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The A n a l y s i s  o f  Flood Levee R e l i a b i l i t y  

E r i c  Wood 

I n t r o d u c t i o n  

I n  t h e  d e s i g n  o f  a  f l o o d  l e v e e  sys tem,  t h e - - h e i g h t  o f  t h e  
l e v e e  i s  u s u a l l y  used a s  t h e  p r i n c i p a l  measure o f  f l o o d  pro-  
t e c t i o n  and t h e  p r i n c i p a l  d e s i g n  pa ramete r .  P r a c t i c e  h a s  
shown, though,  t h a t  most  l e v e e  sys tems do n a t  f a i l  by over -  
t a p p i n g  b u t  by s t r u c t u r a l  weaknesses,  e i t h e r  i n  t h e  l e v e e  o r  
i n  t h e  s o i l  n e a r  it. Bogardi  and ~ o l t s n  [I-]  have i d e n t i f i e d  
f o u r  common modes o f  f a i l u r e .  These a r e :  

1) Over topping:  t h e  e l e v a t i o n  o f  t h e  f l o o d  wave exceeds  
t h a t  of t h e  l e v e e ;  

S t r u c t u r a l  f a i l u r e  o f  t h e  l e v e e  by w a t e r  s a t u r a t i o n  
and l o s s  o f  s o i l  s t a b i l i t y :  t h e  f l o o d  wave c a u s e s  
i n c r e a s e d  s a t u r a t i o n  o f  t h e  l e v e e  and a n  i n c r e a s e d  
p r e s s u r e  g r a d i e n t  th rough  t h e  l e v e e .  Decrease  i n  
s o i l  s t r e n g t h  i s  a s s o c i a t e d  w i t h  i n c r e a s e d  s a t u r a t i o n  
which,  w i t h  t h e  i n c r e a s e  i n  t h e  p r e s s u r e  g r a d i e n t  
from t h e  h e i g h t  o f  t h e  f l o o d  wave, l e a d s  t o  l e v e e  
f a i l u r e  th rough  slumping;  

3 )  B o i l s  and h y d r a u l i c  s o i l  f a i l u r e s :  t h e  h e i g h t  o f  
t h e  f l o o d  wave and i t s  r e s u l t i n g  p r e s s u r e  is  t r a n s -  
m i t t e d  th rough  t h e  founda t i on  s o i l  under  t h e  l e v e e  
and c a n  c a u s e  s o i l  f a i l u r e  th rough  r u p t u r i n g .  The 
ensu ing  f a i l u r e  u s u a l l y  l e a d s  t o  l a r g e  i n f l ows  o f  
wa t e r  i n t o  t h e  p r o t e c t e d  a r e a s  and t o  t h e  undermining 
o f  t h e  l e v e e ' s  f ounda t i on ;  

4 )  Wave a c t i o n :  h igh  f l o o d  l e v e l s  g i v e  r ise  t o  wave 
a c t i o n  which s c o u r s  t h e  t o p  o f  t h e  l e v e e .  Such 
s c o u r i n g  r e d u c e s  l e v e e  s t r e n g t h  and c a u s e s  premature  
f a i l u r e .  

These f o u r  modes o f  f a i l u r e  a r e  i l l u s t r a t e d  i n  F i g u r e  1. 
T r a d i t i o n a l l y ,  l e v e e  d e s i g n  p rocedures  u s e  t h e  h e i g h t  

