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The Analysis of Flood Levee Reliability

Eric Wood

Introduction

In the design of a flood levee system, the-height of the
levee is usually used as the principal measure of flood pro-
tection and the principal design parameter. Practice has
shown, though, that most levee systems do not fail by over-
topping but by structural weaknesses, either in the levee or
in the soil near it. Bogardi and Zoltan [l] have identified
four common modes of failure. These are:

1) Overtopping: the elevation of the flood wave exceeds
that of the levee;

2) Structural failure of the levee by water saturation
and loss of soil stability: the flood wave causes
increased saturation of the levee and an increased
pressure gradient through the levee. Decrease in
soil strength is associated with increased saturation
which, with the increase in the pressure gradient
from the height of the flood wave, leads to levee
failure through slumping;

3) Boils and hydraulic soil failures: the height of
the flood wave and its resulting pressure is trans-
mitted through the foundation soil under the levee
and can cause soil failure through rupturing. The
ensuing failure usually leads to large inflows of
water into the protected areas and to the undermining
of the levee's foundation;

4) Wwave action: high flood levels give rise to wave
action which scours the top of the levee. Such
scouring reduces levee strength and causes premature
failure.

These four modes of failure are illustrated in Figure 1.

Traditionally, levee design procedures use the height
of the levee as the principal measure of flood protection;
and the dimensioning of the levee, to protect against failure
other than by overtopping, is regarded as being of secondary
importance. Yet, most levee failures are not caused by
overtopping. The failure of a levee under the load of a par-
ticular flood wave depends not only upon the height and shape
of the levee, two possible decision variables, but also upon
the hydraulic, geologic, and soil properties that vary within
and along the levee. The latter variables are random varia-
bles; thus the resistance of the levee to floods is a random
variable.

This paper looks at the effect upon decisions when resis-
tance of the levee system is considered a random variable.




The analysis considers the load upon the levee due to floods
that have been generated by some stochastic process. The

levee is defined by two decision variables, the height H and
the base width W. The flood discharge at which failure occurs,

Ay is considered as a fixed but unknown quantity and is re-

presented by a probability distribution function f(qo). The

resistance of the levee, therefore, depends upon the occur-
rence of floods of a particular magnitude and upon the

"strength" of the levee. It is conceptually convenient to
consider such uncertainty within the framework of Bayesian
risk analysis (Cornell, [2]). Higher flood resistance

levels lead to higher and stronger levees, but such levee
systems are extremely expensive and, if extended far enough,
lead to lower net benefits. Certain tradeoffs exist between
the objectives of levee reliability and economic benefits.
These tradeoffs are particularly significant when the resis-
tance of the levee is considered as a random variable.
Bayesian decision analysis with multi-dimensional utility
theory provides an adept tool for considering decision
making when these tradeoff conditions exist.

A Bayesian analysis of flood levee reliability, flood
damages and net benefits is considered and results are
given for a typical example.

General Theory of Reliability Analysis

If the resistance of a levee system is deterministic
at a given flood discharge 9, = 93+ then the reliability of

the system against failure is easily found from the probabil-
ity of failure:

pe = J fola) dg = 1 - Fnylqy) (1)
93
where
Pe = probability of failure
fQ(q) = the probability density function of flood events,
Fo(qd) = the cumulative density function of the resis-~

tance Aq-

The reliability of the system is just 1 - Pg- When uncer-

tainty exists in the parameters of the density function of
flood events, the Bayesian procedures set forth by Wood et al.
[6] apply. In this case
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Be = f J fo(alg) + £(0) d8 dq

aq 8
= J fQ(q) dg =1 - FQ(qd) (2)
94
where
fQ(q|g) = the probability density function of flood

discharges, conditional upon the uncertain
parameter set 9,

f(8) = the joint distribution on the uncertain
parameter set 8,
EQ(q) = the Bayesian distribution of flood discharges,

ﬁf = the Bayesian probability of failure.

