlinear 
models which a.re quite common in the overla,pping generations literature. 



The a,bove analysis ca.n be developed both for ROLS and LMS learning. However, since 
the system of differential equations associated with ROLS learning is of dimension higher 
tha.ri the one associated with LMS learning, it is much harder to analyze its phase portrait, 
and thus to  prove the existence of cycles for ROLS learning. 

3.1 Example I 

Let us consider the following model 

where vt and wt a.re two bounded white noise variables and Et denotes expectation taken by 
the agents at  t ime t .  In the following we assume a, y ,  A ,  $ > 0, 6 < 0 and 2 > 0. Agents 
believe in the following misspecified law of motion (perwived law of motion): 

Pt = Pot + u 1 t ,  

dt = Pl t + u2t. 

Thus, agents believe that  the two random variables a.re two constants plus noise. Inserting 
agents expectations in the system we obtain the following actual law of motion: 

The analysis can be developed in the SRLS models framework by setting 

A ( B ) ~  = [o, 0, i] 

and B(B)  is a null vector. The  model has only one REE B* which is given by 

The system of differential equations to  be studied to determine the limit behavior of LMS 
learning is linear and is given by 

Let us remark that the differentia,l equation for ROLS learning is similar to the one of LMS 
learning; we have only to  a.dd one dimension for the updating of the information matrix R. 



Figure 1: Two simulations of learning in Example I. 

Since the differential equation for R is decoupled and has a globally asymptotically stable 
fixed point, the limit dynamics of ROLS learning can be reduced to the plane (Po, PI),  where 
it is described by the system of differential equations in (4). 

For $ = 2 - cu and ( a  - I ) ($  - 1) - 5y > 0 the Jacobian J of (4) evaluated at the REE 
has pure imaginary eigenvalues. Thus, for these parameter values the solutions of (4) are 
the REE, and a continuum of cycles surrounding it. 

An invariant of motion for this system is given by Q(/Jo, P I )  = (B - B*)T MT M ( B  - a*), 
where M is the inverse of the 2 x 2 matrix consisting of the imagin<:ry and real part of the 
eigenvectors of J. Since for fixed B the state variables p t ,  dt are stationary, we can apply 
Theorem 2.2. Hence, the process is with positive probability asymptotically cycling. 

To the above model the following interpretation can be given: think of pt and dt respec- 
tively as the price and the dividend of a stock at time t. The first equation represents the 
classical no-arbitrage condition with 0 < a = y < 1. The second equation describes the firm 
dividends policy: the firm deciding a t  time t the amount of dividends to be paid considers 
both the agents expectations of the dividends and of the price of the stock in the next period. 
If agents expect a dividend larger than 2 then the firm accommodates this opinion raising 
the dividends, $1 > 0, if the agents expect an increase in the stock price (a  positive capital 
gain) then the firm decides to decrease the amount of dividends to be paid. 

Figure 1 shows two runs of the learning process with the parameters a = 0.5, 11, = 
1.5, 5 = -1, y = 2, X = 3, d = 1, vt, wt are two uniformly distributed random variables on 
the interval [-3,3] and the process is started at the REE with to = 10. Notice, that at  each 
run a different cycle is selected. 



3.2 Example I1 
Let us consider the following open economy model analyzed in [McCallum, 1989, Chapter 

141 

B = bl [&-I  (et+l - e t )  - Et-I (pt+l - p t ) ]  + b2(pt - e t )  + vt 

where u t ,  t t  are independent white noise variables, satisfying condition B1 in Appendix B. 
Et-l denotes expectation taken by the agents at time t - 1. The model is a standard open 
economy I S I L M  model, pt is the log of the domestic money price of domestic goods, et  is the 
log of the home country exchange rate. With respect t o  the formulation in [McCallum, 19: , ]  
we assume that  agents take expectations on the hasis of the information set a t  time t - 1. 
Let us assume that the agents believe in the law of motion 

where wit, w~~ are white noise. The  dyna.mics of the model is described in terms of the SRLS 
models fra.mework a.s follows 

A ( B )  = [0, 0, 1IT, B ( B )  = [0, 0, OIT .  
We prove existence of a. non perfect foresight beliefs limit cycle for LMS learning assuming 

