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Abstract 

Social and economic institutions govern how people interact with each 

other -- they define the "rules of the game." Choosing the rules is at bottom a 

pure coordination problem, since people must agree on the rules in order to play. 

We posit that these rules evolve endogenously through the repeated interactions 

of individuals. They choose best replies to their environment subject to some 

inertia and error. Over the long run, such a process selects institutions (rules) 

that are efficient, and fair in the sense that the expected payoffs are centrally 

located on the Pareto frontier of the payoff possibility set. 



Social Coordination and Social Change] 

1. Games and social norms 

Games govern how people interact with one another. They provide the 

framework of rules that constrain what agents do and what they expect others to 

do. When everyone knows what the game is, game theory tells us how rational 

people will play it and what the outcome will be. But how do people come to 

know what the game is? Most interactions are too complex to be understood 

strategically if we allow for all possible strategies the agents might use. Instead, 

interactions tend to follow stylized patterns that the players have come to expect 

in particular situations. It is this delimited and constrained form of interaction 

that we call a "game." A game is a gestalt that frames the strategic situation for 

the players, and allows them to coordinate their behaviors and expectations. 

Consider, for example, the ways in which people can write a contract. In 

practice they do not negotiate over all possible forms of contracts; they take a 

standard contract for that situation and negotiate how to fill in the blanks. Real 

estate sales contracts have one format, construction contracts another, 

manufacturing employment contracts a third. Their terms depend not only on 

the economic activity at hand, but on the time and place -- on the social context. 

Over time, contracts evolve into a specific format through the cumulative 

experience of many individuals trying out different forms. 

A second, considerably fuzzier, example, concerns the operation of households. 

The roles of men and women, children and adults, are governed by unwritten 

rules and common understandings in any society. There are, of course, many 
variations among households in such particulars as who does the dishes, who 

goes shopping, and who weeds the garden. But these are details that are 

negotiated within the broader conventions and understandings of the way in 

which households are supposed to operate within a given culture. These 
common understandings define the spheres within which the various parties 

have primary responsibilities in rearing children, earning income, caring for the 

am indebted to Kenneth Arrow for suggesting this general line of inquiry, and to John Roemer 
and Mancur Olson for constructive comments on an earlier draft. 



elderly, and so forth. They define the implicit game within which the 

relationships are played out. Though the rules of the game are quite complex, 

and one would be hard pressed to write them down explicitly, most people 

within a given culture know how to play the household game. 

My point is that every sphere of interaction has its customary rules -- the rules of 

the game. There is no one way to structure an interaction as a game, any more 

than there is one way to run a household or one way to write a contract. Rather, 

the rules of the game need to be understood as social conventions that are the 

product of social evolution (North, 1981; Sugden, 1986; Binmore, 1994; Arrow, 

1994). The question is whether some games tend to be favored by the 

evolutionary process. In this paper I analyze this issue using the methodology of 

evolutionary game theory (Foster and Young, 1990, Kandori, Mailath, and Rob, 

1993, and Young, 1993a). 

We start with the idea that alternative ways of structuring an interaction can be 

represented as a finite class of different games. All parties to a transaction must 

agree on what the rules of the game are, otherwise they cannot play. This 

amounts to solving a pure coordination problem. Over time, alternative 

conceptions of which game is relevant compete for acceptance in people's heads. 

Once everyone agrees on the relevant game for a given sphere of interaction, it is 

as if a species had successfully invaded a social niche. An institutional form has 

evolved that solves a social coordination problem. 

Evolution does not stop there however: new ideas, like mutant species, keep 

coming along and eventually displace established ones. What is the source of 

these new ideas? One force for change comes from philosophers, preachers, 

social theorists, and assorted "radicals" who argue that the world should operate 

differently than it now does. If they are persuasive and find many converts, they 

may cause established convention to change. A second, more subtle, and 

probably more important source of new ideas is individual variation. People do 

not always follow established convention; sometimes they do things differently. 

If there are enough of them, and they push in the same direction, they can tip 

society into a new convention even if their actions are not consciously 

coordinated (Schelling, 1971,1978). 



We show that these forces select games (institutional forms) that are efficient: 
there is no other way of structuring the interaction so that all parties get higher 

expected payoffs. Second, it favors games that are centrally located on the Pareto 

frontier of the feasible payoff set, instead of near the boundaries. At a purely 
technical level this can be regarded as a central tendency theorem for a class of 

stochastic processes. Interpreted in the context of economic and social 

institutions, it says that the most stable institutional arrangements are those in 

which all sides enjoy substantial gains from cooperation within the set of feasible 

payoff opportunities. 

2. A model of social coordination 

Let society consist of n disjoint populations or classes of individuals C1, C2, . . . ., 
C, whose members interact from time to time. The structure of their interaction 
can be represented by a finite set of n-person games GI, G2, . . . , Gm, each of 

which embodies a different set of "rules" that have payoff implications for the 

participants. To keep the model simple, we shall assume that each way of 

specifying the rules leads to a unique equilibrium, and that each member of the 

population correctly anticipates the expected payoff to himself in that 

equilibrium. 

At the beginning of each period, people are matched in groups, where a group 

consists of one person from each of the n social classes. A strategy is to name a 
game. If everyone in a given group names the same game i, they play it in the 

current period. If they fail to name the same game, they do not play (they are 

unattached for the current period). This assumption reflects the idea that social 

interactions are purely voluntary, and that there is no social decision rule to fall 

back on if they fail to coordinate. (Any such rule would have to be justified as a 

social institution that is also subject to evolution.) 