If the resistance of the levee system is uncertain and if the
level of resistance, d4 (maximum discharge before levee

failure), is described by the density function, fQ (qo), then
o)
the probability of failure §f is found from

ﬁf = J fQO(qo) J fQ(q) dgq dqo
q,=0 q=q,
= J’ fQO(qO) [1 - FQ(qo)] dq, - (3)
qo=

If there exists uncertainty in the parameters of the resistance,
fQ (qo), then fQ (qo) may be replaced by its Bayesian distri-
o o
bution, fQO(qO),.
The probability of failure of Equation (3) is the expected

probability of failure, E[ﬁf], of the density function for
failure f(ﬁf). This is shown by applying the principles of

derived distribution theory in the following manner.




If two random variables, x and y, are functionally re-
lated, y = g(x), and if the function is monotonic and contin-
uous, then the following relationships hold:

Ely"] = J g™ (x) + f(x) dx (4)
X
£(y) = E(x) - ‘%%‘ X (5)

Equations (4) and (5) provide a procedure to obtain the
probability density function, f(ﬁf), and its moments when the

levee resistance, S is uncertain and is treated as a random

variable. The functional relationship between Pe and d, is
pe = 1 - Folay) - ‘ (6)

The first moment, from Equation (4), is

Blog = | [ - Folag)] + £y (4p) da, (7)
q,=0 ©

which is exactly Equation (3). The second moment is
B20p.1 = | 11-F (q)1% £ (q) dq (8)
f 0'9% Qo o o '
9,=0

and the variance of the failure probability, V[pf], is calcu-

lated from

Vips] = Elp°] - E®lpg] . (9)

Bayesian Distribution of the Probability of Failure:
Model of Flood Events

Consider the hypothetical streamflow trace presented in
Figure 2. The discharges of interest are those flows greater
than Qb. It is assumed that the occurrence of independent



events larger than Qb can be described by a Poisson process

(the time between events being exponentially distributed), with

.an average annual arrival rate v. It is also assumed that the
probability density function for the flows larger than Qb can

be represented by a shifted exponential distribution of the form

f(q|q > Qb) = o exp (-0z) “ (10)
where

2 =g - Qb

z >0 .

This distribution is a fairly general form, since the
upper tails of many distributions may be represented as being
exponential. This proposed model has been used for extreme
flood discharges by Shane and Lynn [3], Todorovic and
Zelenharic [4], and Wood [5].

It can easily be shown (Wood, [5]) that the cumulative
distribution of z is

F,(z) =1 - vt » exp (-az) (11)

if the following assumptions are valid: that the probability
of exceeding z is small, and that the arrival rate of such
events is small.

‘'The Bayesian analysis of the flood frequency curve
considers the uncertainty in the independent parameters v and
a. If the uncertainty in each of the parameters can be
represented by a gamma-l1 probability density function, that is,

u

f(v|u,s) =« exp (-s *+ V) + v (12)
fla|v,) « exp (-0 + 2) - oV, (13)
then the Bayesian distribution of flood discharge can be
shown to be (Wood et al., [6])
~ _ Sz - (v+2)
f(Z) = o vt|l + V_+1- (l’-l)

where
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The Bayesian exceedance probability, éz(z) =1-PF

C_IZ ]— (V+l)
. (15)

éz(z) = vt [1 + e

The Bayesian probability density function and the Bavesian
exceedance probability fully account for the parameter uncer-
tainty in the model of flood discharges. In the remaining
part of this paper, the exponential exceedance model developed
here will be assumed to be the appropriate model for the
underlying stochastic process for flood generation.

Model of Levee Resistance

The modes of failure, presented earlier, of a levee
system can be divided into two groups. One group consists
of failure due to the structural failure of the levee or the
soil around it. The other group consists of failure by over-
topping. If the levee is built such that the probability of
failure of the first type is zero, then the probability
distribution of the resistance can be modelled as a delta
function of unit area at dq¢ the design capacity of the
levee system.

As the probability of failure when the discharge is
less than qd increases, the area under the delta function
decreases and the cumulative density function of the resis-
tance, evaluated at dq- FR(qO = qd), increases. Thus, the
probability density function for q, will consist of two parts.