C = B = 0; For C and B non zero the analysis can only be done numerically. With 
B = C = 0 the system simplifies essentially: the vector zqt becomes a scalar and the 
perceived law of motion becomes 

Thus, the beliefs matrix B is reduced to a two dimensional vector and we have 



-c2(D; - D l )  
T(BIT = bl[o;-ol-o;+oo] [ b2 - c2(P; - Dl)  1 ,  

A(B), B(B)  are null matrices. By a simple computatiorl we have M,(B) = 1-4B)2 , where 

a: denotes the varia,nce of v t  and T2(B) is the second component of T(B) .  The system 
of differential equations associa.ted with the LMS learning process (33) is (35), and in this 
particular case we have 

P o  = M z 2  (B) [-c2(P,2 - Dl)  - Do] (5) 

iil = M ~ ~ ( B )  [dra: - PI - D: +A]  - c~(/I: - pi) - pl] , 
where d = 2. The model has four REEs 

where 

Let D, = {B E R21 IT2(B)1 < 1) denote the set where et  is a.n asymptotically stationary 
stochastic process. Mz2(B) is well defined on D, and positive. On D, the system (5) can be 
analyzed dropping the positive scalar Mz2(B) since this does not change the phase portrait, 
see [Hofbauer and Sigmund, 1988, pag. 921. Thus, we consider the system 

Po = - c2(Pf - Pl) - Po (10) 

b1 = d[P: - 81 -P :+h]  -c2(ir: - D l )  - P i .  

We will prove existence of a limit cycle for ( lo) ,  using the Theorem of Hopf. To this end, 
we consider the Jacobian of (5) evaluated at a point B E R2 obtaining 

Evaluating Ja at  the third and the fourth REE, it is easy to see that the eigenvalues are 
always real, and therefore no Hopf bifurcatiol~ can occur. However, for the first REE things 
are different, and the following Proposition can be stated: 



( 1 - d  Proposition 3.1 Let k > 1 ,  dh = k+6 (1  *'-' - k)' k4+4 Then  for all s u f i c i e t l y  

small e > 0 ,  c2 = k d h ,  d = dh - e the ODE (10) has a uniformly asymptotically stable limit 
cycle around the REE B* such that i n  a neighborhood of the limit cycle, conditions A and B 
(see Appendix B )  are satisfied and thus Corollary 2.1 applies. Hence, beliefs updated with the 
L M S  algorithm converge given appropriate initial conditions to the limit cycle with positive 
probability. 

Proof. 
The Jacobian of the system evaluated at B* is 

We want to find parameter values c2,d such that Ja. has purely ima.gina.ry eigenvalues, 
i.e. Trace ( J p )  = 0 and Det ( J p )  > 0.  To simplify calculations we set c2 = k d.  For the 

Thus, for k > 1 and d < 0 the determinant is strictly positive and c2 < d < 0 .  Setting the 
trace eaual to  zero we obtain 

Let us remark thai  the right ha,nd side has to  be positive, this happens if c2 < d < 0.  Take 
squares in ( 1 1 )  and divide the whole equation by cad. It follows that the trace of Ja* is equal 
to zero if c2 < d < 0 and 

substituting c2 = k d ,  we obta.in 

Thus, we have only to solve a second order polynomial obtaining the solution 

The second root of ( 1 2 )  is positive and therefore it cannot satisfy the conditions for the 
determinant to  be positive and the trace equal to zero. It easily follows that for all k > 1 ,  
d h ( k )  < 0 holds. Thus, for all k > 1 and d = dh(k ) , c2  = k dh the eigenvalues of Ja. are 
imaginary. Since for k > 1 and d h ( k )  < 0 we have 



from the Theorem of Hopf it follows that at  these parameter values a Hopf bifurcation occurs. 
Let B*(k) denote the REE B* in (6) for the parameter values d = dh(k) ,  c2 = kdh(k).  

To determine if the resulting periodic orbit is stable, we apply the normal form calculation 
given in [Guckenheimer and Holmes, 1983, pag. 1521. To this end, we make a change of 
coordinates such that  B*(k) is moved to the origin and such that the differential equation 
(10) takes the form 

where p is the imaginary part of the eigenvalues of J B * ( k ) .  Thus, we set 

where A is a matrix consisting of the imaginary and real part of the eigenvectors of J a * ( k ) .  

