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Abstract

We consider a homotopy method for solving stochastic Nash equilibrium models. The

algorithm works by following, via a predictor-corrector method, the one-dimensional

manifold of the homotopy constructed to connect the systems of equations describing

the solution set of the scenario equilibrium model (no nonanticipativity constraints) and

the stochastic equilibrium model. The predictor and corrector phases of this homotopy

method require the usual solutions of large linear systems, a computationally expensive

task, which we render less di�cult through our use of Jacobi techniques designed to take

advantage of the problem's near separability across scenarios.

Key words: equilibriumprogramming, decomposition, homotopymethods, stochastic pro-
gramming
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A homotopy method for

equilibrium programming under

uncertainty

Charles H. Rosa
���

1 Introduction

We consider a class of equilibrium programming problems that incorporate a special form

of uncertainty. The special form of the problem, along with a potential solution technique,

has already been introduced in [Ros96]. In this paper, we will review the problem descrip-
tion, and then consider another solution methodology. The solution methodology will be
based on the powerful path-following idea implicit in homotopy methods [Dav53], [Eav72],
[EaS76], [GaG78], [GaZ79b], [GaZ79a], [GaZ79a], [GaZ81], [OrR70], [Sca67]. These meth-

ods can be used to globally solve smooth nonlinear systems of equations of considerable
size and complexity. We will �nd that our problem is a natural candidate for these meth-
ods because there is a homotopy that connects the solution sets of the separable scenario
equilibrium problems and the stochastic equilibrium problem. Furthermore, we will �nd
that we can take advantage of the \almost" separability of the scenario components of

the homotopy to follow the path (using tangential predictor steps) and stay within an ar-
bitrary tube around the path (using Newton corrector steps) in an e�cient manner that
uses Jacobi iterative techniques to more e�ciently solve the large linear systems (i.e.,
separably across scenarios).

The remainder of this paper will be organized as follows. In x2 we will discuss the
stochastic multistage equilibrium programming problem. In x3 we will review homotopy

methods and how they are used to solve systems of equations. Finally, in x4 we will
discuss how homotopy methods, and, in particular, the solution of the large linear systems
of equations, specialize and become easier when applied to our problem.

2 Problem statement

We consider the structure of multistage stochastic equilibrium programming problems.

�This research was supported in part by an appointment to the Global Change Distinguished Post-

doctoral Fellowship Program sponsored by the U.S. Department of Energy, O�ce of Health and Envi-

ronmental Research, and administered by the Oak Ridge Institute for Science and Education.
��The author is a postdoctoral fellow at Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL

60439, USA (rosa@dis.anl.gov).
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Let the set of all agents in the problem be denoted as 
 = f1; 2; : : : ; Ag, the time

parameter t be an element of f1; : : : ; Tg, and the set of all scenarios S = f1; : : : ; Ng. We

can then associate with each scenario path j the following objects from the ath agent's

decision problem: the decision subvector

xja = (xja(1); x
j
a(2); : : : ; x

j
a(T )) 2 IRq1a � � � � � IRqTa ;

the closed concave utility function uja(x
j
a; x

j

�a

) : IRq1a � � � � � IRqTa �
Q

b2
�a
(IRq1

b � � � � �

IRqT
b ) ! (�1;+1] where 
�a represents the set of all agents other than a, and the

probability pj . We set qa = q1a + : : :+ qTa , na = Nqa and n = n1 + : : :+ nA. To e�ciently

model the uncertainty in our problem, we �nd it useful to use the method described in

[RoW91]. In particular, the agent's entire decision vector xa = (x1a; : : : ; x
N
a ) 2 IRna must

satisfy the nonanticipativity constraint: for all t = 1; : : : ; T � 1 and for all pairs (i; j) of

scenarios indistinguishable through the �rst t time stages, one must have

xia(� )� xja(� ) = 0 for � = 1; : : : ; t: (2:1)