o f  t h e  l e v e e  a s  t h e  p r i n c i p a l  measure o f  f l o o d  p r o t e c t i o n ;  
and t h e  d imens ion ing  o f  t h e  l e v e e ,  t o  p r o t e c t  a g a i n s t  f a i l u r e  
o t h e r  t h a n  by ove r topp ing ,  i s  r ega rded  a s  be ing  o f  secondary  
impor tance .  Y e t ,  most l e v e e  f a i l u r e s  a r e  n o t  caused by 
ove r topp ing .  The f a i l u r e  o f  a  l e v e e  under t h e  l o a d  o f  a  par-  
t i c u l a r  f l o o d  wave depends n o t  o n l y  upon t h e  h e i g h t  and shape 
o f  t h e  l e v e e ,  two p o s s i b l e  d e c i s i o n  v a r i a b l e s ,  b u t  a l s o  upon 
t h e  h y d r a u l i c ,  g e o l o g i c ,  and s o i l  p r o p e r t i e s  t h a t  v a r y  w i t h i n  
and a l o n g  t h e  l e v e e .  The l a t t e r  v a r i a b l e s  a r e  random v a r i a -  
b l e s ;  t h u s  t h e  r e s i s t a n c e  of  t h e  l e v e e  t o  f l o o d s  i s  a  random 
v a r i a b l e .  

T h i s  paper  l o o k s  a t  t h e  e f f e c t  upon d e c i k i o n s  when resis- 
t a n c e  o f  t h e  l e v e e  sys tem i s  cons ide r ed  a  random v a r i a b l e .  



The a n a l y s i s  c o n s i d e r s  t h e  l o a d  upon t h e  levee  due  t o  f l o o d s  
t h a t  have been g e n e r a t e d  by some s t o c h a s t i c  p r o c e s s .  The 
l e v e e  i s  d e f i n e d  by two d e c i s i o n  v a r i a b l e s ,  t h e  h e i g h t  H and 
t h e  b a s e  w i d t h  W .  The f l o o d  d i s c h a r g e  a t  which f a i l u r e  o c c u r s ,  

qo,  i s  c o n s i d e r e d  a s  a  f i x e d  b u t  unknown q u a n t i t y  and i s  re- 

p r e s e n t e d  by a  p r o b a b i l i t y  d i s t r i b u t i o n  f u n c t i o n  f (qo)  . The 

r e s i s t a n c e  o f  t h e  l e v e e ,  t h e r e f o r e ,  depends  upon t h e  occur -  
r e n c e  o f  f l o o d s  o f  a  p a r t i c u l a r  magnitude and upon t h e  
" s t r e n g t h "  of  t h e  l e v e e .  I t  i s  c o n c e p t u a l l y  c o n v e n i e n t  t o  
c o n s i d e r  s u c h  u n c e r t a i n t y  w i t h i n  t h e  framework o f  Bayes ian  
r i s k  a n a l y s i s  ( C o r n e l l ,  [ 2 ]  ) . Higher f l o o d  r e s i s t a n c e  
l e v e l s  l e a d  t o  h i g h e r  and s t r o n g e r  l e v e e s ,  b u t  s u c h  l e v e e  
sys tems a r e  e x t r e m e l y  e x p e n s i v e  and ,  i f  ex tended  f a r  enough, 
l e a d  t o  lower  n e t  b e n e f i t s .  C e r t a i n  t r a d e o f f s  e x i s t  between 
t h e  o b j e c t i v e s  o f  l e v e e  r e l i a b i l i t y  and economic b e n e f i t s .  
These t r a d e o f f s  a re  p a r t i c u l a r l y  s i g n i f i c a n t  when t h e  resis- 
t a n c e  o f  t h e  l e v e e  i s  c o n s i d e r e d  a s  a  random v a r i a b l e .  
Bayes ian  d e c i s i o n  a n a l y s i s  w i t h  mul t i -d imens iona l  u t i l i t y  
t h e o r y  p r o v i d e s  a n  a d e p t  t o o l  f o r  c o n s i d e r i n g  d e c i s i o n  
making when t h e s e  t r a d e o f f  c o n d i t i o n s  e x i s t .  

A Bayes ian  a n a l y s i s  o f  f l o o d  l e v e e  r e l i a b i l i t y ,  f l o o d  
damages and n e t  b e n e f i t s  i s  c o n s i d e r e d  and r e s u l t s  a r e  
g i v e n  f o r  a  t y p i c a l  example. 