The Hopf bifurmtion a t  X: > 1 is sta.ble if for the resulting functions j' and g 

:= f z y  ( f x z  + f y y )  - gz, (gz, + g,,) - fz,gz, + f,, gy, < 0 (14) 

where the subscripts denote partial derivatives, which are evaluated a t  B*(k). A plot of a (k)  
(which is a quite complicated function of k) ,  shows that (14) holds for all k > 1. 

Hence, we have proved that  for all k > 1 and a sufficiently small 6 > 0 there is an 
asymptotically stable periodic orbit around the REE B*(k) for d = dh(k)-t  and c2 = k dh(k).  

To transfer the results we derived for (10) to the original differential equation (5) we 
have to assure that B*(k) E D,. Again, a plot of P;(k) as function of k shows that this is 
the case for all k > 1. For sufficiently small t also the limit cycle lies in D,. It follows that 
in a neighborhood of the limit cycle, the stationarity condition B 1  is satisfied. The other 
conditions of Appendix B are trivially satisfied. Thus, we can apply Corollary 2.1 to see 
that beliefs tend to the limit cycle. 

The parameter restrictions require d < 0. This implies that b2 < 0 and bl > 0, i.e. the I S  
curve is downward sloping (the marginal propensity to save exceeds the marginal propensity 
to invest, see [Sargent, 1987, pag. 541). So we have that if both the I S  and the LM curve 
are downward sloping then agents learn to believe in a non perfect foresight beliefs limit 
cycle. 

Figure 2 shows a simulation of the learning process with the parameters bl = 0.609808, b2 = 

-1, c2 = -6.09808, vt, w t  are two uniformly distributed random variables on the interval 
[-I, 11 and the initial conditions are (Poto, PI,,, to) = (B*, 500). In the graph we moved the 
REE B* to the origin. (For technical reasons the plot was generated using the learning 
process till t = 3 . lo6 and then continued by the solution of the ODE). 

3.3 Example I11 

Let us consider the following model 



Figure 2: A simulatior~ of learning in Example 11. 

where vt a,nd ut are two white noise variables satisfying condition B1 in Appendix B and 
EtPl  denotes expectation taken by the a.ger~ts a.t time t - 1. Agents believe in the following 
(misspecified) law of motion: 

zt = botxt-1 + Wlt 

Y t  = Pl t~ t -1  + w2t. 

Inserting the agents' perceived law of motion in the above system we obtain 

xt = aoxt-1 + alPotzt-1 + a2Pltxt-1 + a3Pitzt-1 + a4Pitxt-1 + vt 
Y t  = b1Potxt-1 + b2P1txt-1 + wt. 

The example can be analyzed in the SRLS models framework by setting 

T T 
Zt = [x t ,  y t IT ,  Zlt = [x t ,  y t ]  , Z2t  = xt,  ,Ut = [vt, wt] 

and A ( B ) ,  B (B)  are null matrices. For M,, ( B )  we have 

Mz, ( B )  = 
0: 

1 - (a" + a1P0 + a2P1 + a3P," + ~ 4 / 3 , 3 ) ~  ' 

The REE are obtained a.s solutions of the third order polynomial equation 



The behavior of LMS learning can be studied by means of the following system 

The existence of a limit cycle depends on the pxameters  of the model. Here we consider the 
case a. = a3 = 0 ,  such that the origin is a REE. If a" # 0 the system can be reduced to the 
former case by a change of coordinates. The proposition also holds for a3 # 0 sufficiently 
small in absolute value, as we can observe by continuity arguments. 

Proposition 3.2 Let the parameters of the model satisfy the follo~uing conditions: 

(a)  a o = O , a l  > O , a 2 > 0 , a 3 = 0 , ~ 4 < 0 ,  bl < 0 ,  b 2 < 1 ,  

(b) a1 + b2 > 2, (a1 - 1 )  (b2 - I )  - bl a2 > 0 ,  

(c) 2 < s, 
( d )  There exists a c > 0 such that 

Then  the ODE (15) has only one fixed point. It is unstable and surrounded by a unifor.mly 
asymptotically stable limit cycle. In a neighborhood of the limit cycle, conditions A and B 
(see Appendix B )  are satisfied and thus Corollary 2.1 applies. Hence, beliefs updated with 
the L M S  algorithm converge with positive probability given appropriate initial conditions to 
the limit cycle. 