The set described by equation 2.1 is more e�ciently summarized as follows. Suppose that
for each � 2 f1; : : : ; Tg we denote as C = fC1(� ); : : : ; CM(�)(� )g the set of M(� ) sets that
partitions f1; : : : ; Ng into groups of scenarios that are as yet indistinguishable. Suppose

also that we impose an ordering on each of the member sets of C. Then equation 2.1 can
be rewritten as

xord(k;Cj(�))
a (� )� xord(k+1;Cj(�))

a (� ) = 0 (2:2)

for � = 1; : : : ; T; j = 1; : : : ;M(� ); k = 1; : : : ; card(Cj(� )) � 1, where ord(k;Cj(� )) repre-
sents the kth element of Cj(� ), and card(Cj(� )) is the size of Cj(� ). We now will denote
the set of all 3-tuples, (i; j; � ), for which there exists an equation 2.2 as U1. Thus, the
stochastic equilibrium programming problem can be formed as follows:

Find that set fx�1; x
�

2; : : : ; x
�

Ag 2 IRn where (2:3)

x�1 = arg max
x12L1

NX
j=1

pju
j
1(x

j
1; (x

j

�1

)�)

and L1 = f(x11; : : : ; x
N
1 )jx

i
1(� )� x

j
1(� ) = 0 for (i; j; � ) 2 Ug

...

x�A = arg max
xA2LA

NX
j=1

pju
j
A(x

j
A; (x

j

�A

)�)

and LA = f(x1A; : : : ; x
N
A )jx

i
A(� )� x

j
A(� ) = 0 for (i; j; � ) 2 U:g

To ensure that duality holds for this problem, we assume, in addition to the convex-

ity assumption made above, the appropriate constraint quali�cation that for each a 2

f1; : : : ; Ag, the set fdajda ? Lag is not empty.

1We assume that each agent faces the same structural uncertainty which makes U identical for all

agents.
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This notion of equilibrium is special from both an interpretative and structural per-

spective. It is special from a structural perspective because each scenario component of

each agent's problem depends only on decisions made in that scenario. This means that

there is the potential for separability across the scenarios. We will take advantage of this

in our solution procedure. Additionally, it is special from an interpretative perspective

because it models competitive behavior under uncertainty by assuming that the contribu-

tion to an agent's utility from a certain scenario is a function only of decisions from that

scenario. This means that agents, when thinking about a certain scenario's contribution

to their overall utility, will think only about the decisions that they and their opponents

are making in that scenario.

3 Homotopy Methods for Solving Systems of Equa-

tions

Homotopy methods, as �rst proposed by [Sca67] and [EaS76], and further developed by

[GaG78], [GaZ79b], [GaZ79a], and [GaZ79a], are powerful ways of determining solutions
to complex systems of equations. Assuming that we wish to �nd a solution x 2 D � Rn

to
F (x) = 0 (3:1)

that we know to exist, where F : Rn ! Rn, and D is compact, we might �rst solve an
easier system, also having a solution in D,

G(x) = 0 (3:2)

where G : Rn ! Rn. From these, we can construct the linear homotopy

H(x; t) = tF (x) + (1� t)G(x) (3:3)

where H : Rn+1 ! Rn, and then, given that the function H exhibits the appropriate
properties, follow the di�erentiable path of solutions of H(x; t) = 0 that leads from the

point where t = 0 (and G(x) = 0) to the point where t = 1 (and x is such that F (x) = 0).
The appropriate properties that H must have regard the rank of it's Jacobian at various
points of the set H�1 = f(x; t) 2 D � [0; 1]jH(x; t) = 0g. In particular, H�1 is composed

of a �nite number of disjoint continuously di�erentiable paths [Mil69] if:

� For all (x; t) 2 H�1, the Jacobian H
0

has rank n.

� For all x 2 fx 2 DjH(x; 0) = 0 or H(x; 1) = 0g, the matrix H
0

�(n+1) has rank n,

where H
0

�(n+1) is the Jacobian of H without the column corresponding to di�eren-
tiation with respect to t.

� H : Rn+1 ! Rn is a C2-map.
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These continuously di�erentiable paths may be loops in D � (0; 1)2, or may connect two

boundary points of D� [0; 1] (note that the path will not necessary connect a point with

t = 0 to a point with t = 1). Most importantly, though, these paths will never have

bifurcations and will never be in�nite in length. Thus, in principle, they can be followed

from one end to another, or, in the case of loops, from an arbitrary starting point back

to the same point.

