
Working Paper 
Metric Entropy and Nonasymptotic 

Confidence Bands in Stochastic 
Programming 

Georg Ch. PfEug 

WP-96-034 
April 1996 

FflIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

b d :  Telephone: +43 2236 807 Fax: +43 2236 71313 n E-Mail: info@iiasa.ac.at 



Metric Entropy and Nonasymptotic 
Confidence Bands in Stochastic 

Programming 

Georg Ch. PfEug 

WP-96-034 
April 1996 

Mlorking Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute, its National Member 
Organizations, or other organizations supporting the work. 

QIllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

~ M M  Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at 



Abstract 

Talagrand has demonstrated in his key paper, how the metric entropy of a class of 
functions relates to uniform bounds for the law of large numbers. This paper shows 
how to calcula.te the metric entropy of classes of functions which appear in stochastic 
optimizatioil problems. As a consequence of these results, we derive via variational 
inequalities confidence bands for the solutions, which are valid for any sample size. 
In particular, the linear recourse problem is considered. 



1 Introduction 

C,onsider a stochastic program of the expectation type: 

where c(x) denote the fixed costs and f (x, w) the uncertain costs. The feasible set 
A' is a subset of IRd. 

For solving (1)' one uses typically the empirical approximation by sampling an i.i.d. 
sample s = {si):='=, from P and considering 

where P7,(s) is the empirical measure 

The na,tura.l cluestion of measuring the approximation quality of the emprical approx- 

(a.nd its argmin) to the "true" function 

(and its argmin) has been addressed by many authors. Almost sure epi-convergence 
and uniform convergence of Fn to F was proved under various assumptions (see [I], 
[6]). In [5], Pflug proved the convergence in distribution of 

to a Gaussian process in regular situations. Here x* is the unique minimizer of 
F. Results of this type lead to confidence results of the following type: Let X, a 
ininimizer of the empirical program (2). Then 

lim P{fillXn - x*II > M} 5 exp(-A'2 M ~ ) ,  
n+m (4) 

where IC1 and IC2 are constants depending on the limiting normal distribution. The 
pra,ctic.al use of (4) is very limited, since it is valid only for large (and often extremely 
large) n. 

The aim of this paper is to discuss nonasymptotic confidence bounds which are valid 
for all n and therefore applicable for any sample size. The main keys for deriving 
such bounds are Talagrand's inequality and variational inequalities. 



Talgrancl's inequality gives a bound for 

and also for 

By a variational inequality, a bound for 

can be derived which is true for all n.  

The paper is organized as follows: In the section 2, we will show how (7) can be 
inferred from (5) or (6). Section 3 discusses the key inequality due to Talagrand. In 
section 4, we apply the result to the linear recourse problem where 

Finally, a conlparison to large deviation results is made in section 5. 

2 Variational inequalities and confidence bounds 

Let F be the 1.s.c. objective function and F some approximant of F .  Variational 
inequalities deal with the question how the approximation error between F and F 
relates to the approximation error between argmin (F) and argmin ( F ) .  

Suppose that F fulfills the following growth condition 

F ( x )  2 inf F ( y )  + c . [dist(x, argmin F)IY.  
Y 

Lemma 1. 

sup I F ( x )  - p ( x )  1 < 
x 

then for each minimizer Z* of F 

dist(Z*, argmin F) < [$I . 

If lio~vever for all R', y 



then for each nlinimizer 5' of F 

dist(2*, argmin F) 5 [:I I"'-" 

(see Shapiro (1994)). 