Proof. 
The proof is in two steps. 

Step I 
Let s(B) = lalPo + a2P1 + a4P031. Consider the restriction of the ODE to the set D, = {B E 
R2 : s (B)  < 1 ) .  By condition (a)  a0 = a3 = 0 and thus s (B)  is just the absolute value 
of the first component of T (B) .  Hence, on D, the process ~2~ is asymptotically stationary. 
We show that there exists a uniformly asymptotically stable (and thus, positively invariant) 
compact subset r of D,. 

Define the function 



By condition (a )  (0,O) is a global minimum and the only critical point of v(B) . Thus, for 
c E R+ the sets v-'([O,c]) are neighborhoods of (0,O) that shrink with decreasing c. We 
show that for c satisfying condition (d)  we have 

( i )  I' := V-'([O,c]) c {B : s (B)  < 11, 

( i i )  the set I' is positively invariant for the flow defined by (15). 

ad ( i )  Since s (B)  5 lalPo+a4P:1+ lazP1I =: Isl(Po)l+ Is~(PI)I it is sufficient to show that 
for all B E I' we have 

For all B E I' we have 

Now for all such Dl we have 

- 

where the last inequality follows from (17). To show (20), note that by (18) Isl(/Jc)I = 

s ( P C )  = a - 1 < i. Additionally, Isl (PI)[  has only one local ma,ximum on R. 

There it takes the value @ which is less t t ~ a r ~  1 by (c). Thus, (20) holds. 

ad (ii) 
Let $(B) denote the time derivative of the function (19) along the solutions of (15) 

To prove the invariance of I' we show that on the boundary of r $ < 0 holds. For all B E 
D, we have Ad,,(B) > 0. Thus, to study the sign of $(B) on D, it suffices to consider the right 

-" 

factor of (23). The  boundary of I' can be written as K = {(Po, id*) 1 Po E [PC, PCl}. 

Thus, the term ~$ on Vc is given by 



where Po E [PC, PC]. Now, by (16) we ha,ve f(PC) = f(PC) = 2 c ( a l  - 1 - m) < 0. 
b l  

The function f(po) has two local maxima on IR. At both of them f(po) takes the value 
bl ( -a1 + b 2 ) 2  

4 a4 
+ 2 (bz - 1) I which a,gain by (16) is less than zero. Thus, (24) and hence $ is 

negatlve for all po defining the first coordina.te of a point in V,. 
Step I1 

Existence of cycles. First, note that the origin is the only fixed point of (15). The fixed points 
are the roots of a polynomial of order three. By conditions (a)  and (b)  it follows straight 
forward that (15) has only one real root (which corresponds to  the fixed point (0,O)). 

Since on the positively invaria.nt set I? h/l,,(B) > 0 (see Step I ) ,  the system (15) can be 
analyzed dropping the positive scalar Mz2(B),  this does not change in fact the phase portrait, 
see [Hofbauer a.nd Siglnund, 1988, pag. 921. The Jacobiari of the simplified system evaluated 
at the origin is 

Thus, by condition (b)  the fixed point is a source. Hence, I? is a compact positively invariant 
set containing a source. Since the origin is the only fixed point, by the Poincark-Bendixson 
theorem there exists a periodic orbit in I?. Since the differential equation is analytical, outside 
a. neighborhood of the fixed point also the a.ssociated Poincark mapping is analytical. Hence, 
there are only finitely many periodic orbits. By a counting argument it follows that one of 
them has to be asymptotically stable. 

Conditions A and B1 are trivia.11~ sa.tisfied on I?. Since Mz,(B) < 1 on I? also condition 
B2 holds.0 

Let us remark that the cla.ssical Liknard equation and Van der Pool equation can be 
obtained in (15) by choosing proper parameters. 