One part is a density function for the probability of failure
at failure discharge less than dq¢ the levee design capacity;

the second part consists of a delta function, of area
1 - FR(qO = qd) at d, = dgv that accounts for levee failure

by overtopping.

Probability of Structural Failure Uniformly Distributed

Assume that fR(zo)l for z, < zg is uniformly distributed

between Z and z, and that the area under the density function

d

1 : . Cps
folzy) = fQo(qO) if the condition fQo(qO < Qp) = 0 holds,

since z = q - Qb’ Qb being a constant. For the remaining

part of the paper zg will replace d5r 23 for d4-



is a. Then

for z_ < z_ < (16)

fR(zo) zZ, - 2z ! m3 % 2 23+

= § (1 - a) , for zO =24 s

=0 otherwise;

62 (1 - a) is interpreted as a delta function at z4 of
d
area 1 - a.

From Equation (6) the Jacobian transform, dzo/dpf , 1s

dz Caz (v+2)
o| _ ;= =,,=-1 (o]
EEE = (a Vt) [l + V—:—I] (17)
1 _(v+2 ( 1
= o pf v+l (;t) v+l .
The probability density function f(pf) is, from derived
distribution theory,
S22 1 ‘
-1 —_—
a - V+1l' - v+l
f(pf) = E_—:___ L 4 pf vt (18)

d %m

azd ]—(V+l)

az —(V+l)
- - m
for vt + =1 SPe S VE[L 45T » and

= & -
f(Pf) pf(l a)

azd ]-(V+l)

E[pf] from the application of Equation (5) can be calculated
to be

- -v
- az
Elpg] = pp = — ¥ (X * 1 [1+ m] (19)

f f a(zg - z,) v v + 1

= -V = - (v+l)
Az 4 _ Az 4
- L.+-————— + (1 - a) vt (1 + vF I

v + 1




and the second moment E[pfz] is just

- 2 5z -2 (v+1)
2, a(vt) v +1 m
Elpg ] = = e L B e (20)

m

[ - ]—(2v+l)
oz

-1+ —98
v + i

+ (1 - a) (5t)2 [; + _4d

az 1-2 (v+1)
v + 1 ¢

Probability of Structural Failure Quadratically Distributed

Assume that fR(zo) is distributed as follows:

_ _ 2
fR(zo) = b(zo ZZ) , for z < z < z4
= 62 (1 - a) ’ for z, = 24
d
=0 otherwise, (21)

where
a = FR(zo = 24), the probability that failure will

occur at z_ <
o = 2%gr

3
Q)7 -z = ozp)

o
Il

3 . a/[(zd - Z

Using the Jacobian transform presented in the previous
analysis, the probability density function f(pf) can be
found. It is

(=2r) - (vX2, (—=)
- v+ T 2 v+l v+l
fpg) = | [X5) ] [ A N R (5t)
pf J o, o
=z ~(v+1) B 52 - (v+1)
for V|l + < pg S VE[L+ gy , and

f = -
(pf) 6pf(l a)




az -(v+1l)
d (22)

for p; = Gt[l t T

The first moment E[pf] is, from derived distribution theory,

. - -V
_x _Vvtb v+1 2 “Zn
Elpgl = Pg = ( )13 m 2y [l * V‘I‘T]

- v
a
B ~ - (v-1)
Zm T %y v + 1 “Zn
t2 =7 [t vF L
i az 1 v-2)
2 (v + 1) m
* 3 CEN AN B () _l Yy E IJ
az. |7V
- (zg -z ? |1+ 535 (23)
i azd T (v-1)
2 v+1
- g (Zd - ZQ) (ﬁ) _l + 7 T |
i = |- (v-2)
.2, (v + 1) L 4 _d
a (v = 1)(v - 2) L v + 1
az -(v+1l)
+ (1 - a) vt |1 + = +dl .