Proof. Let s* argmin F such that 115' - x*ll = dist(?*, argmin F). Then, if (9) 
is fulfilled, 

whence 

If hornlever (11) is true, then 

whence 

\'ariatio~lal ineclualities build the bridge between confidence bounds for the objective 
functioil and confidence bounds for the minimizers: Suppose we may establish that 
the enlpirical approximation F, of the true ob jective function I: satisfies 

for all n. If F(.I:) fulfills the growth condition (8) with y = 2 and if it has a unique 
ininimizer x*, then for each X;  E argmin Fn we have by (10) 

for all 12. For establishing the sharper bound, recall the definition of L1 -differentiability. 
T11e nlapping s H f (x, w) is called L1-differentiable, if there is a vector of functions 
V, f (x, w) such that 

lim J I ~ ( Y , w )  - f ( x , w )  - ( Y  - x ) ~ v ~ ~ ( ~ , w )  I ~ ( d w )  = 0. (17) 
ytz Ilv - xll 

If '7, f (x, w) is the L1-derivative of f (x, w) ,  then F ( x )  is differentiable and 



Set V,F, ( : c )  = Cr=, V, f (x, s;); compare (3) .  If X is convex, then 

Therefore a bound of the form 

implies the sharper bound 

3 Metric entropy 

The notion of metric entropy plays an important role in topology, functional analysis 
and probability: 

Definition 1. A set A c lRd is said to be of covering type (v ,  V), if for every c > 0 
one can find at most N,  = [(V/c)"] balls S1, S2, . . . , SN, , each with diameter c, which 
cover A, i.e. A C ~2~ S;. 

Example. The unit cube in lRd is of covering type (d, 2 d ) .  

Defiilitioil 2. Let (0, A, P) be a probability space. A familily F of L2(P)-functions 
is called of covering type (v,  V), if for every E > 0 there are at most N, = ~(V/E)" ]  
pa.irs of functions (gl, h2),  . . . , (gN,, hN,) with the properties 

( i )  gi(w) 5 h;(w) for I I i < N,; 

(ii) J(hi(w) - g ; ( ~ ) ) 2  P(dw) I c2; 

(iii) For each f E F there is a index i E (1,.  . . , N,} such that 

Property ( i i i )  illay be expressed in the following way: 

F C ~21  [gi hi] 

where [g;, hi] denotes the interval of functions lying between g; and hi. 

The covering type is essential for uniform confidence bands as was demonstra,ted by 
Talagrand (1994): 



Theorem 1. Let If (U]:I~ 5 Co for all f E F. Suppose that F is countable and of 
covering type ( v ,  V ) .  Then 

where I<(.) is a universal function. 

The assumptioil that F is countable is not crucial, it only ensures the measurability 
of the supremum. 

In our applications, the class F is is a parametric family of functions depending 
slllootllly on a parameter z E X C IRk 

Iiltroduce the following rather weak assumption: 

Assulllptioll A l .  

(i)  x e f (n., w) is lower semicontinuous for every w; 

( i i )  n. e J f ( n . ,  w) P(dw) is continuous. 

This assumptioll guarantees that for each closed ball B in lRd w e SUPxEB f (x,  W )  

is measurable. This can be seen as follows: Let Qd be the set of rationals in R ~ .  By 
Lemma 6 of the appendix, we may represent f as the monotone limit of a sequence 
(f(") of coiltinuous functions; f (x,  w) =f limk f ( k ) ( z , ~ ) .  Obviously, for each I; ,  the 
function 

w e s u p f ( " ( z , w ) =  sup f(k)(x,w) 
xEB z,BnQd 

is 1nea.surahle. By Lemma 7 of the Appendix, 

which shows that the latter functions is also measurable. 

Lemma 2. Suppose that X is the closure of X n Qd. Under assumption A l ,  the 
function s ++ sup,,, I J f (x,  W) Pn (s)  (dw) - J f (x,  w) P(dw) 1 is measurable. Thus 
the supremum in (31) may be taken over the uncountable set X. 

Proof. By continuity, 



and it is clear that this function is measurable. Since 

= max(sup [ f (k)  (2, W )  Pn (s)(dw) - f (x ,  W )  P(dw)]+ , 
x EX J J 

inf - [ f '"'(x, w) Pn(s)(dw) - f (x,  w) P(dw)]- ) 
zEX J J 

an application of Lemma 4 of the Appendix implies that 

= l imsup 1 J f ( k ) ( ~ ,  w) Pn(s)(dw) - J f ( k ) ( ~ ,  W )  P(dw)l 
xEX 

is the limit of illeasurable functions and hence measurable. 