Altogether, therefore, there are m + 1 "states" that an individual can occupy at 

any given time: play one of the m games, or be unattached. Let aij be the expected 
ut i l i ty  to a member of class j from playing game i (1 5 i i k) and let aoj be the 

utility from being unattached. For simplicity we shall assume that all games are 

worth playing, that is, aij > aoj for all j and all i # 0. There is no loss of generality 

in normalizing each person's utility function so that for every class j, aoj = 0 and 



maxi aij = 1. We shall assume throughout that the utilities have been fixed in this 

fashion. 

Over time, then, society is engaged in a meta-game that has the structure of a 
pure coordination game. Indeed, our results apply to a n y  pure coordination 

game, whether or not it is motivated in this way. There are, however, two 

reasons for thinking of the coordination problem as one of choosing the rules of 
the game. First, choosing the rules is an especially natural example of a situation 

where all parties must agree if there are to be gains from cooperation. If they fail 

to agree, they simply do not play. (In particular, they do not have to decide 
whether the meta-game is a pure coordination game; it has this structure by 

default.) Second, the development of rules governing social and interactions is a 
long-term process in which evolutionary forces surely play a major role. 
Moreover, the time scale is so long, and the number of people is so large, that no 
one individual can expect to have much effect on the course of events. In such a 
setting, myopic optimization is a reasonable assumption about how agents 
respond to their environment. 

Consider then a coordination game with payoffs 

Let each class consist of k persons, where k is a positive integer. The process 
evolves in discrete time intervals t = 1, 2, . . .. The state at the end of period t is 
an m x n matrix xt = (x'.~, xt.2, . . ., xt.d, where each column vector xt.j = (xtlj, xtq, 
. . ., xtmj) lists the number of agents in class j who proposed playing each of the m 
games in period t. 

A complete matching is a collection of k elements from the product set nCi such 

that each member of the population occurs in one and only one element. Let M 
be the set of complete matchings. At the beginning of period t + 1, everyone in 



the population is matched by a random draw from M according to some 

conditional probability distribution p(. I xt), which depends on the state but not 

on the time period (except insofar as the time period determines the state). The 

probability of a matching reflects the geographical and social proximity of 

individuals, which affects their probability of meeting. Unlike some models in 

the literature, however, we do not assume that individuals interact exclusively 

with their neighbors (Ellison, 1993, Blume, 1993, An and Kiefer, 1993). Instead, 

we posit that all matchings occur with positive probability. 

Once a matching has been chosen, each person in each matched group names a 

game. If all n members of the group name the same game i, they play it in period 

t + 1 and receive expected payoffs ail, ai2, . . ., sin. If the members of a given 

group fail to name the same game (i.e., they cannot agree on the rules of the 

game), they are unattached for the period and their payoffs are zero. An 

individual in class j decides which game to name by consulting the frequency 

distribution of demands xt that were made in the previous period. From these he 

infers the probability that different games will be named by the people against 

whom he is matched now. In particular, people do not condition their demands 

on the identities of others; each individual is viewed as an anonymous 

representative of his or her class, and past behavior is taken as a predictor of 

present behavior. These assumptions obviously sacrifice some degree of realism, 

but still have considerable justification in a large-population setting. 

Each representative agent from class j estimates, therefore, that the probability of 

everyone else in his group naming game i is l-Jje4 (xtij'/k). The best reply is to 

choose a game i that maximizes aij n jq#j (xtij'/k). If there are ties in the 

maximum, the j-agent chooses among them according to some probability 

distribution q that has full support. These tie-breaking rules are fixed throughout 

and will not be listed explicitly as parameters of the system. Individuals can 

deviate from best reply in two ways: through inertia and random error (which 

we can also interpret as experimentation). Let v E (0,l) be an inertia probability 

and let E E [0, 1) be an error probability. In each period, each individual sticks to 

his previous choice with probability v, chooses a best reply with probability 

(1 - v)(l - E), and chooses a game at random with probability (1 - v ) ~ .  



These rules define a Markov process P ~ I V ? &  on the finite state space X. When E is 
positive, there is a positive probability of moving from any state x to any other 
state x' in one period, because everyone could make an error (i.e., choose a 

strategy at random). Hence the process is irreducible. It is a standard result that 
a finite, stationary, irreducible Markov process has a unique stationary 

distribution pk*vt&(x), which represents the relative frequency with which the 

process visits state x during the first T periods as T becomes arbitrarily large. 

A social norm is a state in which all matched players name (and play) the same 

game Gi. Such a state has the form zi = (kei, kei, . . ., kei), where ei E R" is the 
unit column vector with 1 in position i and 0's elsewhere. When the probability 

of making errors is zero, every norm is an absorbing state. We claim that, in fact, 

the norms are the only absorbing states when E = 0. Suppose indeed that x is 
absorbing. If i is a game such that xij > 0 for some j, then i must be a strict best 

reply by each j-player to the frequency distribution implied by x, for otherwise 

there is a positive probability that j will not play i in the next period (recall that 

the tie-breaking rule has full support). By assumption, the state in the next period 
is x with probability one. It follows that everyone in class j named i in x, that is, 

xij = k. Since the choice of i by class j must be a best reply to the choice of every 
other class, all classes must be choosing i, which means that x = zi. 

