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In the present paper the problem of reconstruction of the right-hand side of an advection- 
diffusion equation is considered. This type of equation is used in many models of con- 
ta,mination transport in domains such as air, groundwater and surface water. Using the 
method of conjugate equations, one can reduce the problem to an integral equation of 
the first kind. In the paper a discrete analog of this integral equation is constructed on 
the basis of discretization of the initial advection-diffusion equation and the usage of the 
conjugate equation technique. For solving the obtained discrete analog of the integral 
equation Tikhonov's method of regularization is applied. The parameter of regularization 
is chosen in accordance with the residual principle. Series of numerical calculations show 
efficiency of the method. 

The paper continues research on inverse problems for distributed systems started at 
IIASA's project on Dynamic Systems in 1994. 
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Introduction 

Groundwater plays an important role as a major source of high-quality drinking water. 
However, contamination both from agricultural activities and waste disposals often en- 
danger groundwater. The management and remediation of groundwater contamination 
problems are among the more complex tasks in environmental management and technol- 
ogy. To evaluate pollution problems many mathematical models differing in complexity 
and details have been developed. More detailed models describe groundwater flow and 
contamination transport. In this paper we consider a mathematical model describing con- 
tamination transport in an unconfined aquifer under assumption that water table level 
and velocities of the flow are known. One of the problems of interest for groundwater 
management and remediation is source reconstruction. In this paper the possibility of 
satisfactory reconstruction of the source intensity through observations is shown. This 
problem is an ill-posed problem; for its solving a special mathematical method, based on 
the method of conjugate equations and Tikhonov's regularization technique, is suggested. 

1 Description of the Mathematical Model 

A mathematical model describing a contamination process in a two-dimensional (2D) un- 
confined aquifer is represented by a nonstationary partial differential equation of parabolic 

ty pe 

= div( t .  ( H  - hb) D - grad C )  + Qc,  

where 
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t - - time, 

x, Y = Cartesian coordinates, 
V = (v,, vy) = components of depth-averaged horizontal fluid velocities 

in x, y directions, 
H = H(x ,  y ,  t)  = aquifer height, 
C = C(x,  y ,  t )  = concentration of specific constituent under consideration, 
D = D(x,  y ,  t )  = tensor of hydrodynamic dispersion, 
c = ~ ( x ,  y ,  t )  = kinematic porosity, 
6 = constl = adsorption coefficient, 
(I = const2 = concentration decay rate, 
O = O(x, y ,  t )  = c + (1 - c) 8, specific retardation factor. 

The right-hand side Qc = Qc(x, y, t )  represents a source of contamination. 

The 2D convection-dispersion mass transport equation ( 1.1) allows one to analyze 
a situation after an event on the basis of measured data. It is given in a general form 
and reflects the effects of convection, dispersion, adsorption, decay, as well as sources and 
sinks. A specification of boundary and initial conditions is determined by the nature of a 
problem under investigation. 

In the present paper for equation ( 1.1) a problem of contaminant source reconstruction 
is considered. Methodologically the problem belongs to the category of inverse problems 
for dynamical systems. The problem consists in finding a time-varying intensity of a 
source on the basis of concentration measurements in a certain domain. In general, a 
solution of the problem is not a unique one (see, e.g., Osipov, 1989). However in some 
particular cases, for example if 

where w(x, y )  is a given function, the uniqueness of the time component z( t)  can be 
obtained. 

In this paper we demonstrate a satisfactory reconstruction of source's time component 
z( t )  in a model situation. The paper follows Kryazhimskii, Maksimov, and Samarskaia 
(1995). 