The aim of this pa.per is to derive results about covering types of interesting classes 
of functions 

.Fx = {f(x,w) : x E X). 

In particular, we will relate the covering type of Fx to the covering type of X. In 
view of the sharper bound (19) we will also consider the class of all L1-derivatives of 
f~ulctions fronl .Fx 

.F," = {V,f(x,w) : x E X). 

Definition 3. For a ball B in IRd, define the diameter of { f (x, .); n: E B) as 

2 

i m 2 { f ( x ) ; x  E B = J ( sup f (y ,w) -  inf f (y,w))  P(dw). 
YEB YEB 

Lemilla 3. Suppose that for each ball B in IRd the following inequality holds 

diam2{ f (x ,  a ) ;  x E B) 5 ~ [ d i a r n ( ~ ) ] ~ .  

If X is of covering type (v, V),  then .Fx is of covering type (v/P, VPC). 

Proof. Let r = C We may cover X by balls B1, B2, .  . . BNc each of diameter 7 ,  

where N, = 1 (:)" J . The intervals [infxEB, f (x,  .),  sup,,^, f (x,  - ) ]  cover .Fx and have 

v c ' I P  "lP each diameter not more than r. Since N ,  = 1 (:) " J = ( - ; iTB)u J = (v) J the 
Lemma follows. 

Iiltroduce the syml>ol 



for the variation of f (., w) within S. If x H f (x, w) is Lipschitz continuous with ' "I" -f y7w'1 ,  then trivially Lipschitz constant Ls(  f (., w) ) :=  supz,yE~;z+y I ( Ild-Yl\ 
as(f(-, w)) r d i a m ( s ) ~ ~ ( f ( - ,  w)). (22) 

(4 

cliam2{ f (x, - )  : x E S) < diamZ(S) / L:( f (., w)) P(dw). 

(ii) For a finite number of random functions f i (x ,  w), . . . , fK(x,  w) 

rliam2{max fk(x, a )  : x E S} 5 diam2(s)  / mpx L:( fk( . ,  w)) P(dw). 
k 

Proof. (i) follows from (22). For the proof of (ii) notice that 

In order to show (23) suppose that ds(maxk fk(x))  = fi(x*) - fj(y*). Then 

a s ( m p x f r ( ~ ) )  = fi(x*) - fj(y*) < fi(x*) - fi(y*) 

F as(fi) < m a x d ~ ( f k ) .  k 

Therefore, the assertion (ii) follows. 

4 An application for linear recourse problems 

In this section we consider the linear recourse problem, where the functions f (x,  w) 
is of the form 

We make the following assumption: 

Assumption A2. 

( i )  There exists a measurable function 6 : R + IRm such that 

C(w) E { ~ ( w ) ' u  5 q(w)} G @ : IIuII 5 CI), 



(ii) The function b : X x R --+ Rm is differentiable w.r.t x and satisfies (Ib(z, w)ll 5 
Co a..s. and J supxEx I lVb(~,w)11~ P(dw) = C; < m. 

Theorem 2. 

Let Assunlption A2 be fulfilled. If X is of covering type (v,  V),  then 

is of covering type (v, CI C2 V). 

Proof. 

By duality, we may write f as the solution of the dual program, i.e. the maximum 
of a finite nunll)er I< of functions. 

f (x ,w)  = max b ( ~ , w ) ~ v k ( w ) .  
k = l ,  ..., K 

(see [6]). Here vk are the vertices of the dual feasible polyhedron and I< is their 
maximal number. Since I ~ ~ ( J , w ) I I  < Co and IIvk(w)I\ < C1, we get 

h/Iol-eover, by Lemma 4 (ii), 

rliam2{ f ( r ,  w)) : r. E 5') < diam2(s)  / C: sup V b ( x ,  w)l12 P(i1w) < d i a m 2 ( s ) C ? ~ :  
2 EX 

(24) 
The assertion follows now from Lemma 3. 

The most important special case is that of a linear B(x ,  w): 

b(x,w) = h(w) - T(w)x. 