Similarly, the second moment, E[pfz], can be calculated,
and is:

- .2 Sz -(2v+l)
2 - b(\)t) (v + 1) (z - 2z )2 1 + m
3 m '3

Elp.”] v F 1) v+l
Pm T %) v+l [ azm ]-ZV
+ = (——) |1 + 5571

- J-(2v-1)
, v+ 1)? [; , _*%m ]
3%vi2v - 1) v+l
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2
- (zd - zl) [1 + v +1

(2a " %)y v + 1 azg m2v
- ( ) |1

o v + v + !
- -(2v-1)
(v+l)2 [1+ azd ]
-2 v + 1
a“v(2v - 1)

d

- =2 (v+l)
_ 0z
+ (1 - a) (vt) [l + V_?_I] .

(24)

Bayesian Distribution of Damage with Uncertain Levee Resistance

In a manner similar to the analysis of the failure
probability, the damage due to levee failure can also be
considered. Assume that the damage function is of the form:

.5 2
D(z,zo|zd) = czyq (z - zo) ; (25)

then the expected damage for a known failure discharge, Z
is just

E[D|zo,zd] = J czd'5 (z - zo)2 f(z) dz
z
Y é—r (1 + gz )~ VH (26)

Now let E[Dlzo,zd] be designated as D, where

2 zd'sy
A= —
R v(v + 1)
y = (Vt) ca
B =a/(v + 1)
£(z) = a vt[l + gz]~(v+¥2)
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By using the Jacobian transform

(—) - (—2) - (=)
= g7l a V2 (v-1) V17 (27)

the distribution of damage, due to the uncertain levee resis-
tance, can be calculated from derived distribution theory.

As in the analysis of failure probabilities, the distribution
of damage will be calculated for two failure discharge dis-
tributions f(zo)--one uniformly distributed and the other

quadratically distributed.

f(z ) Uniformly Distributed

Let f(zo) be of the form

f(z,) = ;—— . (28)

Then it can be shown that

A A A
£(D) = —2— g™t (v-1) VL p V-1 vl
d m
for -2+ (1 +8z)" V"M <p < 2@+ 8z )"V, ana
£(D) = GD(l - a)
_ A -(v-1)
forD—V_—l (l+BZd) . (29)

The first moment E[D|zd] is, from derived distribution theory,

E[Dlzd] = J D(z_ ) < £(z) dzg (30)

O

A 1 - (v-2)
da- z)) Bv - D v =2 [‘1 + Bz)
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- (1 + Bzd)—(v—z)]

A
v -1

-(v-1)

+ (1 - a) (1 + Bzd)

In a similar manner the second moment E[D2|zd] can be calca-
lated, and is: '

2
E[D2|Zd] - a zA
(zg - z) (v - 1% B(2v - 3)
[(1 + gz )" 2V73) Loy ezd)"zv'3)] (31)
2% 2 (v-1)
+ (1 - a)- 5 (1 + Bzd) .
(v - 1)

f(z ) Quadratically Distributed

Let f(zo) be of the form

2

f(zo) = b(zO - zl) : (32)

then it can be shown that the distribution of damage f (D) is

(=)
v-1 2
_ A 1
£(D) = [(v— 5) 'l]°§_zz
-0 - (R
. %(v—l) v=l® 5 ‘v=1" 4 v-1
for —2 - (1 + 8z VY <p < 214z )"V, ang
£(D) = 6,(1 - a)
for D = 2 (1 + gz~ V7 (33)
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The first moment E[D|zd] can be calculated as:

E[D|z

+

+

and the second moment

E%[D |z4]

ba

1

+

al = =71 =7

2%2%‘;—;%)(1 + Bzm)'(V-B).