We use this method to solve the system 3.1 by traversing the path that begins at

(xg; 0) (xg, a solution of 3.2), and ends at (xf ; 1) (xf , a solution to 3.1). We remark that

such a path is only guaranteed to exist if we assume that

(x; t) 2 H�1 ! x is not in @D; (3:4)

where @D is the boundary of D, and that xg is the unique solution of 3.2. These assump-

tions remove the possibility that the path leaving (xg; 0) might curl back and intersect

f(x; 0)jx 2 Dg, or that the path leaving (xg; 0) might intersect f(x; t)jx 2 @D; t < 1g.

The only possibility left is that the path must reach (xf ; 1).

We can traverse this path using a predictor-corrector continuation method. One vari-

ation on this idea is suggested by [AlG90]. To trace (x; t) 2 H�1 starting at (xg; 0) we

parameterize the curve according to arc length, �. We note that the exact curve we seek
to trace is described by the following system:

H(x(�); t(�)) = 0; (3:5)

(x(0); t(0)) = (xg; 0):

At any point, �, along the curve described by 3.5, the following related di�erential system:

H
0

x(x(�); t(�))
@x(�)

@�
+H

0

t(x(�); t(�))
@t(�)

@�
= 0: (3:6)

jj(
@x(�)

@�
;
@t(�)

@�
)jj = 1

det

8>><
>>:

H
0

@x(�)

@�
@t(�)

@�

9>>=
>>; > 0

provides the tangent, (@x(�)
@�

; @t(�)
@�

), to the curve. Thus, at any point along the curve, �, we

can calculate this tangent, move in its direction, and expect to stay close to the curve, at

least for a small step size, � . To insure that the move to (x
0

; t
0

) = (x(�); t(�))+� (@x(�)
@�

; @t(�)
@�

)
doesn't lead us too far from the curve we are seeking to follow, we follow-up our \predictor"

step in the direction of the tangent with a correcting sequence of Newton steps to bring
us back to a new point on the curve. The new point, (x̂; t̂), we �nd using the Newton

steps solves the following system of equations:

H(x̂; t̂) = 0; (3:7)

2There can be no points of tangency at (x; t) where H(x; t) = 0 and t = 1 or t = 0 because of our

assumption about the rank of H
0

�(n+1) at such points.
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(
x̂� x

0

t̂� t
0

)T (
@x(�)

@�
@t(�)

@�

)
= 0

and is, thus, on the curve, and, in addition, further along the curve by virtue of the

orthogonality requirement which ensures a positive inner product between the original

predictor step (
@x(�)

@�
;
@t(�)

@�
) and (x̂; t̂)� (x(�); t(�)). It should be noted that the system 3.7

may not have a solution if the path is highly nonlinear and � is too large. In this case, �

will have to be reduced. The above steps are combined into the following algorithm:

Algorithm 3.1.

Step 0: Select (x1; t1) such that G(x1) = 0 and t1 = 0. Choose �,�,�̂ . Set k = 1.

Step 1: Set �k = �̂ . Find (@xk
@�
; @tk
@�
) that solves 3.6 with � replaced everywhere by k.

Step 2: Set (x
0

k; t
0

k) = (xk; tk) + �k(
@xk
@�
; @tk
@�
).

Step 3: Find (x̂k; t̂k), via a sequence of Newton steps, that is a �-solution to 3.7:

Set i=0 and let (x̂i; t̂i) = (x
0

k; t
0

k).

Repeat
Find (x̂i+1; t̂i+1) such that

H(x̂i; t̂i) +H 0(x̂i; t̂i)((x̂i+1; t̂i+1)� (x̂i; t̂i)) = 0; (3:8)

(
x̂i+1 � x

0

k

t̂i+1 � t
0

k

)T (
@xk
@�
@tk
@�

)
= 0

until (x̂i+1; t̂i+1) solves 3.7 to within �3 or the method diverges.

If (x̂i+1; t̂i+1) is a �-solution of 3.7, (x̂k; t̂k) = (x̂i+1; t̂i+1)
If the Newton steps diverge, set �k = �k=3 and return to step 2.
Set (xk+1; tk+1) = (x̂k; t̂k).
If jjtk+1 � 1jj < �, done.
Otherwise, if tk+1 < 1, go to step 1.