It can be shown that, when the disturbance term E is small but positive, the 

stationary distribution $PV>&(.) puts almost all of the probability on one or more 
norms zi. (This follows from the proof of Theorem 1 given in the Appendix.) To 

be precise, there is a unique, nonempty set of norms Z* C{zl, z2, . . ., z,} such 

that 

lim pkv*&(x) > 0 if and only if x E Z*. 
E+ 0 

Equivalently, Z* is the minimal set of states such that, given any p < 1 there exists 

an such that I,,z* pk*v.&(x) 2 p whenever 0 < E 2 cp. The states in Z* are said 

to be stochastically stable (Foster and Young, 1990; see also Kandori, Mailath, and 

Rob, 1993, and Young, 1993a). The process is very likely to be in one of the 

stochastically stable states when the perturbation probability E is small. In 
concrete terms, this says that when conventional forms of social interaction are 



occasionally but persistently challenged by innovations, the stable one(s) are 

much more likely to be observed than the others over the long run. 

Of course, since the state space X is determined by the class size k, it is 

conceivable that stochastic stability also depends on k. Fortunately this is not an 

issue when k is large: for generic coordination games there is a unique 

coordination equilibrium i such that the corresponding norm zi is stochastically 

stable for all sufficiently large k. As we show in the proof of theorem 1, this 

equilibrium is characterized as the unique minimum of a certain potential 

function. Even in nongeneric coordination games, the same potential function 

characterizes those norms that are stochastically stable for an infinite number of 

values of k. To simplify the statement of results, we shall therefore say that the 

ith coordination equilibrium of a pure coordination game is stable, and that the 

evolutionary process selects that equilibrium, if for every v E (0, 1) there are 

infinitely many values of k such that l i m E + , O + p k ~ ~ ~ ~ ( ~ i )  > 0. For notational 

simplicity we shall henceforth suppress k and v, and simply write pE for the 

stationary distribution. 

3. Welfare analvsis. 

By assumption, 0 c aij 5 1 is the expected payoff to each player from class j in 

coordination equilibrium i (which in keeping with our earlier interpretation we 

shall call "game i"). On the one hand, we may interpret aij as the expected gains 

from playing game i compared to being unattached, which has utility zero. On 

the other hand, we may think of 1 - aij as the level of dissatisfaction of class j, that 

is, the difference between what it gets in game i and what it could get from 

changing the rules of the game. Let us therefore say that aij is the level of 
satisfaction of class j in game i. The satisfaction index of game i is the level of 

satisfaction of the least satisfied class: 

Wi = minj aij. (2) 

Let w+ = maxi wi. A maximin game i* is one that maximizes the satisfaction 
index: 

Wi* = W+ = maxi Wi . (3) 



While this criterion is reminiscent of Rawls's difference principle, it must be 

stressed that Rawls's principle is based on an index of "primary goods," not on 

comparisons of von Neumann Morgenstern utility (Rawls, 1971).2 But why are 

agents permitted to compare von Neumann Morgenstern utilities in our model? 

The answer is that they do not: individuals maximize their private utilities given 

their expectations about others' behavior. They are classical myopic optimizers 

and make no interpersonal comparisons of utility whatsoever. In the 

evolutionary selection process, however, differences in utility functions translate 

into different speeds of adjustment by the different classes, which means that the 

process ends up making comparisons implicitly. 

Game i is efficient if there exists no other game i' (in the class of feasible games) 

such that aij < ailj for every class j. We are going to show that the evolutionary 

process selects (puts high probability on) norms that are efficient and 

approximately maximin. Before we state this result, however, a further remark is 

in order. Eking out the maximum possible gain for any one group usually means 

imposing a cost on other groups due to substitution possibilities in the design of 

the rules of the game. In other words, a game in which one particular class is 

very satisfied will, in most situations, be a game in which some other class is very 

dissatisfied. The extent to which such tradeoffs are possible has a bearing on 

the solution to the problem at hand. Roughly speaking, the greater the 

substitution possibilities, the closer is the evolutionary outcome to the maximin 

solution. 

To state this result precisely, let wj- be the lowest level of satisfaction among all 

games in which class j is perfectly satisfied: 

Wj- = mini {wi : aij = 1). 
Further, define 

W- = maX Wj- 
lljln 

2~authier (1986) advances a minimax principle of justice that is closer to ours, but his justification 
of it is quite different. 
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These ideas are illustrated graphically in Figure 1 for a population consisting of 

two classes. The payoffs (ail, ai2) from each game are represented by a point in 
the nonnegative orthant. Each pair above the diagonal is associated with a 

vertical line, and each pair below the diagonal is associated with a horizontal 

line. The intersections of these lines with the diagonal coincide with the 

satisfaction indices of the various games. 

mdex 

Payoff to class 2 

I '  

I 
I 

0 
1 

Payoff to class 1 

Figure 1. Satisfaction indices for a collection of two-person games. 

Theorem 1. In a pure n-person coordination game, every stable coordination 
eqt~ilibrium i is eficient and approximately maximin: 

where p = (w- ) q ( l -  (w+)2'l) and q = 1 / (n - 1). (7) 

(1 + (w-)'l) ((w+)'l + (w-)'l) 

The parameter p measures the possible distortion from the maximin game. 
When w- is small (whenever one class is perfectly satisfied, another is very 
dissatisfied), or when w+ is close to one (all classes can simultaneously achieve a 

high level of satisfaction), p is close to zero and wi = w+. 