2 Problem Formulation 

Let equation ( 1.1) be specified as a 2D linear partial differential equation of parabolic 
type with constant coefficients in a rectangular domain G 

here 

functions w(x, y )  and z(t) are piece-wise smooth. On the boundary I? of the domain G 
we fix the boundary condition 

C ( ~ , X , Y )  Ir = 0. (2.2) 



The initial condition for equation ( 2.1) is 

Let a non-negative piece-wise continuous function p(z,  y) on G define the domain of 
contaminant concentration observations 

Assume that observation results are known and given by function 

In practice function u(t)  is defined with a known accuracy. The problem is to reconstruct 
z ( t )  on the basis of u(t)  and all other parameters of equation ( 2.1). This problem 
is ill-posed, therefore one needs using special stable methods to  find an approximate 
solution. Let us give a relationship between the time coinponent z( t)  of the source Qc 
and the results of observations u(t).  For this purpose following Kryazhimskii and Osipov, 
1993, Kryazhimskii, Maksimov, and Samarskaia, 1995 we apply the method of conjugate 
problem (Lions, 1971, Marchuk, 1992). 

Consider the conjugate equation 

in G with the following boundary and initial conditions: 

Let C(T, x, y) and g ( ~ ,  x, y) be respectively the values of the solutions C and g of prob- 
lems ( 2.1) - ( 2.3) and ( 2.6) - ( 2.8) at time T in point (x, y). The integration of 
C(T, x, y) g ( ~ ,  x, y) over [0, t] x G leads to the linear Volterra equation 

where kernel K and the right-hand side u have the following form 

(see the initial condition ( 2.3)). 
The integral equation ( 2.8) determines an ill-posed problem and therefore requires 

regularization. Among the practically used algorithms of regularization there are general 
and special ones. General algorithms are usually based on finding an extremal point of 
a-parametrical Tikhonov's functional under an appropriate correspondance between the 
parameter of regularization and the level of data errors. Special algorithms of regulariza- 
tion take into account the main features of concrete problems and therefore can be more 
efficient in comparison with general ones. 

Without specifying conditions for the existence, uniqueness and smoothness of solu- 
tions of the equations ( 1.1) and ( 2.6) (these issues are studied in Tikhonov and Samarskii, 
1963, Lions, 1971, Marchuk, 1992) we shall consider a finite-difference approximation of 
the initial problem and build a discrete analogue of the integral equation ( 2.8). 



3 Implicit Finite-Difference Scheme 

To solve equations ( 2.1) and ( 2.6) numerically introduce a time grid w, and a space grid 
wh in the domain G :  

wt = {tn = n A t ,  n = 0 , 1 , 2 ,  ..., N t ,  At = tO/N,}, 

wh = { ( x i , y j )  E G ,  2; = i A x ,  yj = j a y ,  

A x = l x / N x ,  A y = l , / N , ,  i = 0 , 1 , 2  ,..., N,, j = 0 , 1 , 2  ,..., N,}. 

Assume the general abbreviated notation 

Let vx  2 0 ,  v ,  2 0. For equation ( 2.1) we use the implicit finite-difference scheme 

where z,  = z ( t n ) ,  w;,j = w ( x i ,  y j ) ,  and assume the homogeneous boundary conditions of 
the first kind 

C0,j = Cl, j  = C N , , ~  = C ~ , N ,  = 0 (3.3) 

and the homogeneous initial condition 

To solve the conjugate equation ( 2.6) we use the implicit finite-difference scheme 

with the homogeneous boundary conditions of first kind 

and the homogeneous initial condition 



4 Main Difference Equality 

The fully implicite scheme described in section 4 allows to obtain a dicrete analogue of 
the integral equation ( 2.8) for the difference analogue ( 3.5) of the conjugate problem 
( 2.6). 

Let us consider a finite-difference approximation for equation ( 2.5): 

where the summation is performed over all grid cells in the domain G. Assume that 
values of un are known. Find a relationship between source's components, zn, and results 
of observations, un, in the same way as it was done in the continuous case. 

Let 0 5 k 5 n. Taking the sum of the product c::'~:;' (see general notation ( 3.1)) 
over the grid w, x wh, we obtain the following discrete equality: 

C C zk 9:;' wi,j at = C (CCi p i ,  - g:j Ctj). 