The model can be thought as an extension of the model analyzed in 
[Evans and Honkapohja., 1994131. To the scalar model in [Evans and Honkapohja, 1994bl we 
have added a second va.riable, yt, which can be interpreted as a sunspot driven by the agents' 
expectation for its future value and with the feature tha.t it a.ffects positively via its expec- 
ted va.lue the evolution of x, which in turns has a negative effect via its expectation on the 
evolution of yt. 

In the Dornbush overshooting model framework, [Dornbusch, 19761, analyzed.under boun- 
ded ra.tiona1ity in [Eva.ns and Honkapohja, 1994b, Section 5 1,  the variable x t  is the price 
level, the second variable yt can be interpreted as a sunspot about the health of the gover- 
nment finance, a sunspot which is driven by the expectation that the agents have about its 
future level, negatively a.ffected by the agents' expected price level and with a positive effect 
on the price level via its expected value. 

Figure 3 shows a simulation of the learning process with the parameters a l  = 1.2, a2  = 
0.12, a3 = 0.1, a4 = -3, bl = -1.5, b2 = 0.9, vt, wt are two uniformly distributed random 
~aria~bles  on the interval [-3,3] and the initial conditions are (Pot,, Plto, to) = (0,0,50).  (For 
technical reasons the plot was generated using the learning process till t = 3 10"nd then 
continued by the solution of the ODE). On the left there is a plot of a solution of the 
corresponding ODE starting close to  the fixed point (0,O). 



Figure 3: A simula.tion of learning in Example I11 and the corresponding ODE. 

3.4 ExampleIV 

The analysis can be extended to  stochastic nonlinear models of the type analyzed 
in [Evans and Honkapohja, 1995a, Evans a,nd Honkapohja, 1995131. Let us consider the class 
of nonlinear models 

Yt  = E t [ F ( ~ t + l ) ]  + vt 

where yt is a random vector of dimension n,  vt is a vector of bounded i.i.d random variables 
and F(.) is a nonlinear continuously differentiable function. With respect to  the analysis in 
[Evans and Honkapohja, 1995a, Evans and Honkapohja, 1995bI which presents only a scalar 
model, we have augmented the  dimension: in one dimensional models we cannot observe 
limit cycles or other complex dynamics as for example strange attractors. In what follows 
we concentrate our attention on steady state solutions. We introduce the notation 

where 8 E lRn. 
A Ra,tional Steady State solution takes the form 

yt = 8 + vt with 8 E lRn such that 8 = ~ ( 8 ) .  

Let us a,ssume that  agents believe in the following misspecified law of motion 

according to  [Evans and Honkapohja, 1995al the ROLS and the LMS updating rule are de- 
scribed by the following nonlinear stochastic difference equation 



This is again a stochastic process of the type studied in Section 2 and thus its limit 
behavior is described by the following system of differential equations 

and the results of Section 2 apply. Depending on the model and on the dimension of the 
vector of state variables a large variety of dynamics can emerge in (25). Depending on F ( . )  
and in particula,r on Y(.),  if the state vector is of dimension 2 then we can observe limit 
cycles, if the state vector is of dimension 3 then we can even observe chaotic dynamics. 

4 Conclusions 

In the literature, complex dynamics have been obtained in deterministic economic models 
assuming that agents have complete knowledge of the economy or assuming that they follow a 
naive behavior. In this pasper we have proved the existence of complex dynamics in stochastic 
linear models with forward looking expectations assuming that agents are rationally bounded; 
the models are not characterized per se by complex dynamics, agents learn to  believe in 
complex beliefs dynamics because they learn from the evolution of the economy and they 
believe in a. misspecified economic model. Complex dynamics concern agents' beliefs rather 
tha,n the state variables of the model a.nd are induced by bounded rationality learning. 

We have shown the rise of complex beliefs dynamics in some macroeconomic models. 
Specifically, we have shown that some open economy macroeconomics models, as well as 
overlapping generations models, are characterized by non perfect foresight complex dynamics. 

We think the result obtained in this paper offer new perspectives to  the analysis of 
complex dynamics in economics: it is not necessary t o  assume a deterministic environment 
to  obtain complex dynamics, also in a stochastic environment we can observe them; complex 
dynamics concern agents' beliefs rather than economic variables. 