Genera l  Theory o f  R e l i a b i l i t y  A n a l y s i s  

I f  t h e  r e s i s t a n c e  o f  a  l e v e e  sys tem i s  d e t e r m i n i s t i c  
a t  a  g i v e n  f l o o d  d i s c h a r g e  q  = qd,  t h e n  t h e  r e l i a b i l i t y  o f  

0 

t h e  sys tem a g a i n s t  f a i l u r e  i s  e a s i l y  found from t h e  p r o b a b i l -  
i t y  o f  f a i l u r e :  

where 

pf = p r o b a b i l i t y  of  f a i l u r e  

f (q )  = t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  of  f l o o d  e v e n t s ,  
2 

P ( q  ) = t h e  c u m u l a t i v e  d e n s i t y  f u n c t i o n  o f  t h e  resis- 
a t a n c e  q 

d ' 

The r e l i a b i l i t y  o f  t h e  sys tem i s  j u s t  1 - p f .  When uncer-  

t a i n t y  e x i s t s  i n  t h e  p a r a m e t e r s  o f  t h e  d e n s i t y  f u n c t i o n  o f  
f l o o d  e v e n t s ,  t h e  Bayes ian  p r o c e d u r e s  se t  f o r t h  by Wood e t  a l .  
[ 6 ]  a p p l y .  I n  t h i s  c a s e  



qd 
where 

fQ (S 1 El = the probability density function of flood 
discharges, conditional upon the uncertain 
parameter set - 0, 

f(0) - = the joint distribution on the uncertain 
parameter set - 0, 

..d 

f (q) = the Bayesian distribution of flood discharges, Q 
sf = the Bayesian probability of failure. 

If the resistance of the levee system is uncertain and if the 
level of resistance, qo (maximum discharge before levee 

failure), is described hy the density function, f (qo), then 
Qo 

the probability of failure Gf is found from 

If there exists uncertainty in the parameters of the resistance, 
f (qo) , then f (qo) may be replaced by its Bayesian distri- 
QO Qo - 

bution, 3 (qo). 
Qo 

The probability of failure of Equation (3) is the expected 
probability of failure, E[Ff], of the density function for 

failure f(Ff). This is shown by applying the principles of 

derived distribution theory in the following manner. 



If two random variables, x and y, are functionally re- 
lated, y = g(~), and if the function is monotonic and contin- 
uous, then the following relationships hold: 

E [yn] = ) gn (x) f (x) dx 

X 

Equations (4) and (5) provide a procedure to obtain the 
probability density function, f(Bf), and its moments when the 

levee resistance, 90 is uncertain and is treated as a random 

variable. The functional relationship between pf and qo is 

The first moment, from Equation (4) , is 

which is exactly Equation ( 3 ) .  The second moment is 

and the variance of the failure probability, V[pf], is calcu- 

lated from 

2 
V[pf1 = E [pf2] - E [pf1 . ( 9 )  

Bayesian Distribution of the Probability of Failure: 

Yodel of Flood Events 

Consider the hypothetical streamflow trace presented in 
Figure 2. The discharges of interest are those flows greater 
than Qb. It is assumed that the occurrence of independent 



events larger than Qb can be described by a Poisson process 

(the time between events being exponentially distributed), with 
,an average annual arrival rate v. It is also assumed that the 
probability density function for the flows larger than Qb can 

be represented by a shifted exponential distribution of the form 

f (q lq 2 Qb) = a exp (-a21 (10 

where 

This distribution is a fairly general form, since the 
upper tails of many distributions may be represented as being 
exponential. This proposed model has been used for extreme 
flood discharges by Shane and Lynn [31, Todorovic and 
Zelenharic [4], and Wood [51 . 