4. Examples. 

The detailed proof of theorem 1 is given in the Appendix. Here we shall 

describe a general method for computing the stable equilibria that can be used to 

analyze particular cases. 

Consider any family of m strictly positive payoff vectors al, a2, . . , am E Rn. 

Construct a graph having m vertices, one for each vector, and for every ordered 

pair of vertices (i, i'), i z i', draw a directed edge from vertex i to vertex i' and give 

it weight 

ri? = minj {(aij)'l / ((aij )'l + (ailj)'l)}, where = 1 / (n - 1). (8) 

Define an i-tree to be a subset of directed edges in the graph such that every 

vertex i' other than i has exactly one exiting edge, and there is a unique directed 

path from i' to i (Freidlin and Wentzell, 1984). The vertex i is called the root of 

the tree. The resistance of the tree is the sum of the weights on its edges. The 

stochastic potential of payoff vector i is the smallest resistance among all i-trees. It 

can be shown (see the appendix) that the stable payoff vectors are those with 

minimum stochastic potential. 3 

To illustrate these ideas, consider norms regarding the control of property in a 

marriage. In many societies, men and women have substantially different 

expectations about the extent to which they can own and inherit property. (In 

eighteenth century Britain, for example, wives were expected to cede control over 

their property to their husbands, and inheritance by the eldest son was the 

norm.) To cast this into the form of a coordination game, imagine that each 

partner in a (prospective) marriage can propose one of three arrangements: the 

man is sole owner of the property, the woman is sole owner of the property, or 

they own it jointly. 

This follows from Young (1993a, Theorem 4). Kandori, Mailath, and Rob (1993) use similar 
combinatorial methods that are based on the work of Freidlin and Wentzell(1984). 

10 



Let the payoffs be as follows: 

men 
sole owner joint owner non-owner 

sole owner 0, 0 0, 0 51 1 

women joint owner 0, 0 3, 3 0, 0 

non-owner 1, 5 0, 0 0, 0 

The computations are illustrated in figure 2. There are nine rooted trees, and the 

two with minimum resistance (1/6 + 1/4) have the joint ownership norm as the 

root. Thus joint ownership is stochastically stable and will be observed with 

higher probability, over the long run, than either of the other arrangements.4 

Of course we should not take this result too literally, as the model is highly 

simplified. Nevertheless, the explanation for the result is robust and makes 

intuitive sense. Norms with extreme payoffs are relatively easy to dislodge 

because it does not take many stochastic shocks to induce the most dissatisfied 

group to try something different. By contrast, norms with payoffs that are 

centrally located in the feasible payoff set are relatively hard to dislodge, because 

it takes a larger accumulation of stochastic shocks to induce any group to want to 

change. The net effect, over the long run, is to push society away from the 

boundaries of the feasible payoff set and toward the middle of the efficiency 

frontier. (The proof of the theorem requires a considerably more complex 

argument, but this is the essence of the matter.) 

4~oint ownerhsip is stable even if the expected payoffs to sharing are lower than 3, say due to 
higher transactions costs incurred by joint management of the property. Any payoff greater than 
45 will work. 



I = women are sole owners 
I1 =joint ownership 
I11 = men are sole owners 

Figure 2. Resistances of the nine rooted trees for the property game. 



Our next two examples show why the theorem cannot be substantially 

strengthened. First we exhibit a situation where the stable norm is efficient but 

not strictly so. In Figure 3, norm 1 weakly Pareto dominates norm 2, but the 

least-resistant 1-tree (Figure 3a) and the least-resistant 2-tree (Figure 3b) are 

congruent and have the same resistance. Hence both norms are stable. 

Game Payoff 
1 (23,13) 
2 (23. 12) 
3 (40, 1) 
4 (1. 20) 

I Row 

I 
Column 
payoff 

I Row 

Figure 3a. Least resistant I-tree. Figure 3b. Least resistant 2-tree. 

Next we show that the lower bound in (6) is tight when there are at least four 

games. Choose real numbers w-, w, and w+ such that 

Construct four two-person games with the payoffs shown in figure 4. Then w- 

and w+ have the meanings defined in (3) and (5). The least-resistant tree rooted 

at (w+, w+) is shown in figure 4a, the least-resistant tree rooted at (w, 1) is in 

figure 4b. The payoffs (w+, w+) correspond to the maximin game, but the game 
with payoffs (w, 1) has the same or lower stochastic potential if 



It can be verified that this reduces to w/w+ 2 (1 - p/w+)/(l + p), where p is 

defined as in (7) and q = 1. Hence the bound in (6) is best possible for two- 

person games, and a similar construction shows that it is best possible for n- 

person games. This example suggests that departures from maximin arise only 

in cases where there are relatively large gains to some group, and relatively small 

losses to the other groups, from moving away from the maximin equilibrium. 

Indeed theorem 1 gives a precise bound on how far below the minimax level the 

worst-off group can be pushed as a consequence of gains to some other group. 
Normalized 
column payoff 

1 

Normalized 
column payoff 

1 

Normalized 
row payoff 

Normalized 
row payoff 

Figure 4a. Least-resistant (w+, w+) tree. Figure 4b. Least-resistant (w, 1)-tree. 