Since IIVb(z, w)((  = IIT(w) 1 1 ,  independent of x ,  the constant C2 is here simply 

5 Entropy of classes of discontinuous functions 

Theorem 2 deals with the covering types of classes of Lipschitz continuous functions. 
However, in view of (19) we are even more interested in classes of derivatives. Since 
the derivatives of maxima, as the occur in the linear recourse problem are not longer 
continuous, we will consider now classes of functions having jumps. 

To begin with, let Fx = { l l ~ ~ ( ~ , ~ ) > o ) ,  x E x) - 

Lemma 5. If 



( i )  ,r e H ( x ,  w) is Lipschitz continuous for all w with Lipschitz constant L. 

(ii) The ra,ildom variables H ( x ,  w) have densities g,, which are uniformly bounded 

by C1: gx (u) 5 Ci . 

and A' is of covering type (v,  V),  then Fx is of covering type (2v, d m ) .  
Proof. Let B be the ball with center x and radius C. We have 

Notice that 

d i a m 2 { n { ~ ~ , p z E ~  ~ ( x . w ) > O }  : E B, = J[n{supzEB H(x,w)>O} - l{infzEB H ( x , w ) > ~ } ] ~  P(dw) 

= P{sup H(y ,  w) > 0 2 inf H(y ,  w)) 5 P{IH(x, w)l 5 L C) 
Y€B Y€B 

An application of Lemma 3 finishes the proof. 

Let us now turn to the covering types of the L1-derivatives of the functions f (x,  w) = 
illask fk (x ,  w). Notice that the L1-derivative of maxk fk(x,  w) is 

~ : \ = 1  Vz.fk(x, w) I{ jk(x,W)=max, j,(x,w)}. Let us therefore consider the class 
F,? = {Zf=l Vzfk(x, w)I{jk(x,w)=max, j,(x,w)})- 

Theorem 3. Suppose that 

( i )  s e V f ( . z . ,  W )  is Lipschitz continuous with constant L and bounded by CO, 

(ii) The random variables dj(x,  w) = f j (x,  w) -maxiZj f;(x, w) have densities which 
are bounded by a constant C1, 

(iii) Let # { j  : dj(y, w) > 0 for some y such that 112 - yll 5 €12 5 I{1 if c is suffi- 
ciently small. 

If X has covering type (v,  V),  then FV has covering type (2v, cod-). 

Proof. Let B be the ball with center x and diameter C. Let Aj(x) = {w : dj(x, w) > 
O), A: = {w : supyEBdj(y,w) > 0) and A; = {w : infyEBd,(y,w) > 0). Let 
D = Uj(Af \A:). 

Let h(w) = Cj S U P y E ~  V f j ( ~ ,  w ) ~ ~ , ( z ) n ~ C  + C O ~ D  
and g(w) = Zj infyEB V fj(y,  w) ~ A , ( x ) n D c  - ColD. We have that for all x E B 

Since J[lz(w) - g ( ~ ) ] 2  P(dw) 5 L2c2 + 2C;C1KLc, we get the desired result. 



6 A comparison to large deviation results 

We recall here Sanov's uniform large deviations results: For simplicity, we consider 
the univa.ria.te situation only. Let P be the class of all probability measures on IR. 
For Q E P let GQ(u)  = Q(- oa, u] its distribution function and gQ(u)  its Lebesgue- 
density (if esistent). Let T ( Q )  be some functional on P and 

Ii-(0,, P) = 
dQ inf{/ log dpdQ : Q E 0, such that Q << P) 

where 
OC = {Q E P :  T (Q)  2 E}. 

