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Abstract

We consider a decomposition technique for solving monotone stochastic Nash equilibrium

models based on scenarios and policy aggregation. The algorithm works by splitting the

large multi-scenario equilibriumprogramming problem into separable scenario equilibrium

subproblems that are amenable to solution via mixed complementarity problem solvers.

We will consider preliminary numerical experience on a small stochastic trade model with

two agents, two goods, and two scenarios.

Key words: equilibriumprogramming, decomposition, proximal point methods, stochastic

programming
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uncertainty

Charles H. Rosa

1 Introduction

Equilibrium programming models1 2 have been used for years to analyze a variety of im-

portant problems. Examples abound in the literature, and range from the well known

computable general equilibrium and Nash equilibrium formulations of economic games,

to the modeling of multi-body mechanical systems via frictional contact problems. Many
of these problems can be represented as mixed complementarity problems. Recently, a
great deal of e�ort has been put forth to develop e�cient algorithms to solve problems

of this sort ([BiF95],[ChM95b],[ChM95a],[DiF94], [DiF95a],[DiF95b],[FMR95],[GaP92],
[HaP90],[HaX90],[Jos79],
[KMN91], [KMN89],[Man76], [Man79],[MaS93], [Mat87],[Mor94],[Pan91],[PaG93],[PaQ93],
[Ral94],[Rob94],[WrR93],[XiH94]). A variety of di�erent formulations have been developed
that model the underlying problem in di�erent ways and result in unique algorithms with

di�ering convergence behavior that are applicable to complementarity problems having
di�erent sorts of structure. Because of this e�ort, it is now possible to solve a wide
assortment of moderately sized equilibrium problems.

In this paper, we will consider equilibrium problems that incorporate uncertainty. In
particular, an economic equilibrium model where multiple agents make decisions sequen-

tially over time in order to maximize their own expected utilities, with expectation taken
across a �nite (but possibly large) number of future states of the system, and using an
appropriately de�ned measure to describe the likelihood of the di�erent futures. We will
also assume that each agent recognizes that his decisions, which may vary across scenarios,
can only be functions of the information available at the time he makes his decision. This
is called the principle of nonanticipativity. Finally, we assume each agent is attempting

independently to do this for himself and that a perfect commodity market exists (where

a complete commodity description includes the state of the world), so that, across any
one scenario, the agent's decisions will always be in equilibrium.

1This research was supported in part by an appointment to the Global Change Distinguished Post-
doctoral Fellowship Program sponsored by the U.S. Department of Energy, O�ce of Health and Envi-
ronmental Research, and administered by the Oak Ridge Institute for Science and Education.

2The author is a postdoctoral fellow at Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL
60439, USA (rosa@dis.anl.gov)
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The problem of optimal decision making under uncertainty by a single agent has al-

ready been dealt with extensively. A small sample of the references from the stochastic

programming literature follows ([BiW91], [Bir82], [ErW88], [MuR92], [MuR91], [Rus92],

[HiS91], [Fra92], [Wet89],[RoW86],[Wet83]). We highlight especially the work of Spin-

garn [Spi85], and Rockafellar and Wets [RoW91a], and their work, respectively, with the

method of partial inverses, and the principle of progressive hedging. These ideas result

in powerful decomposition schemes that enable �nite scenario stochastic programming

problems of potentially enormous size to be solved via the solution of a large number of

separable scenario optimization subproblems.

We will aim to do a similar thing with stochastic equilibrium problems. In particular,

we will see that the method of partial inverses can also be applied in the context of mono-

tone stochastic equilibrium programming. In this case, though, rather than separable

scenario optimization subproblems as was the case with stochastic programming, we will

see that it is necessary to solve separable scenario equilibrium subproblems.

The remainder of this paper will be organized as follows. In x2 we will formally de�ne

the stochastic multistage equilibrium programming problem. In section x3 we will review

the work of Spingarn and discuss the applicability of his �ndings to this papers problem. In

section x4 we will state the decomposition algorithm that will be used to solve our problem.
In section x5 we will review the structure of the model that we use for the numerical tests.