5. Specializations of the main result: 2 x 2 ~ames.  

In this section and the next we shall discuss several cases where the conclusions 

of theorem 1 can be sharpened. Consider first the situation where the 

competition is between one pair of two-person games with payoffs (al, bl), 

(a2, b2). In this case we have an evolutionary selection process on a 2 x 2 
coordination game of form 



where al, bl, a2, b2 > 0. This situation has been treated (with slightly different 

assumptions about the adaptive process) by Kandori, Mailath, and Rob (1993) in 

the symmetric case, and by Young (1993a) in the asymmetric case. Namely, a 

coordination equilibrium is stable in a 2 x 2 game if and only if it is risk 

dominant. When the off-diagonal payoffs are zero, the risk dominant equilibrium 

is the one that maximizes the product of the agents' utilities. 

In general, however, risk dominance and stochastic stability are not equivalent 

even in pure coordination games. As an example, consider the game 

A straightforward calculation using the above methods shows that (6,6) has the 

lowest stochastic potential, though (4,lO) is risk dominant.5 

6. Svmmetric games 

Another special case arises when the games are all symmetric, that is, the payoffs 

are the same no matter what class a person is in. Let aij = ai be the expected 

payoff to every player in game i. Then the games can be ordered according to 

their welfare -- say a1 2 a2 2 . . .2 am. This case has already been treated in the 

literature (Kandori and Rob, 1995)) and the stable games are precisely the games 

that maximize welfare. This can be established quite readily using the above 

methods. Choose any i > 1. From (8) it follows that the minimum-weight edge 
exiting from vertex i is directed toward vertex 1, and its weight is at most 1/2. 

On the other hand, every edge exiting from 1 has weight at least 1/2. It follows 

that, among all rooted trees, the tree rooted at vertex 1 and consisting of the 

directed edges {(i, 1): i = 2,3, . . ., m) is the one with least resistance. Hence game 

1 (or indeed any game with highest payoff) has minimum stochastic potential 

and is stochastically stable. 

5 ~ o u n g  (1993a) gives an example of a coordination game with non-zero off-diagonals in which 
risk dominance and stochastic stability differ. 



7. Selecting from a continuum of pavoffs: the Kalai-Smorodinsky solution. 

Let us return to the asymmetric case and suppose that there is a continuum of 

games whose payoffs form a convex set. A plausible example would be the 

expected payoffs associated with all possible forms of contracts between n agents. 

In general, let B be a compact, convex, comprehensive, full-dimensional subset of 
Rn+, that is, a bargaining set. Assume further that the utilities are normalized so 

that for each i, 

x+i = max {xi: X E B} = 1. 

The Kalai-Smorodinsky solution is the unique vector x* E B such that 

x* = argmax min xj 

x E B lsja 

Discretize B as follows: for each positive integer N, let BN consist of all payoff 
vectors x E B such that Nxl, Nx2, . . ., Nxn are positive integers. B N  is nonempty 

for all sufficiently large N, and B N  + B in the Hausdorff topology as N + =. 

Define w+(N) and w-(N) as in (3) and (5)  respectively. As N + =, w+(N) + 
min j x*j and w-(N) + 0. It follows from (7) that lirnN,, p(N) = 0, so by theorem 

1, the stochastically stable norm(s) of B N  converge to the Kalai-Smorodinsky 

solution of B. 

We may state this result somewhat more generally as follows. For any finite set 
X C Rn+, let cch(X) denote the convex, comprehensive hull of X. 

Corollarv 1.1. Let B be a bargaining set in Rn+ with Kalai-Smorodinsky solution x*. 

Let B1, B2, . . ~ h ,  . . be a sequence offinite subsets of B such that cch(~h) + B in the 

HausdorfJtopology as h + =. ~ f x h  is stochastically stable in the set ~ h ,  then xh + x* 

ash + =. 

There is an interesting contrast between this result and the evolutionary 

bargaining model proposed in Young (1993b). In the latter model, two classes 

of agents play the Nash demand game: each demands a share of a fixed pie of 



size 1. They get what they ask for if the demands sum to one or less; otherwise 

they get nothing. The strategy space is discretized to keep the state space finite, 

and there are random perturbations in the agents' choices. Let all agents in class 

1 have utility function ul(x) and all agents in class 2 have utility function u2(x), 

where x E [0, 11 is the agent's share. Then the evolutionary process selects a 

norm that is arbitrarily close to the Nash bargaining solution when the 

discretization of the state space is sufficiently fine. In other words, any stable 

division of the pie (x, 1 - x) is close to the unique division (x*, 1 - x* ) that 

maximizes 

The crucial difference between that model and the present one is the following. 

In the Nash demand game, agents get their demands even when they miscoordinate 
by asking for amounts that sum to less than unity, that is, when xi + x2 < 1. 

Modelled as a pure coordination game, the agents would only get their demands 

if they are fully consistent, that is, xl + x2 = 1. In this case, the evolutionary 

model selects the Kalai-Smorodinsky solution. This underscores the sensitivity 

of the outcome to the precise way in which we model the one-shot game. 

However, it is also consistent with the idea that evolutionary forces tend to select 

outcomes that are more or less centrally located on the efficiency frontier of the 

bargaining set. It is beyond the scope of this paper to establish this central 

tendency hypothesis in its most general form, but we conjecture that it holds for 

a wide variety of stochastic adaptive models of the type described here. 