Sulq~ose that Q ++ T ( Q )  is uniformly continuous for the distance sup, (GQ(tl) - 
Gp(u) 1. Sanov's theorem a.sserts that 

-1 
lim - log P{Tp(Pn) 2 E} = Iir(O,, P) 

n+oo n 

for all continuity points E of 1<(0,, P ) .  (Sanov (1957), see Shorack/Wellner (1986), 
p.792). For a n  application in our context, suppose that P has Lebesgue-density and 
that F is a class of P-integrable functions such that supfE3J 1 fl(x))d.r < m. Let, 
for Q E P 

Tp(Q) = sup 1 f dQ - f dPl = sup 1 f l (u)GQ(u) dzi - f l ( u ) G p ( s )  dul. 
fE3 S 1 fE7 

Then, l ~ y  Sanov's theorem, 

dQ = i n f { / l o g - d ~ :  Q << P and s u p l l f  d p / f  ~ Q I  2 6) 
d P  fE3 

It seems to be difficult to calculate the exact value of the right hand side. However, 
a bound is easy to find. Suppose that all f E F a r e  bounded by C. By the I<ullback- 
Cziszar-I<emperman inequality 

IIP - Q l 1 2  5 Ic(Q,P), 

where IIP - QII is the variational distance, (see, for instance Devroye, p. l o ) ,  we 
have 

S U P I J ~ ~ P - S ~ ~ Q I  ~ C P - Q I I  w,,/TGX 
fE3 

a,nd therefore 

-1 
linl sup -log  sup I / f ( u )  pn(du) - f ( u )  P ( ~ U ) I  > €1 

n-oo n fE3 



Both, Talagrand's inequality (21) and Sanov's limit theorem (25) dea,l with the prob- 
ability of deviations from the mean. If we rewrite Sanov's theorem in the form 

t,he relation to Talagrand's inequality becomes apparent: The large deviations result 
deals with a fixed deviation of E and concerns the tail behavior, whereas Talagrands 
inequality considers shrinking deviations of size M/fi and focusses on the central 
behavior. Formally, one may set E = M/Jn to get the same rate in both results. 
However, notice that the large deviation theorem gives only a rate and not a bound: 
For every arbitrary large constant Ii' > 0 

1 1 
lim - log P(Tp(Pn) 2 E )  = lim - log I< . P(Tp(Pn) >. E ) .  

n t x  11 n t c 0  n 

But of course, the most striking advantage of Talagrand's inequality is that it is 
uniform in n. 

7 Appendix 

Leinma 6. A function f is lower semicontinuous if and only if it is the monotone 
limit of a sequence of continuous functions f ( k )  

f (x)  =? lim f("(x). 
k 

Proof. If f is the monotone limit of continuous functions f(", its epigraph is the 
intersection of the epigraphs of f("), which are closed. Therfore the epigraph of f is 

( k )  also closed and this is equivalent to the property that f is 1.s.c. Conversely, let Ai 
be a (non-disjunct) dissection of IRd into cubes of diameter ilk. Let 

By the 1.s.c. property, 
t lim f (k)(x)  = f (x ) .  

k 

It is easy to modify the functions f ( k )  such that they become continuous and still 
(27) holds. 

Leillma 7. Let f ( x )  be a function, which is the ~ointwise limit of a monotone 
sequence of continuous functions f (x) =t limk f("(x). Then, for a compact set X, 

lirn sup f ("(x) = sup f (x)  
k X E X  X E X  

(28) 

lirn inf f (k ) (x )  = inf f (x)  
k X E X  x E X  (as] 



Proof. Since f (k)(x)  f (x) ,  it follows that limk supxEx f (k)(x)  I supXEx f (x) and 
limk infxEx f (k ) (x )  5 infxEx f (x).  On the other hand, if f (x*) 2 supxEx f (x)  - 
6,  then limk f ("(x*) = f (x*) and therefore limk supxEx f (k)(x)  2 limk f (k)(x*) = 
f ( r*)  > supzEs f ( x )  - 6. Since 6 is arbitrary, (28) follows. Let now f (k)(x(k))  = 
infxEx f("(s)  a,nd f *  = supk f(k)(x(k)) .  Let x* be a cluster point of the sequence 
( ~ ( ~ 1 ) .  W.1.o.g. we may even assume that this is a limit point. Since f (e) (x(k))  I f *  
for all t < - k, we get by continuity of f ( e )  that f(')(x*) 5 f * and therefore f (x*) I f *. 
This implies that infxEx f (x)  5 f (x*) 5 f*  = limk infxEx f (k ) (x )  and also (29) is 
shown. 
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