8% (v - 32) (v - 4) (1 + Bzp)

(24 - 22)2 (1 + Bzd)—(v-z)

3&7‘23:—2)&’ (1 + Bzd)-(v-3)
2

82 (v - 3) (v - 4)

A
(1 - a) (V—"I) (1 + BZd)

2
[(Zm - Z,Q,) (l + Bzm)

(v-14)

(1 + Bzy)~ (V'“)]

-(v-1)

1

-(v=2)

(34)

E[D2|zd] as
b2’ )
(2v - 3) (v - 1)28 P = 20 b+ B
zZ - 2
(527177%)(1 + Bzm)_z(v—z)
B (v - 2) (2v - 5) m
(zd - 22)2 (1 + Bzd)-(zv_B)
(2a T 2y -2 (v=2)
1 -(2v=-5)
(1 + Bz.)
8% (v - 2) (2v - 5) d ]
2 ~2 (v-1)
(1 - a) (L + Bzq) “'Y (35)

(v - 1)
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Illustrating Example

The analytical results of the previous sections can be
easily applied to analyze the tradeoffs that exist among
flood levee strength, levee reliability and flood benefits
from levee construction. The decision-making aspects of
these tradeoffs will be dealt with in a future paper.

A hypothetical area will be used for an illustrating
example, but the numerical values for the functions are
similar to those found in Wood et al., [6] for Woonsocket,
Rhode Island, which is on the Blackstone River.

A model representing the probability density function

for peak flood discharges was developed earlier in the
paper and had the form

—— az |7 (V=2)
f(z) = avt 1l + T+ T ’ (36)

where all terms have been defined in Equations (13) and (14).
For our example, the parameters have the following values.

3 = .0001415 £t3 (37)
v = .115 , flood events per year
v= 7 ’ flood events .

The peak flood discharges can be "converted" into a
peak flood stage with a stage-discharge curve. Figure 2 shows
the stage-discharge curve for the upstream end of the area
to be protected. Since that area is assumed to be quite
small (for example protection works for a city) and the
length of the protecting levees is short, it is assumed that
after construction of the levees, the upstream stage-discharge
curve is still appropriate and that the flood wave attenuation
in the levee system is insignificant.

The cost of flood protection is assumed to have the form

C(W,H) = K, W H + K (38)
where

W = base width of the levee,

ja s}
0

height of the levee,
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and Kir Ky, 81 and 82 are constants. If 61 > 1.0 and
82 > 1.0, then the marginal cost for width increases with

height and vice versa.

K, implies that the levees have a fixed cost repre-

2
senting planning, surveying, etc. An illustrative diagram
of the cost surface is presented in Figure 3 for the fol-
lowing parameter values:

K1 = $40,000

K, = $2 x 10°

Bl = 1.25 (39)
B, = 1.25

Those regions where the cost surface is zero represents
infeasible sets of widths and heights.

The damage function used in the analysis had the form

_ .5 2
D(z,zo|zd) = c zg4 (z z,)
where c is a constant. This form has two interesting prop-
erties. One, for the same level of exceedance (z - zo)

higher protection leads to higher damage. This can arise

from the feeling of security behind a comprehensive levee
system and consequently developments of higher density and
quality. Higher damages can also arise in part from higher
reconstruction costs of the levee system if it is damaged.

The second property of the damage curve that should be noticed
is that damage increases quadratically with exceedance dis-
charge. This is often observed in real situations (see Wood
et al., [6]) and will be assumed to be appropriate for this
discussion. An illustrative description of the two-dimensional
damage function is presented in Figure 4.

Effect on the Return Period

The effect of levee strength on the flood frequency
curve (return period, or 1/Probability of failure, versus
design discharge) due to varying levee strengths is illus-
trated in Figures 5 and 6, where the expected return periods
for various levee strengths are plotted.
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It will be remembered that the following definitions
hold:

1. a = the cumulative distribution FZ (zo = zd), for
o
Z o the exceedance discharge where failure occurs, evaluated

at zZqr the design discharge.

2. The uniform density function for Z, had the form

f(z ) = — ’ for z_ < z_ < z
o) zd Z m o) d
= Gz (1L - a) , for z, ~ 24 (40)
d
=0 otherwise.

3. The guadratic density function for z, had the form

_ 2

£(z ) = blz - z)) ' for z <z, < z4
= sz (L - a)y , for Zm ~ 24 (41)
=0 otherwise;

where
b=3-: a/[(zd - 21)3 - (zm - 22)3] .