A Bounded Rationality Learning in Linear Rational 
Expect at ions Models 

The class of models analyzed in this paper is the one of SRLS models, the models are linear 
in economic variables and in agents expectations and are characterized by linear REE; for 
non-RE agents beliefs, the law of motion of the economic model may be highly nonlinear in 
agents beliefs. Following [Marcet and Sargent, 1989b1, we describe the economic variables 
at time t by an n dimensional vector of random variables zt. We denote by two subvectors 
of zt the set of economic variables that agents are interested in, zit E lRnl, and the set of 
economic variables, zzt E lRn2, that  agents think are relevant to  predict the first subvector 
of variables. The vector zt can he written, without loss of generality, as follows 

where the superscript c expresses the complement with respect to  zt. As in 
[Marcet and Sa,rgent, 1989b1, we a.ssume tha.t the agents' perceived law of motion is line- 
a,r and is expressed as 

T 
Z l t  = B, Z2(t-1) + Wt (26) 

where Bt E lRnZxn' is the parameter matrix representing agents' beliefs and wt is a white 
noise component. The law of motion perceived by the agents in (26) causes the actual law 
of motion for the vector zt to be given in a general setting by 

0 T(Bt)T V(Bt )T 
It = [ Lit ] = [ ] . [ %-" ] + [ ] . ut 

"I t  A ( W T  -72( t -1)  B ( t q T  

where ut E lRn is a white noise vector. Given the economic model, zit, zzt and the operators 
T(.), A(.), B(-) ,  V(.) are defined. Assuming that the agents' perceivtd law of motion is given 
by (26), the instantaneous forecasting error is et = zit - z,',, where z:, is the expected value 
of zlt  according to (26). A REE is a fixed point for T(B):  B* such that T(B*) = B*. Note 
that the data generating process in (27) does not imply that zt is a stationary process. As 
in [Marcet and Sargent, 1989b1, we restrict our attention to the beliefs set D, for which the 
stochastic process is stationary. To take into account the case of the presence of constants 
in the perceived law of motion, the set D, is defined as the set of beliefs for which the above 
stochastic process, rewritten properly as zt = L(Bt)zt-l  + E(Bt)u t ,  is stationary, on this 
point see [Chang et al., 19951. 

The learning mechanisms considered in our analysis are ROLS learning and LMS learning. 
Let {at} be a positive, non-decreasing sequence of real numbers, with at + 1 as t --t oo. 

Define Bt+l and J i t + l  as 



If a; = 1 'di, then the ROLS algorithm is obtained, otherwise the Weighted ROLS algo- 
rithm is obtained. A projection facility is needed to  ensure almost sure convergence, see 
[Marcet and Sargent, 1989bl. Let D2 C Dl E Rn1~("2)', the algorithm generating beliefs 
becomes 

(&+I,  Rt+l)  = 
(&+I, &+I) if (&+I , Rt+l ) E Dl 

some value in D2 if (Dt+l,  R ~ + ~ ) $ D ~  

where the set D2 is closed and Dl is open and bounded so that if B E D, then (R, B)  E D l .  
The learning algorithm defined in (28)-(29) applied to  SRLS models has been studied 

by means of the Ljung's method, see [Ljung, 19771. Under some assumptions, the method 
associates with the learning scheme (28)-(29) an ordinary differential equation that almost 
surely mimics the beha.vior of (Bt+1, Rt+1) as t + oo: 

where M,, (B)  = limt,, E{z2tzz). The sets Dl and D2 are chosen such that trajectories of 
the differential equation in (30) with initial condition (ao, Ro) E D2 never leave the closed 
set D l .  