Ta.king into account initial condition ( 2.3) (C& = 0) transform this equation into: 

where 

We treat equation ( 4.3) as a system of linear equations to determine the unknown 
vector zn. This system is a discrete analogue of the integral equation ( 2.8). In general it 
is ill-posed. A traditional method to solve such systems is Tikhonov's regularization. This 
technique prescribes finding the extremum of an a-parametrized smoothing functional. 
For the system of equations ( 4.3) this functional has the form 

where 
N ,  

is a stabilizing functional. 
A choice of a regularization parameter a is often based on the principle of residual 

(see Morozov, 1968) that defines a to be a solution of the equation 

where 
US = (US,O, uS,l, -.., US,N,-I) 

is a vector obtained from observations whose average square error is estimated by 6: 

It is shown (Morozov, 1968) that this algorithm of approximate solution is a regular- 
ization technique, i.e. it ensures the convergence of corresponding approximations to the 
emct solution as S -t 0. 



5 The Results of Testing 

For testing the algorithm, a series of calculations with different values of the regularization 
pa.rameter a, different accuracies of observation results u(t ) , and different numbers of time 
steps Nt have been performed. Different types of source's time component z( t)  have been 
tested. Here we present some results of simulation and compare them with the exact 
solutions. The first series of simulations has been performed for the source function 
z(t)  = s i~z ( t )  with a 5% error in u. An error was introduced as a sign-changing addition 
to function u with absolute value 5% of u. The number of time steps is Nt = 32. 

Figure 1 shows the results of calculations for a = 0. The exact solution is shown by 
asterisks * and the results of reconstruction by the dashed line --. As one can see on 
the Figure 1 there is no sufficient reconstruction. 

Figures 2-5 show the results of calculations for the values of a : lo-', lo-', lop6 
respectively. The best results are obtained for a = 

In Table 1 the square of the norm of the difference between exact and reconstructed 
solutions, the square of the norm of the difference between exact and approximated right- 
ha.nd sides and the square of the norm of the residual for equation ( 4.3) on the recon- 
structed solution are given for different values of a. The best results are obtained for the 
residual norm slightly greater than the error in the right-hand side. Notice that on the 
last times steps the reconstruction is not good enough. This fact is, probably, caused by 
the contamination propagation delay. 

Figure 6 shows how the kernel of equation ( 4.3) depends on tirne. The delay in 
the contaminant propagation is approximately equal to the period of time, during which 
the kernel reaches its maximum value. Therefore the reconstruction of the source is not 
accurate if this period exceeds the period of observation. 

Figures 7-9 show the results of calculations for the same parameters, with a 1% error 
in the right-hand side u. The error has been modeled as a sign-changing addition to the 
right-hand side. 

Table 2 shows the same values as Table 1. As it was expected the accuracy of 
reconstruction increases, but a time period, mentioned in the previous paragraph, still 
exists. 

Figures 10-14 and Table 3 show the results of calculations for the same parameters, 
with the number of time steps Nt = 64. Increasing a number of time steps does not 
strongly improve the result of reconstruction and the number of unsatisfactorily recon- 
structed points at the end of the time period. 

Figures 15-18 and Table 4 show the results of simulations for the discontinuous 
source function 

1 if 0 5 t < 0.4, 
2 if 0.4 5 t < 0.625, 
1 if t 2 0.625. 

Notice that in the discontinuity region the reconstructed solution is spreaded and 
the width of spreading is approximately equal to the time delay of the contamination 
propagation. 

Figures 19-22 and Table 5 show the results of simulations for another discontinuous 



source function: 

111 this case satisfactory reconstruction is also obtained. 

Table 1 (A  = 0.05, Nt = 32, z ( t )  = s in ( t ) ) .  

Table 2 (6 = 0.01, Nt = 32, z ( t )  = s in ( t ) ) .  

Table 3 ( A  = 0.01, N, = 64 z ( t )  = s in ( t ) ) .  



Table 4 (6 = 0.01, A$ = 64) 

Table 5 (6 = 0.01, ATt = 64) 
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