Otherwise, if tk+1 > 1 and tk < 1, then apply Newton's method to 3.1 using xk+1 as a
starting point.

It is clear that the procedures that make this a potentially expensive algorithm, es-

pecially in the case of large systems, are the solution of system 3.6 and the repeated

solution of the Newton system 3.8. We will see that our problem possesses an \almost
separable across scenarios" structure that will allow us to intelligently solve these systems

of equations at a reasonable cost.

3where the error of the solution is measured as the norm of system 3.7 evaluated at (x̂i+1; t̂i+1).
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4 A Homotopy Solution Method for Stochastic Equi-

librium Problems

4.1 Homotopy Formulation

We wish to solve problem 2.3 by writing out the following system of equations that

describes the solution set of the problem4:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

p1@x11u
1
1(x

1
1; x

1

�1

)�B
1;1
1 y

1;1
1 �B

1;2
1 y

1;2
1

...

p1@x1
A
u1A(x

1
A; x

1

�A

)�B
1;1
A y

1;1
A �B

1;2
A y

1;2
A

...

pN@xN
1
uN1 (x

N
1 ; x

N

�1

)�B
N;1
1 y

N;1
1 �B

N;2
1 y

N;2
1

...

pN@xN
A
uNA (x

N
A ; x

N

�A

)�B
N;1
A y

N;1
A �B

N;2
A y

N;2
A

xi1(� )� x
j
1(� ) for (i; j; � ) 2 U

...

xiA(� )� x
j
A(� ) for (i; j; � ) 2 U

yi;11 (� ) + yj;21 (� ) for (i; j; � ) 2 U
...

y
i;1
A (� ) + y

j;2
A (� ) for (i; j; � ) 2 U

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

= 0 (4:1)

where Bi;1
a and Bi;2

a are qa� qa diagonal matrices whose diagonal entries corresponding to
the dual variables yi;1a (� ) and yi;2a (� ) are 1 if there exists a j such that (i; j; � ) 2 U and
(j; i; � ) 2 U , respectively, and 0 otherwise. We refer to the system of equations in 4.1 as
F (x) and it's size is m �m where m = (n + 2 � (card(U))) and card(U) represents the

cardinality of set U . We assume that the functions fu11(�); : : : ; u
N
1 (�); : : : ; u

1
A(�); : : : ; u

N
A (�)g

have a structure appropriate to make the nonlinear operator 4.1 uniformly monotone, and
it's Jacobian diagonally dominant. These properties will make possible the decomposition
strategy that we'll use to solve the large linear systems associated with algorithm 3.1.
From a modeling perspective, we note that we actually include in our formulation of the

problem more dual variables, yia(� ), than the one per nonanticipativity constraint that is

required. Speci�cally, we include two per constraint. To model things properly, then, we
insist that the sum of the two dual variables be equal to zero so that the dual variables
have the same absolute values but opposite signs, as is correct. These redundant dual

variables give the system more exibility when we apply our solution methodology. Since

we desire to �nd a solution to this system via the Homotopy methodology reviewed in
section x3, we must construct another system, G(x), with a solution easier to �nd than

F (x). We choose for G(x) the system of equations describing the solution set of our
stochastic equilibrium problem with the nonanticipativity requirement relaxed. That is,

Find that set fx�1; x
�

2; : : : ; x
�

Ag 2 IRn where (4:2)

4We can do this because of the constraint quali�cation and convexity assumption made in x2.
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x�1 = arg max
x1

NX
j=1

pju
j
1(x

j
1; (x

j

�1

)�)

...

x�A = arg max
xA

NX
j=1

pju
j
A(x

j
A; (x

j

�A

)�):

It has the associated system of equations:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

p1@x11u
1
1(x

1
1; x

1

�1

)�B
1;1
1 y

1;1
1 �B

1;2
1 y

1;2
1

...

p1@x1
A
u1A(x

1
A; x

1

�A

)�B
1;1
A y

1;1
A �B

1;2
A y

1;2
A

...