8. Variations in the model 

The model described above, like all models, presents a very simplified picture of 

reality. In this section we shall suggest several ways in which it could be made 

more realistic. We shall then argue that these embellishments do not change the 

bottom line very much: essentially the conclusions of theorem 1 continue to hold. 

One unrealistic assumption in our model is that individuals react to the entire 
distribution of actions by other agents in the preceding period. This is clearly 

absurd when the populations are large; people do not have that much 

information. A more plausible scenario is that agents know, through hearsay 



and personal experience, what a few other people in the other classes have been 

doing. In this sense information is partial, and it has a random component that 

depends on how the agent happened to hear about a given precedent. A natural 

way of incorporating this idea into the model is to suppose that each agent 

knows a random sample of size s drawn from each of the other populations, 

where s I k (the number of agents in each class) and the draws are independent 

among populations. The agent then follows the same decision rule as before, 

where the outcome of the random sample forms his base of information. It is 

straightforward to show that the long-run behavior of this process is essentially 

the same as in the full information model: the absorbing states are the norms, and 

the resistance to transiting between norms is the same except that it depends on 

the size of s rather than the size of k. Thus the conclusions of theorem 1 continue 

to hold when the sample size is large. 

A second unrealistic assumption is that changes in expectations arise solely from 

the cumulative impact of many independent, idiosyncratic choices by individuals. 

In reality, changes in expectations are often correlated, because individuals are 

reacting to a common event -- a news item (Rosa Parks refuses to sit in the back 

of a bus), a speech ("I Have a Dream"), or a new theory (Das Kapital). Without 

trying to minimize the variety and complexity of such influences, we can 

nevertheless say that correlated changes in behavior do not by themselves change 

the substance of the argument, as long as they represent sufficiently small 

fractions of the total population. 

To see why, assume for simplicity that we are discussing two-person interactions 

and suppose that the current norm is zi. To trip the process into the basin of 

attraction of some other norm zit requires at least Riil people in some class to 

switch from game i to game it. When these changes arise from uncorrelated 

"mutations" in behavior, each having probability E, the probability of this event is 

on the order of eRiil. Suppose instead that individuals do not change 

idiosyncratically, but in groups: ideas fall from the blue and strike a certain 

number of people p at the same time. We can think of this as a Poisson type of 

process in which the probability that i ideas arrive in a given period is 

proportional to ei. Assume that all classes are equally likely to be hit, but that 

when an idea strikes it falls entirely on one class. Each idea is "labelled" with one 

of the m available games, 1 I i I m. All those who are struck by an idea labelled 



"i" insist on playing game i in the next period. A given idea is equally likely to 

have any one of the labels 1 I i I m. 

For each pair of norms zi and zit, the number of individuals  who must change 

their minds in order to trip the process from zi to zis is the same as before, 

namely, Ri?. In the correlated model, it therefore takes a succession of at least 
R2/p ideas labelled it to trip the process from zi to zit. Assuming that p << Rii~, 

this event has probability on the order of ~Rii'/p. Therefore the relative dz f icu l ty  of 

getting from any norm to any other is the same as in the uncorrelated model. 

Hence the conclusions of theorem 1 continue to hold provided that the 

correlations involve small enough fractions of the whole population. 

9. Conclusion. 

Of course, the forces that produce social change are far more complex than 

anything we can hope to capture in a simple model. Nevertheless, we would 

argue that the model described above does contain many of the key elements that 

shape the evolution of social norms. These include: the salience of precedent, 

boundedly rational responses by individuals to their environment, and random 

variation in expectations. The ways in which these features are formally modeled 

as a stochastic process may alter the conclusions to some degree, but it seems 

reasonable to conjecture that the central tendency property will hold under a 

wide variety of assumptions. The intuitive reason is that norms with payoffs 

near the boundary of the feasible payoff set tend to be unstable. They imply that 

some group is dissatisfied, and the more dissatisfied a group is, the more easily it 

is seduced by new ideas that give them hope of getting more. Social change, in 

other words, is driven by those who have the most to gain from change. Over 
the long run, this tends to favor institutions that are efficient, and that offer each 

group in society a fairly large share of the potential benefits they can realize from 
cooperation. 



Appendix 

Proof of Theorem 1. Let G be a pure n-person coordination game with m 

strategies for each player. In the text we interpreted a strategy as naming a 

particular game out of a given class of m games, but this interpretation is not 

necessary for the argument set forth here. Let aij > 0 be the payoff for members 

of class j when everyone chooses strategy i. We shall assume the payoffs have 

been normalized so that maxi aij = 1 for every j, 1 5 j 5 n. Let P~ /v*E  be the Markov 

process on the finite state space X defined in section 2. For notational 

convenience we shall temporarily fix k 2 1 and v E (0, I), and let PE = Pktv.~. 

Consider first the situation in which E = 0. An ergodic class (rectirrent 

commzinication class) of PO is a subset of states Y in X such that the process never 

leaves Y once it is in Y, and every state in Y can be reached with positive 

probability from every other state in Y. Every norm {zi] constitutes a singleton 

ergodic class (i.e., an absorbing state) of PO, because the probability of exiting zi is 

zero once the process is in it. 