It is interesting to note that for a design discharge
of 35,000 cu ft/sec and a uniform failure probability density
function, a levee that will fail only by overtopping (a = 0)
has an expected return period of almost 200 years, while a
levee that has a 90% chance of failing before overtopping
has an expected return period of 70 years--only 1/3 the
value of the former. With a quadratic failure probability
distribution, a levee of the same "strength" has an expected
return period of 90 years or about half that of the deter-
ministic levee.

Equations (18) and (22) present the probability density
functions for Pf, the probability of flood failure. Figures

7 and 8 illustrate the first part of these density functions
at a design discharge of 27,500 and 35,000 cu ft/sec respec-
tively for the uniform failure probability.
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The second part of the density functions consists of a
delta function which varies in area between 0 and 1 as
FZ (zO = zd) varies between 1 and 0. This delta function
o
is attached to the first part of the density functions at
the upper end of the return period (i.e. 88 and 188.3 years

respectively).

Effect on Costs and Benefits

For a given design discharge, the stochastic nature of
the levee strength affects the cost of levee construction
and the resulting flood benefits,

Figures 9 and 10 present the annual benefit and cost
curves for the condition of a uniform and a quadratic failure
probability density function, respectively. The design
parameters for the levees are given in Table 1, and cost
and damage coefficients in Table 2. Figures 1l and 12 show
the net benefit curve for the uniform and the quadratic
failure probability density function, respectively.

In terms of an efficiency criterion, the optimal deci-
sion is to build the levee system quite high but quite weak.

For the cost and damage functions used, the decision to
build high, strong levees cannot be justified on economic
grounds. From Figures 5 and 6, it can be seen that econom-
ically preferable, weak levees have a higher probability of
failure. The decision maker is faced with the dilemma of
trading off economic efficiency with failure probabilities.
This decision problem will be addressed in a forthcoming
paper.

The probability density function for the damage was
calculated in Equations (29) and (33). Like the distribu-
tions for the probability of failure, the distributions of
flood damage consist of two parts—-a delta function at the
damage level corresponding to failure at the design discharge,
and a continuous function between the damage at the minimum
exceedance discharge, where failure will occur, and the level
corresponding to failure at the design discharge.

The probability density function for flood benefits can
be easily found.” Annual flood benefits due to a particular
decision, d, are taken to be the expected annual flood dam-
age averted; that is

B,=D_ -D ’ (42)
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where DO is the expected annual damage without protection.

In an analysis, it is assumed that DO is known and 1is
not a random variable. Therefore,

f(Bd) = £(D (43)

Yp. = p -
a’'py = Db, - B

and f(Bd) can be easily calculated from Equations (28) and (33).

Conclusions

This paper analyzes the uncertainty in the probability of
failure and the expected flood benefits due to the uncertainty
in the strength of a flood levee.

o

Experience has shown that during a flood, most levees
fail structurally, rather than by the flood waters overtopping
the levee. Present day analyses rarely include the probability
of structural failure in an explicit manner. This can result
in significantly overestimating the protection offered by a
levee system, and underestimating the expected damage that may
occur. For the example presented here, a deterministic anal-
ysis could overestimate the expected return period by up to
300%, and underestimate expected annual damage by 50%.

The procedures developed here can also be applied to the
analysis of other systems--for example, the distribution of
isotherms from thermal power plant outfalls, the reliability
of large water resource systems for flood control or water
supply, etc. Many of the extensions may require numerical
analysis as opposed to the analytical derivations presented
here, but that should not limit application.
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Table 2

Annual Cost Function Parameters

= 1.
By 0
82 = 2.0
2
K, = 20.17 $/ft
K, = 40340. $

Damage Function Parameter

Y
c = 2.155 x 10 $/cfs

NOTE:

1. Annual costs in dollars, levee base width in feet,
levee height in feet, discharge in cu ft/sec.

2. Costs for levee construction have been appropriately
discounted into equivalent annual costs for comparison with
expected annual flood benefits. The issues of fixing the
appropriate interest rate or project life have not been

explicitly addressed.
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FIGURE 3.ILLUSTRATIVE COST FUNCTION
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FIGURE 4 : ILLUSTRATIVE DAMAGE
FUNCTION
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