It can easily be shown (Wood, [51) that the cumulative 
distribution of z is 

FZ(z) = 1 - vt exp (-az) (11) 

if the following assumptions are valid: that the probability 
of exceeding z is small, and that the arrival rate of such 
events is small. 

The Bayesian analysis of the flood frequency curve 
considers the uncertainty in the independent parameters v and 
a. If the uncertainty in each of the parameters can be 
represented by a gamma-1 probability density function, that is, 

f (V[U,S) a exp (-s v) v u (12 
v 

f(alv,R) a exp (-a R) a , (13) 

then the Bayesian distribution of flood discharge can be 
shown to be (Wood et al., [6]) 

where 



- .., 
The Bayesian exceedance probability, GZ (z) = 1 - FZ (2) is just 

The ~ayesian probability density function and the Bayesian 
exceedance probability fully account for the parameter uncer- 
tainty in the model of flood discharges. In the remaining 
part of this paper, the exponential exceedance model developed 
here will be assumed to be the appropriate model for the 
underlying stochastic process for flood generation. 

Model of Levee Resistance 

The modes of failure, presented earlier, of a levee 
system can be divided into two groups. One group consists 
of failure due to the structural failure of the levee or the 
soil around it. The other group consists of failure by over- 
topping. If the levee is built such that the probability of 
failure of the first type is zero, then the probability 
distribution of the resistance can be modelled as a delta 
function of unit area at qd, the design capacity of the 
levee system. 

As the probability of failure when the discharge is 
less than qd increases, the area under the delta function 

decreases and the cumulative density function of the resis- 
tance, evaluated at qd, FR(qo = qd), increases. Thus, the 

probability density function for q will consist of two parts. 
0 

One part is a density function for the probability of failure 
at failure discharge less than qd, the levee design capacity; 

the second part consists of a delta function, of area 
- 1 - FR(qo = qd) at qo - qd, that accounts for levee failure 

by overtopping. 

Probability of Structural Failure Uniformly Distributed 

Assume that fR(zo) l for z 
0 5 Zd is uniformly distributed 

between zm and zd and that the area under the density function 

the condition f (qo 2 Qb) 
Qo 

= 0 holds, 

since z = q - Q being a constant. For the remaining Qbf b 
part of the paper zo will replace qo, zd for q d' 



is a. Then 

a 
fR(zo) = I for z 

d - Z  
mI.Z0I.Zd 

m 

= 6 (1 - a) , for z = zd , 
Zd 0 

= 0 otherwise; 

6z (1 - a) is interpreted as a delta function at zd of 
d 

area 1 - a. 
From Equation (6) the Jacobian transform, ldzo/dpf), is 

The probability density function f(pf) is, from derived 
distribution theory, 

v+l , and 

for pf = vt [ 1 + +T kdI-'v+" 
E[pf] from the application of Equation (5) can be calculated 

to be 







Bayesian Distribution of Damage with Uncertain Levee Resistance 

In a manner similar to the analysis of the failure 
probability, the damage due to levee failure can also be 
considered. Assume that the damage function is of the form: 

then the expected damage for a known failure discharge, zo. 
is just 

NOW let E [ D ~ Z ~ . ~ ~ ]  be designated as D. where 



By using the Jacobian transform 

the distribution of damage, due to the uncertain levee resis- 
tance, can be calculated from derived distribution theory. 
As in the analysis of failure probabilities, the distribution 
of damage will be calculated for two failure'discharge dis- 
tributions f(zo)--one uniformly distributed and the other 

quadratically distributed. 

f (z ) Uniformly Distributed 
__O 

Let f (zo) be of the form 

Then it can be shown that 

for D = A (1 + 6zd) - (v-1) v - 1  

The first moment E [ D ~ z ~ ]  is, from derived distribution theory, 





The first moment E [ D ~ z ~ ]  can be calculated as: 

2 and the second moment E [D lz ] as 
d 



Illustrating Example 

The analytical results of the previous sections can be 
easily applied to analyze the tradeoffs that exist among 
flood levee strength, levee reliability and flood benefits 
from levee construction. The decision-making aspects of 
these tradeoffs will be dealt with in a future paper. 