We will then present results that illustrate how e�ectively this decomposition algorithm
solves the described model. Finally, we will consider some illustrative examples from
the model of key parameters that show the signi�cantly di�erent results one can expect
to obtain when one undertakes an explicit stochastic equilibrium analysis rather than a
scenario sensitivity analysis.

2 Problem statement

We consider an important class of complementaritymodels known as multistage stochastic
equilibrium programming problems.

We �rst discuss the methodology we use to describe the stochasticity of the model
(developed in [RoW91b]), and show how this �ts within the structure of a representative
agent's decision problem. We then write out the conditions that describe the equilibrium
solution we wish to �nd. The set of all such agents will be denoted as 
 = f1; 2; : : : ; Ag.

The basic object for modeling the passage of time and the 
ow of information is the
scenario tree. The trees levels 1; : : : ; T correspond to time stages and each path from the

root to the leaves corresponds to a scenario from the set S = fjjj = 1; : : : ; Ng. With each

scenario path j we associate the following objects from the ath agent's decision problem:

the decision subvector

xja = (xja(1); x
j
a(2); : : : ; x

j
a(T )) 2 IRq1a � � � � � IRqTa ;

the closed concave utility function uja(x
j
a; x

j

�a

) : IRq1a � � � � � IRqTa �
Q
b2
�a

(IRq1
b � � � � �

IRqT
b ) ! (�1;+1] where 
�a represents the set of all agents other than a, and the

probability pj . Let qa = q1a + : : :+ qTa , na = Nqa and n = n1 + : : :+ nA. The a
th agent
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must make decisions that are a function only of information available at the time of the

decision. In particular, the agent's entire decision vector xa = (x1a; : : : ; x
N
a ) 2 IRna must

satisfy the nonanticipativity constraint: for all t = 1; : : : ; T � 1 and for all pairs (i; j) of

scenarios indistinguishable through the �rst t time stages, one must have

xia(� )� xja(� ) = 0 for � = 1; : : : ; t:

This constraint can be expressed as Aaxa = 0 for a suitable matrix Aa 2 IRmAa�na and so

all nonanticipative vectors xa form a linear subspace La = fxa : Aaxa = 0g of IRna. The

stochastic equilibrium programming problem can be formed as follows:

Find that set fx�1; x
�

2; : : : ; x
�

Ag 2 IRn where (2:1)

x�1 = arg max
x12L1

NX
j=1

pju
j
1(x

j
1; (x

j

�1

)�)

...

x�A = arg max
xA2LA

NX
j=1

pju
j
A(x

j
A; (x

j

�A

)�)

It is clear that this form of equilibrium is a special case of the classical Nash equilibrium.
It is special for a number of reasons. One reason is that each agent's utility function
is a sum of separate scenario components. They are separable because each scenario
component of each agent's utility function maps the set of decisions (both his and his

competitors decisions) from the corresponding scenario into the real line (i.e., they
are not functions of decisions from other scenarios). These separable components of each
agent's utility function are then linked by the need for decisions to be nonanticipative.
This structure will prove to be very useful and certainly preferable, at least as regards
its decomposability along scenario lines, to a more convoluted structure in which an
agent's utility in one scenario might be a function of a decision from a di�erent scenario.

Another way in which this structure is special has to do with the way in which we de�ne a
solution to the stochastic equilibriumprogramming problem. In an ordinary intertemporal
deterministic game with multiple agents, an equilibrium set of sequential decisions would
be de�ned as those decisions from which, given the sequential decisions of all other players,
no one player would choose to move. Therefore, the decisions that an agent makes at any

particular time period depend freely on his and all other agent's decisions throughout

the study horizon. That is, they depend on both the past and future. A set of decisions
is in nonanticipative equilibrium when each set of sequential decisions for each separate
scenario game meets the above requirements for a standard deterministic game, and,

additionally, is nonanticipative with regards to the information structure described by

the scenarios. Thus, a scenario's decisions no longer depend freely on that scenarios past
and future. They depend on the past and the future of that scenario only so far as they

not utilize information about the future before it becomes available (i.e., they must be
nonanticipative).