pN@xN1 u
N
1 (x

N
1 ; x

N

�1

)�B
N;1
1 y

N;1
1 �B

N;2
1 y

N;2
1

...

pN@xN
A
uNA (x

N
A ; x

N

�A

)�B
N;1
A y

N;1
A �B

N;2
A y

N;2
A

y
i;1
1 (� ) for (i; j; � ) 2 U

...

yi;1A (� ) for (i; j; � ) 2 U

y
j;2
1 (� ) for (i; j; � ) 2 U

...

y
j;2
A (� ) for (i; j; � ) 2 U

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

= 0: (4:3)

This system of equations5 is much easier to solve because it is completely separable across
the scenarios. That is, each of the N scenario equilibrium problems can be solved sepa-

rately, and, hence, with much less e�ort than for the original system.
Since we assume that both systems, F and G, have solutions, and bounded solutions

at that, we can certainly perform all our computation within some arbitrary compact set
D that contains these points. We also will assume that the functions of our problem have
a suitable degree of di�erentiability and regularity so that all the points mentioned in
[Mil69] that are necessary for paths to be continuously di�erentiable are present. Finally,

we note that the path can never turn back on itself6, and that the strong \no boundaries
assumption" that ensures our path will never hit a boundary where t < 1 holds7. Thus,

5System 4.3 can be solved without the variables,

(y
1;1
1 ; y

1;2
1 ; : : : ; y

1;1
A ; y

1;2
A ; : : : ; y

N;1
1 ; y

N;2
1 ; : : : ; y

N;1
A ; y

N;2
A ). They are included, though, to give this system

and system 4.1 the same dimension.
6Uniform monotonicity of the operator in equation 4.1 implies that the Jacobian of this system is

invertible, which implies that the last component of the solution, (
@x(�)

@�
;
@t(�)

@�
), of equation 3.6 is always

nonzero. Since it starts out positive, it can never become negative.
7Uniform monotonicity assures us that the \no boundaries assumption" is true for a large enough

compact set D. Why? Because monotonicity assures us that the Jacobian of operator 4.1 is invertible

and this means that
@x(�)

@�
is bounded.
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we have all the components necessary to construct the homotopy of equation 3.3:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

p1@x11u
1
1(x

1
1; x

1

�1

)�B
1;1
1 y

1;1
1 �B

1;2
1 y

1;2
1

...

p1@x1
A
u1A(x

1
A; x

1

�A

)�B
1;1
A y

1;1
A �B

1;2
A y

1;2
A

...

pN@xN1
uN1 (x

N
1 ; x

N

�1

)�B
N;1
1 y

N;1
1 �B

N;2
1 y

N;2
1

...

pN@xN
A
uNA (x

N
A ; x

N

�A

)�B
N;1
A y

N;1
A �B

N;2
A y

N;2
A

txi1(� )� tx
j
1(� ) + (1 � t)yi;11 (� ) for (i; j; � ) 2 U

...

txiA(� )� tx
j
A(� ) + (1 � t)y

i;1
A (� ) for (i; j; � ) 2 U

ty
i;1
1 (� ) + y

j;2
1 (� ) for (i; j; � ) 2 U

...

ty
i;1
A (� ) + y

j;2
A (� ) for (i; j; � ) 2 U

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

= 0: (4:4)

and solve it via algorithm 3.1. The issue that still needs to be dealt with, though, regards
the manner in which the systems 3.6 and 3.8 should be solved.