We claim that the norms {zi] are, in fact, the only  ergodic classes of PO. To see 

why, consider any state x E X at the end of some time period t. There is a 

positive probability that, in period t + 1, all players will choose a best reply to the 

empirical distributions implied by x. (If there are ties in best reply, the full 

support of the tie-breaking rule implies that there is a positive probability that 

everyone chooses the same best reply.) Thus at the end of period t + 1 there is a 

positive probability of moving to a state x' in which everyone in the same class j 
plays the same strategy, say ij. 

Moving to the next period, there is a positive probability that everyone in classes 

1 to n - 1 sticks with his previous choice out of inertia, and that everyone in class 

n chooses a best reply to the empirical distributions in x'. The games named by 
the members of classes 1 through n - 1 in x' are il, i2, . . ., i,l. A best reply to any 

probability distribution over members of this set is again in the set. Thus, 
barring ties in best replies, everyone in class n will play the same strategy, 

namely, one of the elements in til, i2, . . ., in-l]. Even if there are ties, each will be 
chosen with positive (stationary) probability, so again there is a positive 



probability that everyone in class n will choose an element in til, i2, . . ., in-1). At 

this stage we have reached a state x" where everyone in at least two classes is 

coordinated on the same game. 

In the next period, assume that everyone in these classes stays fixed out of 

inertia, while everyone else chooses a best reply to x". By now it is clear how, in 

a finite number of periods, the process can reach a state in which everyone names 

the same game. This proves that the only ergodic classes of Po are the n norms 

tzi). 

Now consider the situation where E > 0. Given a state x, define a quirky choice 

by some player to be a choice in the next period that is neither inertial nor a best 

reply to the state x. For every two states x and xu, there is some number of 

quirky choices that transforms x to x' in one period. Let r(x, x') be the least such 

number. (Possibly r(x, x') = 0.) Then the process PE has the following properties 

i) PE is aperiodic and irreducible whenever E > 0, 
ii) limE+gPExx~ = @,,I for all x, x' E X, 

iii) 0 < lim E+O x')P~,,l < -for all x, xu E X. 

Such a process PE is said to be a regz~lar perturbation of PO (Young, 1993a). It 
follows from (by now) standard arguments that PE has a unique stationary 

distribution pE, and limE+O pE(x) = pO(x) is a stationary distribution of the process 

PO. 

A state x is stochastically stable if pO(x) > 0. Since pO(x) is a stationary distribution 

of Po, and the only ergodic classes of Po are the norms {zi}, it follows that if 

$(x) > 0, then x = zi for some i. In other words, every stochastically stable state 

must be a norm. The proof of Theorem 1 proceeds by characterizing the 

stochastically stable norms analytically, drawing on the methods of Freidlin and 

Wentzell(1984) and Young (1993a). 

Construct a complete, directed graph r having X as its set of vertices. Let the 

resistance of the directed edge x -+ x' be r(x, x'). Consider any two norms zi and 

zj. A path from zi to zi4 in r is a sequence of directed edges that begins at zi and 

ends at zit. The resistance along this path is the sum of the resistances over its 



edges. For every two norms zi and zi; define Rii* to be the minimz~m resistance 
over all directed paths from zi to zil. 

The numbers Rii* are computed as follows. In state zi everyone names game i. 
To get to the norm ziv with as few quirky choices as possible, it is useless to name 

games other than if. Thus, to compute Ri?, we need to find the smallest number 

of individuals (summed over all classes) who must name game i' in order for the 

norm to tip from zi into a state x from which the process can evolve, with no 
further quirky choices, to ziq. That is, we need to find the smallest number of 

switches from i to i' that results in some state x E BO(zi'), where BO(zit) is the set of 

all states from which zit is reached with positive probability under PO. BO(zi~) is 

called the basin of attraction of zit under PO. 

Fix a class j*, and consider a state x such that, in each class j # j*, kj individuals 
name i', and k - kj name i. (Recall that each class contains k individuals.) Then i' 

is a best reply for every member of class j* provided that 

If this holds, then the state x is in the basin of attraction of zi3. Let mj* = 
min Cj4*kj over all sets of integers (kj)j#j* such that 0 5 kj 5 k and (Al) holds. 
Thus Riil = minj* mj*. 

Sidestepping (for the moment) the complications that arise from integer values, 
let Pj = kj/k and consider the solution to the system 

subject to 

and 

The minimum of C j+j* pj occurs when all pj are equal, that is, 



(pj/(I - pj)F-' = aij*/ai*j* for all j # j*. 

This is equivalent to 

pj = a..*q/(aij*q +ailj*q) for all j # j*, where = l / ( n  - 1). 
11 

In general, let Tyl denote the least integer greater than or equal to a real number 

y. It follows from the above that 

mj* = (n - 1) rkaij*q/(aij*q + ai'j* q)l. 

Since Rii' = minj* mj*, and j* is arbitrary, it follows that 

For the most part we shall do calculations in terms of 

noting that Rii* = (n - 1) Tkriill. 