A hypothetical area will be used for an illustrating 
example, but the numerical values for the functions are 
similar to those found in Wood et al., [ 6 1  for Woonsocket, 
Rhode Island, which is on the Blackstone River. 

A model representing the probability density function 
for peak flood discharges was developed earlier in the 
paper and had the form 

where all terms have been defined in Equations (13) and (14). 
For our example, the parameters have the following values. 

- 
v = .I15 , flood events per year 

v =  7 I flood events . 

The peak flood discharges can be "converted" into a 
peak flood stage witha stage-discharge curve. Figure 2 shows 
the stage-discharge curve for the upstream end of the area 
to be protected. Since that area is assumed to be quite 
small (for example protection works for a city) and the 
length of the protecting levees is short, it is assumed that 
after construction of the levees, the upstream stage-discharge 
curve is still appropriate and that the flood wave attenuation 
in the levee system is insignificant. 

The cost of flood protection is assumed to have the form 

B2 C(W,H) = K1 WB1 H + K2 

where 

W = base width of the levee, 

H = height of the levee, 



and K1 , K2, B1 and B2 are constants. If B1 > 1.0 and 

B2 > 1.0, then the marginal cost for width increases with 

height and vice versa. 

K2 implies that the levees have a fixed cost repre- 

senting planning, surveying, etc. An illustrative diagram 
of the cost surface is presented in Figure 3 for the fol- 
lowing parameter values: 

Those regions where the cost surface is zero represents 
infeasible sets of widths and heights. 

The damage function used in the analysis had the form 

where c is a constant. This form has two interesting prop- 
erties. One, for the same level of exceedance (z - zo) 
higher protection leads to higher damage. This can arise 
from the feeling of security behind a comprehensive levee 
system and consequently developments of higher density and 
quality. Higher damages can also arise in part from higher 
reconstruction costs of the levee system if it is damaged. 
The second property of the damage curve that should be noticed 
is that damage increases quadratically with exceedance dis- 
charge. This is often observed in real situations (see Wood 
et al., [ G I )  and will be assumed to be appropriate for this 
discussion. An illustrative description of the two-dimensional 
damage function is presented in Figure 4. 

Effect on the Return Period 

The effect of levee strength on the flood frequency 
curve (return period, or l/Probability of failure, versus 
design discharge) due to varying levee strengths is illus- 
trated in Figures 5 and 6, where the expected return periods 
for various levee strengths are plotted. 



~t will be remembered that the following definitions 
hold: 

1. a = the cumulative distribution FZ (zO = zd), for 
0 

z the exceedance discharge where failure occurs, evaluated 
0' 

at zd, the design discharge. 

2. The uniform density function for zo had the form 

for zm 5 zo 5 zd 

- - 6z (1 - a) , for zm 

d 
- Zd 

= 0 otherwise. 

3. The quadratic density function for z had the form 
0 

for zm 2 zo 5 zd 

= 6  ( 1 - a )  , for zm 
Zd - Zd 

= 0 otherwise; 

where 

It is interesting to note that for a design discharge 
of 35,000 cu ft/sec and a uniform failure probability density 
function, a levee that will fail only by overtopping (a = 0) 
has an expected return period of almost 200 years, while a 
levee that has a 90% chance of failing before overtopping 
has an expected return period of 70 years--only 1/3 the 
value of the former. With a quadratic failure probability 
distribution, a levee of the same "strength" has an expected 
return period of 90 years or about half that of the deter- 
ministic levee. 

Equations (18) and (22) present the probability density 
functions for Pf, the probability of flood failure. Figures 

7 and 8 illustrate the first part of these density functions 
at a design discharge of 27,500 and 35,000 cu ft/sec respec- 
tively for the uniform failure probability. 