4.2 Linear Equation Solving

The success of algorithm 3.1 depends on the ease with which the two linear systems,
3.6 and 3.8, can be solved. The solutions of these systems are important because they
determine, respectively, the direction of search, and the route back to the safety of the
manifold we follow to the solution. Both systems can most easily be solved using an
iterative Jacobi technique that, �rst �xes all but the �rst scenario's variables and �nds
that con�guration of the �rst scenario's variables that solves a subset of the equations,
then �xes all but the second scenario's variables and solves a di�erent subset of the
equations, and so on, repeating until the entire system of equations is solved. Of course,
since this is a Jacobi iterative technique, each of these steps can be performed in parallel
because all updates are based on \old" data. The reason why such a technique can be
used e�ectively is best understood if we look more closely at the structure of the Jacobian
associated with 4.4. Consider an example problem in which 3 agents compete against
one another over a horizon lasting 3 periods and faced with uncertainty described by 3
scenarios. We will assume that the tree appears as in �gure 4.1 when written in explicit
nonanticipative form. This tree gives us U = f(1; 2; 1); (2; 3; 1); (1; 2; 2)g which means that
all decisions made by each of the three agents in the �rst period must be identical across
the three scenarios. In the second period only the decisions made in the �rst and second
scenarios need be identical, while in the last period all scenario decisions are independent
and potentially di�erent. Let's �rst consider an example of the m�m+1 linear equation
involving the Jacobian that we need to solve in order to compute the tangent. If we
order the columns, �rst according to the scenario, and then, within scenario groupings,
according to the period, we �nd that our linear system has the following structure pictured

8



1 2 3

1

2

3

Figure 4.1: 3 agent, 3 period, 3 scenario tree

in equation 4.58

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

c
1
1

� � �I

� c2
1

� �I

� � c3
1

c
1
2

� � �I �I

� c2
2

� �I

� � c3
2

c1
3

� � �I

� c2
3

�

� � c3
3

T �T I � T �

T �T I � T �

T �T I � T �

T I �

T I �

T I �

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

x1a(1)

x1a(2)

x
1
a(3)

x
2
a(1)

x2a(2)

x2a(3)

x3a(1)

x3a(2)

x3a(3)

y
1;1
a (1)

y
2;2
a (1)

y
2;1
a (1)

y
3;2
a (1)

y
1;1
a (2)

y
2;2
a (2)

t

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

= 0:

(4:5)

This structure is common to all stochastic equilibrium problems of the type de�ned in

section x2. Scenario blocks of columns and constraints describing separable multi-agent
equilibrium problems, connected to ajacent blocks via nonanticipativity constraints and
their associated duals. This structure suggests some kind of decomposition procedure
for �nding the element in the kernel of the Jacobian, J . For example, upon squaring
the system out with an (m + 1)st row, eT , \close" to the null space of J (to assure a

unique solution to the rank m system), a series of Jacobi iterations might be used. Such
a procedure is assured of converging by virtue of our assumption that the problem is
uniformly monotone (which implies that the Jacobian matrix is positive de�nite [OrR70],
which along with the assumed diagonal dominance, makes any associated linear system
amenable to such a procedure [GoL89].) The actual element of the Null space that we
seek would then be [AlG90]:

(
@xk

@�
;
@tk

@�
) =

e� x

jje� xjj
(4:6)

where

Jx = Je

eTx = 0:

To actually implement a Jacobi procedure, though, we need to decide how to locate such

an (m + 1)st row, eT , and how to order the Jacobi procedure. The simplest choice of

8Let c
j
i = pi@xi

a
(j)u

i
a(�) and T be the diagonal matrix I � t. Note that � means a non-zero entry.
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eT is the previous iterations tangent (as the system and it's null space will not have

changed that much). The order of the Jacobi procedure should be along scenario lines as

suggested earlier. In particular, for each i = 1; : : : ; N , where N is the number of scenarios,

the square subsystem made up of the rows containing the ith scenario equilibrium block,

and the rows corresponding to the ith scenario duals should be solved in terms of the

ith scenario's variables and duals, holding all other scenario variables and duals constant.

Finally, the last row of the system should be solved in terms of t. This operation is

possible because the last row (assuming it is close enough to the null space of J) will

always contain a nonzero entry in the column associated with t because of the assumed

uniformly monotone structure of the problem9. This same property assures us that each

of the separable scenario operations in the Jacobi procedure are possible as well. Finally,

each iteration of the correcting step involves the solution of an (m+ 1)� (m+1) system

of equations that can be handled in the same fashion as that described above.

The natural separability of scenarios in our stochastic equilibrium problem, together

with the assumption we've made regarding it's structure (uniform monotonicity and di-

agonal dominance), ensure that a solution to the problem can be located by following the

smooth path that lies between the solution set of the scenario problem and the full blown

stochastic model with its attendant nonanticipativity constraints. Best of all, the natural
separability across scenarios can be harnassed to ease the work involved in following this

path.
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