Now construct another directed graph T*. This one has n vertices, one for each 

of the coordination equilibria 1 I i 5 n. The weight (or resistance) on the edge 
i + i' is Riig. = (n - l)[kriill. The stochastic potential @k(i) of equilibrium i is the 

resistance of the least-resistant i-tree. It can be shown that the stochastically stable 
norms zi are precisely those i that minimize the stochastic potential fiinction @k(i) 

(Young, 1993a, Theorem 4). Note that this function is independent of the inertia 

rate v. It is also essentially independent of k in the following sense. Say that a 

coordination equilibrium i is stable if the corresponding norm zi is stochastically 

stable for infinitely many values of k. Let @(i) be the resistance of the least 

resistant i-tree when each weight Rilit~ is replaced by riv$*. Among all those i that 
minimize @, there is at least one that minimizes @k for infinitely many k, so it is 

stable. Thus stable equilibria exist. On the other hand, if i does not minimize @, 

then it does not minimize @k for all sufficiently large k, hence it is not stable. 
Thus every stable equilibrium minimizes @. To verify the claims of the theorem, 



it suffices to show that every i that minimizes Q is efficient and approximately 

maximin. 

To prove the latter statement, we need to show that if i minimizes Q, then w~/w+ 

is bounded below as in expression (6). This is obviously true if wi = w+, so let us 

assume that wi < w+. Let i* # i be a maximin equilibrium: wi* = w+. Let Ti be an 

i-tree having minimum resistance among all rooted trees, that is, r(Ti) = $(i). 

There is a unique edge el  in Ti exiting from i* . Let h be the least-satisfied class 

in game i, that is, aih = wi. Let i' be a game in which h gets its maximum (ai'h = 

1). Among all such games i' choose one for which the welfare index wc is lowest. 

Thus 

Assume for the moment that i' # i, i*. (We shall dispose of the cases it= i and i' = 
i* in due course.) Let e2 be the unique edge in Ti exiting from i. Construct an 
i*-tree Ti* by deleting the edges el  and e2 from Ti and adding the edges e'l = 

(i + i') and e'2 = (i' + i*). See figure 5. 

Figure 5. 

By assumption Ti is a least resistant tree, hence r(Ti) I r(Ti*). From this it follows 

that 



(Here r(e) denotes the resistance of edge e.) Let us evaluate the four resistances 

in expression (A5). We know that 

By choice of i', the minimum occurs when j = h, that is, 

The minimum resistance from i* to any other vertex is 

.,.v + a-T) = wiJI/(wi*V + 1) =(w+)T/((w+)T + 1 1. mini+i* minj ai*jV / (a1 1 
11 

Since el  exits from i* it follows that 

Similarly, 

Finally, let us note that 

r(et2) = minj {aivjT/(aTjT + aisjV)}. (A91 

By definition, w+ = wi* = minj ai*j, so ai*j 2 w+ for all j. From this and (A9) it 

follows that 

Combining (A5) - (A10) results in the inequality 

After some algebraic manipulation, we obtain the equivalent expression 



+ V - p(wi') where p(wi.) = wily (1 - (w+)'V ) will L (W ) 

1 + ~ ( w i ' )  (I + wily) ( ( w + ) ~  + W ~ V V  ) 

By choice of i', w r wc. It is straightforward to show that p(win) is increasing in 

wig provided that (w;)21 w+, which holds because wi* I w+ I 1. Letting p = p ( w )  
we therefore obtain 

which implies the inequality claimed in the theorem. 

It remains to dispose of the cases it = i or i' = i*. We claim that in fact neither is 

possible. Suppose on the one hand that i' = i. By definition, i' is an equilibrium 

in which the least satisfied class gets its maximum (namely 1). If i' = i, it follows 

that all classes get their maximum in equilibrium i, which contradicts our 

assumption that wi < w+. 

Suppose on the other hand that i' = i*. Change the tree Ti by deleting the unique 

edge el  that exits from i*, and adding the edge ell = (i + it). This results in an 

i'-tree, say Tit. Since i is stable but i' is not, we must have r(Ti) < r(Til), that is, 

Since the least satisfied class in equilibrium i gets its maximum in i', it follows 
that 

r(et1) S w ~ V / ( W ~ V  + I). 

But (A7) implies that r(e1) 2 (w+)V/((w+)V + 1). Thus 

which contradicts (All). 



Finally, we need to establish Pareto optimality. Suppose, by way of 

contradiction, that i is a stable equilibrium and that the payoffs from i are strictly 

dominated by the payoffs from i', where i' is not stable: 

aij < ai9j for all j, 1 I j I n. (A121 

Let Ti be an i-tree of least resistance. Since i is stable, none of the ?-trees can have 

a resistance strictly smaller than r(Ti). We shall show, however, that there is such 
an if-tree. 

If (it + i) is an edge in Ti, replace it by the opposite edge (i + i'). This creates an 

?-tree, and its resistance is less than r(Ti) because (A3) and (A12) imply that 

riir < ri9i. This contradiction shows that (it + i) is not an edge in Ti. 

Consider any edge (h + i) in Ti that points toward i (there is at least one such 

edge because i is the root). Replace it with the edge (h + i'), and do this for all 
edges that point toward i. In Ti there is a unique edge exiting from i', say 

(if + h'), where h' # i by the above. Replace it with the edge (i + h'). It is easy to 
check that this new object is an it-tree. It has strictly lower resistance than Ti , 
because (A3) and (A12) imply that for all i, i', h, and h', 

and 

rihl = minj {aijq /(aijq + ah5q} < minj {q'jfl /(ailjq + ah'jq 1 = ri'h: 

This contradiction shows that no stable equilibrium is strictly Pareto dominated, 

and completes the proof of the theorem. 
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