We will �nd it useful in later sections of this paper to use operators that project vectors

of decisions into the nonanticipative subspaces discussed above. The orthogonal projection

3



u = PLaxa of xa onto La can be calculated as follows (see [RoW91b]). For each a =

1; : : : ; A,j = 1; : : : ; N and t = 1; : : : ; T , determine the set of scenarios indistinguishable

from scenario j at time t:

Ija(t) = fi : �a� (i) = �a� (j); � = 1; : : : ; tg ;

and average xia(t) over this subset:

uja(t) =
1

jI
j
a(t)j

X

i2I
j
a(t)

xia(t):

3 Method of Partial Inverses

Spingarn [Spi85] works within a general Hilbert space H with given inner product hx; yi.

He considers methods for solving the following complementarity problem:

Find x 2 A and y 2 B such that y 2 T (x) (3:1)

where A;B are complementary subspaces of H. He starts by considering methods for

solving the problem of �nding the zero of a maximally monotone operator T (x 2
H such that 0 2 T (x)) where T is monotone if hx � x

0

; y � y
0

i � 0 for all y 2 T (x)
and y

0

2 T (x
0

), and maximally monotone if for every z 2 H and c > 0 there exists a
unique x 2 H such that z 2 x + cT (x). In particular, he considers the proximal point
methods [Roc76] that generate a sequence (zk) from an arbitrary z0 2 H by using a
sequence ck > 0, and the following iteration:

zk+1 = (I + ckT )
�1(zk):

These methods are known to converge to a zero of T given that (ck) is bounded away from

zero and that T has such a zero. To use these methods for complementarity problems,
he develops the concept of the partial inverse of T with respect to A where A is, again, a
subspace of H. He denotes the partial inverse operator as TA and de�nes its graph as:

Gr(TA) = f(xA + yB; yA + xB) : y 2 T (x)g

where xA, yA and xB, yB are, respectively, the unique components of x, y that lie in A

and B. It is clear that the solution of 3.1 corresponds to the

x 2 A and y 2 B such that 0 2 TA(x+ y): (3:2)

Thus, the complementarity problem can be solved by applying the proximal point iteration

to the operator TA. Spingarn shows that the proximal point iteration applied to TA
becomes the following algorithm when written in terms of T :

Algorithm 3.1.

Step 0: Select x0 2 A and y0 2 B. Set k = 1.
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Step 1: Find x
0

k; y
0

k 2 H such that

xk + yk = x
0

k + y
0

k and
1

ck
(y

0

k)A + (y
0

k)B 2 T ((x
0

k)A +
1

ck
(x

0

k)B):

Step 2: Let xk+1 = (x
0

k)A and yk+1 = (y
0

k)B
3. Increase k by 1 and go to Step 1.

Rockafellar and Wets combined the general ideas found in Spingarn's notion of the

partial inverse, with their unique interpretation of stochastic programming as optimization

over a nonanticipative subspace to form the progressive hedging decomposition algorithm.

Using similar ideas, we can create a decomposition algorithm suitable for the stochastic

equillibrium program introduced in x2.

In particular, let's rewrite problem 2.1 as a variational inequality.

Find that set fx�1; x
�

2; : : : ; x
�

Ag 2 IRn where (3:3)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�p1@x1
1

u11((x
1
1)
�; (x1
�1

)�)
...

�pN@xN
1

uN1 ((x
N
1 )

�; (xN
�1
)�)

...
�p1@x1

A
u1A((x

1
A)
�; (x1
�A)

�)
...

�pN@xN
A
uNA ((x

N
A )

�; (xN
�A)
�)

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

T 8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

x11 � (x11)
�

...
xN1 � (xN1 )

�

...
x1A � (x1A)

�

...

xNA � (xNA )
�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

� 0

for all x1 2 L1; x2 2 L2; : : : ; xA 2 LA:

If we set

T ((x11; : : : ; x
N
1 ); : : : ; (x

1
A; : : : ; x

N
A )) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�p1@x1
1

u11(x
1
1; x

1

�1

)
...