The second part of the density functions consists of a 
delta function which varies in area between 0 and 1 as 
FZ (zO = zd) varies between 1 and 0. This delta function 
0 

is attached to the first part of the density functions at 
the upper end of the return period (i.e. 88 and 188.3 years 
respectively) . 
Effect on Costs and Benefits 

For a given design discharge, the stochastic nature of 
the levee strength affects the cost of levee construction 
and the resulting flood benefits. 

Figures 9 and 10 present the annual benefit and cost 
curves for the condition of a uniform and a quadratic failure 
probability density function, respectively. The design 
parameters for the levees are given in Table 1, and cost 
and damage coefficients in Table 2. Figures 11 and 12 show 
the net benefit curve for the uniform and the quadratic 
failure probability density function, respectively. 

In terms of an efficiency criterion, the optimal deci- 
sion is to build the levee system quite high but quite weak. 

For the cost and damage functions used, the decision to 
build high, strong levees cannot be justified on economic 
grounds. From Figures 5 and 6, it can be seen that econom- 
ically preferable, weak levees have a higher probability of 
failure. The decision maker is faced with the dilemma of 
trading off economic efficiency with failure probabilities. 
This decision problem will be addressed in a forthcoming 
paper. 

The probability density function for the damage was 
calculated in Equations (29) and (33). Like the distribu- 
tions for the probability of failure, the distributions of 
flood damage consist of two parts--a delta function at the 
damage level corresponding to failure at the design discharge, 
and a continuous function between the damage at the minimum 
exceedance discharge, where failure will occur, and the level 
corresponding to failure at the design discharge. 

The probability density function for flood benefits can 
be easily found.' Annual flood benefits due to a particular 
decision, d, are taken to be the expected annual flood dam- 
age averted; that is 



where Do is the expected annual damage without protection. 

In an analysis, it is assumed that Do is known and is 
not a random variable. Therefore, 

and f (Bd) can be easily calculated from ~quations (28) and (33) . 
Conclusions 

This paper analyzes the uncertainty in the probability of 
failure and the expected flood benefits due.to the uncertainty 
in the strength of a flood levee. 

a 
Experience has shown that during a flood, most levees 

fail structurally, rather than by the flood waters overtopping 
the levee. Present day analyses rarely include the probability 
of structural failure in an explicit manner. This can result 
in significantly overestimating the protection offered by a 
levee system, and underestimating the expected damage that may 
occur. For the example presented here, a deterministic anal- 
ysis could overestimate the expected return period by up to 
30074, and underestimate expected annual damage by 50%. 

The procedures developed here can also be applied to the 
analysis of other systems--for example, the distribution of 
isotherms from thermal power plant outfalls, the reliability 
of large water resource systems for flood control or water 
supply, etc. Many of the extensions may require numerical 
analysis as opposed to the analytical derivations presented 
here, but that should not limit application. 
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Table 2 

Annual Cost Function Parameters 

Damage Function Parameter 

NOTE : 

1. Annual costs in dollars, levee base width in feet, 

levee height in feet, discharge in cu ft/sec. 

2. Costs for levee construction have been appropriately 

discounted into equivalent annual costs for comparison with 

expected annual flood benefits. The issues of fixing the 

appropriate interest rate or project life have not been 

explicitly addressed. 
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FIGURE 1 :FOUR MODES OF LEVEE 
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FIGURE 3. ILLUSTRATIVE COST FUNCTION 



FIGURE 4 : ILLUSTRATIVE DAMAGE 
FUNCTION 
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DET. 
a = .I0 
a = .25 
a = . 5 0  
a = .75 
a =  . 9 0  

NOTE : QUADRAT I C PDF 

PEAK DISCHARGE ( C  FS) 

FlGU RE 6 : A FLOOD FREQUENCY CURVE FOR QUADRATIC pdf. 
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