The fixed points of the differential equation in (30) correspond for the first n l  rows to the 
REE of the SRLS model in (27). Stability of the differential equa,tion a t  (B*, MZ2'(B*)) means 
that learning based on the ROLS algorithm converges almost s.urely to  the REE, thanks to  
the projection fa,cility. On the other side, instability means that ROLS learning does not 
converge to the REE? see [Marcet and Sargent, 1989bl. The stability of the system in (30) 
can be analyzed locally in a neighborhood of a fixed point by means of the following simpler 
system of differential equations 

dB 
- T ( B )  - B . 
d t (31) 

The Least Mean Squares algorithm is the simplest lea,rning mechanism developed in the ad- 
aptive control/signal processing literature, see [Widrow, 1971, Widrow and Stearns, 19851. 
The a,pplication of the LMS algorithm as a. lea,rning mechanism and the proofs of the re- 
sults reported below are provided in [Ba,rucci and Landi, 1995bl. The LMS algorithm is a 
procedure which updates the beliefs matrix Bt to  minimize the error variance function 

where E{.) is the expectation opera.tor and [(B) E RnIXn'. Assuming that  the error 
components are not correlated, the matrix function [(B) is diagonal, its i-th component 
([;(Pi) E R) is the expected square of the i-th component of the error forecasting vector E ,  

the minimiza.tion of [(B) corresponds t o  the minimization of the sum of the [;(Pi), i = 
1 , .  . . , nl .  Because of the a.bsence of correlation among errors, the LMS algorithm for the 



matrix B can be defined with respect to each component of zl and therefore to each column 
pi E R n 2  of B minimizing the i-th component of the function [ ( B ) .  

The LMS algorithm looks for a minimum point of the MSE function according to the 
steepest descent gradient procedure taking a t  time t the scalar as an estimate of [ ; (P i ) ,  
i = 1 , .  . . , nl. Therefore the LMS updating rule for the i-th column Ptli  of Bt is 

where qt+l is a decreasing function of t .  Let us notice that agents are not able to  compute the 
"true" gradient because they do not know the "true" 1a.w of motion of the mode1,i.e. T ( B ) ,  
they know only that their estimate enters linearly the error expression. For the analysis of 
the algorithm with an exa.ct computation of gra,dient see [Barucci and Landi, 1995al. The  
LMS algorithm for the SRLS model in (27)  implies the following updating rule' 

- 
P t t 1 . i  - P i  + 2  [ t - t 1  ( i t i )  - t i )  + 2 t l ~  ( t i )  . (33)  

As in [Ma.rcet and Sargent, 1989bI we ir~volte the projection facility, let us define the sets 
D2 c Dl c Rnz x n l .  The algorithm for generating beliefs Bt+l is 

if Bt+l E Dl 
some value in D2 if Bt+l6 ~1 

Given some regularity assumptions we have proved in [Barucci and Landi, 1995bl by apply- 
ing the Ljung theory that  the LMS updating rule can be analyzed in the limit by means of 
the following differential equation 

Let us remark that convergence to  a non REE occurs if there exists a B" E RnZ X n l  such that 
23" # T ( B O )  and Mzz(B") (T(B") -23")  = 0, that is M z Z ( B o )  is not a full rank matrix. Dropping 
the assumption of non correlation a.mong the forecasting error components the analysis can 
still be developed assuming that agents are interested in minimizing independently the nl 
error variances. 



B Conditions on the Stochastic Process 

A1 qt is a deterministic non-increasing sequence satisfying CEl qt = oo and Cr1  q,2 < m. 

A2 For any compact subset Q c D there are constants C1 and ql such that  V8 E Q and 
Vt, IH(8 ,x)J  I CI (1  + ( x J q ' ) .  

A3 For any compact subset Q C D the function H(8,  x )  satisfies for all 8,8' E Q and 
X I ,  x2, x E IRk the conditions 

( i )  IH(O,x1) - H(0,  x2)l 5 L1Ix1 - ~ 2 1 ,  

( i i )  IH(8,O) - H(Bt, O:I(  5 L216 - 6'1, 
( i i i )  laH(8,x) - aH(O1,x) < 

ax ax I - L2le -ell, 

for some consta.nts L1, L2. 

B1 wt is identically and independently distributed with finite absolute moments, 
i.e. E(Iwtl" < m for all q = 1 ,2 ,3 , .  . .  

B2 For any compact subset Q c D 

sup IG(8)I 5 M and sup ~F(B:IJ I q < 1, 
6 € Q  8€Q 

for some matrix norm 1 . 1, and F(B), G(8) satisfy Lipschitz conditions on Q. 
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