�pN@xN
1

uN1 (x
N
1 ; x

N

�1

)
...

�p1@x1
A
u1A(x

1
A; x

1

�A

)
...

�pN@xN
A
uNA (x

N
A ; x

N

�A

)

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; (3:4)

then our variational inequality becomes like problem 3.1 with A = f(x1; : : : ; xA)jx1 2
L1; : : : ; xA 2 LAg. Hence, if we assume that the functions fu11(�); : : : ; u

N
1 (�); : : : ; u

1
A(�); : : : ; u

N
A (�)g

have the appropriate structure to make T maximally monotone, then we can apply the
method of partial inverses directly to this problem. We will leave o� discussion of just

what structure ensures this property until another paper as, at present, we are primarily
interested in the modeling and algorithmic aspects of equilibrium programming under

uncertainty.

3(�)A and (�)B are the projection operators on the subspaces A and B respectively.
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4 Decomposition via the Method of Partial Inverses

In order to ensure that our method results in an algorithm that decomposes along scenario

lines, we must require that (ck) = 1. This is exactly as has already been noted within

the operator splitting literature by both [Spi85] and [EcB92]. To see this, note that when

(ck) = 1, performing Step 1 of algorithm 3.1 with T de�ned as in 3.4 reduces to �nding

the x
0

k 2 H and y
0

k 2 H such that y
0

k = T (x
0

k). This is an operation in which neither the

structure of A nor B plays a part. Since in our case A corresponds to the nonanticipative

subspace that links one scenario with another, this operation can be performed separably

across scenarios, which is exactly what we'd like. When (ck) 6= 1 the operation performed

in Step 1 of algorithm 3.1 becomes signi�cantly more di�cult and requires explicit con-

sideration of both A and B. Fortunately, the resulting algorithm will still converge when

(ck) = 1, since Spingarn's results only require that ck > 0. Unfortunately, the fact that

we can't allow ck to grow towards 1 as the algorithm progresses does remove the pos-

sibility of superlinear convergence. We feel, though, that the bene�ts associated with

decomposability far outweigh this slight set back.

Let us consider now how the method of partial inverses will appear when cast in terms

of our particular operator T and subspaces A and B. Using 3.4, we recall that Step 1 of

algorithm 3.1 requires that we �nd (x)k
0

; (y)k
0

2 H such that

0 = �(y)k + ((x)k
0

� (x)k)+

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

�p1@x1
1

u11((x
1
1)
k
0

; (x1
�1
)k
0

)
...

�pN@xN
1

uN1 ((x
N
1 )

k
0

; (xN
�1
)k
0

)
...

�p1@x1
A
u1A((x

1
A)

k
0

; (x1
�A)
k
0

)
...

�pN@xN
A
uNA ((x

N
A )

k
0

; (xN
�A)
k
0

)

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

:

But this is the same as solving the following problem:

Find that set f(x1)
k
0

; (x2)
k
0

; : : : ; (xA)
k
0

g 2 IRn where (4:1)

(x1)
k
0

= arg maxf
NX
j=1

pju
j
1(x

j
1; (x

j

�1

)k
0

) + hyk1 ; x1i �
1

2
jjx1 � (x1)

kjj2g

...

(xA)
k
0

= argmaxf
NX
j=1

pju
j
A(x

j
A; (x

j

�A

)k
0

) + hykA; xAi �
1

2
jjxA � (xA)

kjj2g

which is a deterministic equilibrium problem that is completely separable across scenarios.
That is, solvable as N separate equilibrium problems. We, thus, arrive at the decompo-

sition algorithm that we will use to solve stochastic equilibrium programs.

Algorithm 4.1.

Step 0: Select (x)0 2 A, (y)0 2 B and � > 0. Set k = 1.
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Step 1: Solve problem 4.1.

Step 2: Let (xa)
k+1 = PLa(xa)

k
0

for all a = 1; : : : ; A. and (ya)
k+1 = PL?a (ya)

k
0

=

(ya)
k � PL?a (xa)

k
0

.

If jj(xa)
k+1 � (xa)

kjj > � or jj(ya)
k+1 � (ya)

kjj > �, increase k by 1 and go to Step 1.

Otherwise stop.

We note that we can easily initialize our algorithm by �rst relaxing the nonanticipativity

constraints of our stochastic equilibrium program, solving each of the scenario subprob-

lems separately, and then projecting the resulting vector of scenario solutions into the

nonanticipative subspace using the projection operator discussed at the end of x2.

We can interpret algorithm 4.1 as an iterative means of locating for each agent the

implicit costs (multipliers) ya; a 2 
 of his uncertainty regarding the future. That is,

ya can be thought of as the price for violating nonanticipativity that must be added to

the objective functions of all agents in each of the scenario equilibrium subproblems in

order for the entire equilibrium solution that we seek to correspond exactly to a partial

equilibrium solution for each of the equilibrium subproblems.

5 Numerical Results

In order to analyze the behavior of algorithm 4.1, we consider a two agent multi-stage
macroeconomic model formulated as a two scenario stochastic equilibrium program with
general structure like that discussed in section x2. This model is based on an earlier
multi-agent stochastic equilibrium model called JMU that was developed by Manne and
Olsen [Ols94], and used to predict the path of economic development during the next two

centuries given that competing economic regions hedge against the current uncertainty
over the eventual costs associated with carbon emission induced environmental change.

The JMU model spans the two century period from 1990 to 2200 via twenty two 10
year time stages. Five multiple agents who represent di�erent economic regions in the
world produce a generic numeraire economic commodity, trade this commodity amongst

themselves, and accumulate capital through interperiod investment. Associated with each
regions production are carbon emissions which are not allowed to exceed that regions
�xed portion of the total global emissions for the period4 . Regions can ensure that their
emissions are not excessive through the use of abatement technologies that are e�ective
at an increasing marginal cost. They can also trade in carbon rights with neighboring

regions. In addition to the required compliance with the international treaty, regions are
induced to reduce their emissions through the incorporation in the model of a penalty

term that sharply reduces productive output at a critical cumulative level of global carbon.
The level at which this curtailment takes place is uncertain and constitutes the stochastic

component of the model. In order to reduce end of horizon e�ects, Manne and Olsen have

included constraints in the last ten periods that force investment to be greater than or

equal to a �xed percentage of the current capital stock. They also limit the period to

4It is assumed that these percentages are agreed upon at the start of the horizon through an interna-
tional treaty.
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Columns 532

Rows 532

Multipliers 78

Table 5.1: Scenario model characteristics

period 
exibility of the overall economy by requiring that each periods global emissions

remain within a �xed percentage of the previous periods emissions. This models the

historically observed putty clay behavior of most large economic systems. A more detailed

description of this model can be found in [Ols94].

In order to expedite computation, we altered Manne and Olsen's original formulation

by removing that portion of their model that associated a given level of cumulative car-

bon emissions with an uncertain economic cost. We replaced this linkage with an explicit

upper bound on cumulative emissions of carbon 5, and replaced the stochasticity with

uncertainty regarding the future productivity of aggregate capital with resolution of that

uncertainty occurring in the �fth period. We also shortened the horizon of the problem to
120 years and reduced the number of agents to two6. We included two di�erent scenarios
of future capital productivity (high7 and low), and, using our decomposition strategy, this
resulted in two nonlinear mixed complementary subproblems with relevant information

concerning the size and structure of each problem shown in table 5.1 This numerical exer-
cise was conducted wholly within the con�nes of the GAMS [BKM92] modeling language
using the PATH [DiF95b] solver as needed for subproblem solution. Because of this, we
report no solution times since the current implementation takes no advantage of the obvi-
ous parallelism across scenarios. We do report the number of iterations required to reach

a su�ciently small violation of nonanticipativity, though, in �gure 5.1. Our measure of

this violation is:
P

a2

1

2
jj(xa)

k
0

� (xa)
kjj2 where the vector (xa)

k
0

solves problem 4.1. This
value gives us the orthogonal distance between our current solution and the nonanticipa-
tive subspace. This curve exhibits the characteristic behavior of proximal point methods
with bounded sequences (ck): Swift progress at the start followed by slower convergence
in the tail. We see that, indeed, this method has delivered in practice no more than
the linear convergence that we could expect from the theory. We reiterate, though, that

this price is small in light of our ability now to decompose large stochastic equilibrium

problems into smaller pieces sure to be solvable by algorithms like that used by PATH,
and other complementarity solvers.

Having successfully solved the stochastic equilibrium problem using the above algo-

rithm, we now compare the model results with those obtained when a simpler scenario

5As with the previous study, we assume that the upper bound on cumulative carbon deposits, along
with each regions share of yearly emissions, would be agreed upon as part of an international treaty. In
this exercise, we set the cumulative upper bound at 1000 billion tons of atmospheric carbon, with yearly
global emissions of carbon split equally amongst the agents.

6The USA and ROW regions from Manne and Olsen's original model.
7After the resolution of uncertainty, capital becomes 20% more productive in scenario 1 than in

scenario 2.
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Figure 5.1: Nonanticipativity

analysis is performed that disregards the question of nonanticipativity. What we �nd

is that several of the key decision variables that make up the hedging strategy returned
by the stochastic equilibrium problem are signi�cantly di�erent from the corresponding
decision variables of the strategy returned by the scenario analysis. This suggests that it
is worthwhile to consider explicit uncertainty in equilibrium models because qualitatively
di�erent predictions of economic behavior can be obtained.

The �rst di�erence that is apparent is the rate of economic output8 for the two agents.
The results are pictured in �gures 5.2 and 5.3. They indicate that the USA will produce
more output during the years prior to 2020 (the year at which uncertainty is resolved) in
the presence of uncertainty than when there is no uncertainty. Similarly, the ROW will
produce less. The way in which this is accomplished is readily apparent when one looks

at the rates of investment pictured in �gures 5.4 and 5.5 and the resulting rates of capital
accumulation pictured in �gures 5.6 and 5.7. Accelerated investment in the USA during
the period of uncertainty leads to higher levels of capital formation. This, in turn, leads
to higher economic output. The opposite e�ect occurs in the ROW. Accompanying this

switch in economic output, we see that consumption in the USA turns out to be higher

during the period prior to the resolution of uncertainty than that predicted by either of
the two deterministic scenarios. Likewise, the predicted consumption in the ROW is less

during this same period. This is pictured in �gures 5.8 and 5.9.
All these examples suggest that incorporating uncertainty into an equilibrium program

can have an impact on the predicted paths of key variables. The exact nature of the impact
will, of course, di�er from model to model. To determine what that impact will be, there

8All pictured variables are in Trillions of US dollars.
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must exist easy to implement methods that are capable of solving large stochastic equi-

librium problems. Decomposition via the method of partial inverses is just such a method

because it breaks the stochastic problem into its component scenario pieces and solves

these separably, passing back and forth only the necessary limited information needed to

reach the desired nonanticipative solution. Because one is required to solve only smaller

deterministic subproblems to reach the intended goal, existing complementarity solvers

prove very adequate. The algorithm is also desirable from a modeling standpoint. Most

equilibrium models start out deterministic. Later, it might become useful to ascertain

how the models results will change with the incorporation of uncertainty. Typically, this

question is approached via scenario analysis by creating multiple copies of the underlying

deterministic model having di�erent data sets that correspond to the desired scenarios.

Any method that can use these separable scenario deterministic subproblems to derive

the nonanticipative stochastic solution is helpful because it means that the model need

not be rewritten. Decomposition via the method of partial inverses does precisely this.
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