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I. Introduction 

Let a region R be given, having water control system 

WR. The remaining part of the region R will be called 

environmental system E. 

The system WR is a controlled set of water sources 

(i.e. reservoirs) and users. All processes in both 

systems WR and E are considered in a period of integer time 

t, t = l,...,s,...,k. 

th Suppose, in the region R at the s stage, a production 

Os Os programme rS = = ,pi,...,PNi 
0 

Os Os 
OS) 

S Y1, ..., Yj, ..., YM and a programme E' = ( B  ) are given, 
0 Os S where pS and Y are subprogrammes, while B is a value 

S equivalent to the programme r (the total income obtained 

if rS is realized). 
Os Os 

The element Pi, i = 1,N of the programme P is the 

amount of the ith output which is to be produced in the 

Os is region R by means of available water resources. Po 

the amount of water distributed as mandatory releases, 

i.e. municipal water supply, low-flow augmentation and 

S other needs unconnected with the programme r . 
OS Realization of any element P,, i = 1,R of the sub- 

- 
I 

S Os 
programme P is carried out by producing the output PiU 

- 
using u production units u = 1,R belonging to the system WR. - u 

S To produce output P;,- every unit needs an amount of water 
0 

L U  

Os S -S 
'iu . 1f x:~ is changed in the interval (Xiu,Xiu) , then 



the output of the unit is changed in the interval (pfu,FYu). - 
0 0 

Obviously, X:~E (xS -' S S -S 
-iutXiu) and Piuf (giu , Piu) . Apparently, 
0 

to produce output pS in the system WR, the following i 

conditions have to be satisfied: 

It is assumed that the programme pS is realized if the 

equality (2) is fulfilled: 

Os where PI is the real output and Pi is the planning output. 
Os The element Y j = 1,M of the subprogramme yS is the 
j ' 

quantity of jth output which is to be produced in the system 

E from the j th unit without using water resources. The out- 

s -S put of the jth unit varies in the interval (Y Y , and - -1 u 
S -S hence yS f (Y ,Y,). 

I -j 
In the cases when the condition (2) cannot be fulfilled 

because of the shortage or flood in the system WR, the region 

is required to realize the programme E' instead of rS. (As 

was already mentioned above, both programmes are equivalent 

in terms of total income.) If 

it is necessary to calculate 

S in such a way that the programmes r and E' are equivalent. 



This condition will be written in the following 

abbreviated form: 

S S The programme yS = y i t  y . . . . , is called 
3 

compensation programme and (3) the compensation condition. 

The elements of the subprogramme pS can be divided 

into two groups: elements producing output that cannot 

be compensated (i.e. replaced by its equivalent value), 

and elements producing output that can be compensated. 

The water demands of the first kind of elements are 

Os included in Po. 

In some cases, condition (3) can be modified in the 

following way. Suppose that the decision maker (DM) in the 

region has at his disposal funds YSf, 0 5 YSf 5 r;Sf for buying 
the unproduced output from other regions. This means that 

in the region there is the possibility for producing output 

M 
YS and/or for buying it with yf. This condition will 

j=1 j 

be written as follows: 

The conditions (3) or (4) are required by the national 

planning authorities of many countries. Their quantitative 

description and introduction into water optimization models 

is of great interest. One of the possible ways to do this 

is discussed below. 



11. Formulation of the Problem 

Suppose a multi-reservoir system WR is given having u 

production units. By means of these units N outputs are 

produced. 

With every unit belonging to WR (e.g. enterprises, 

crops, etc. ) the following function, f (XiU) ,' can be iu 

associated. This function represents the dependence 

between the loss of the uth unit producing the output i 

at stage s and the amount of water distributed to this 

unit. 

Two types of the function, fiu (Xiu) and fiu (Xiu) , 

shown in Figure 1 and Figure 2 respectively, are of 

substantial interest. 

The function fiu(Xiu) differs from the function 
I 

f (Xiu) in the way in which the water is distributed to iu 

the uth user. The variable XiU for the function 

f (Xiu) is determined in the following way: iu 

The condition (5) follows from the natural characteristics 

of some users. For example in agriculture, if the amount of 

water distributed to a given crop is less than a certain 

boundary, then the harvest approaches zero. Hence, if the 

amount of water distributed to the uth unit is XiU, - then it 

is better to give this crop the amount of water equaling zero 

and to distribute the total amount of water to the other units. 

'~11 indexes s are omitted because they pertain to every 
variable considered in this paper. 



FIGURE 1. THE FIRST TYPE OF THE LOSS FUNCTION 

FIGURE 2. THE SECOND TYPE OF THE LOSS FUNC'TION. 
(IN THE INTERVAL(0.X iu )ONLY THE VALUES 
OAND &ARE ADMISSIBLE FOR THE 
ARGUMENT X i,. 



I t  i s  assumed t h a t  a l l  u  i n d e x e s  o f  t h e  u n i t s  i n  t h e  

sys tem WR be long  t o  a  s e t  p = {l,  ..., R), i . e .  u € p .  T h i s  

se t  i s  d i v i d e d  i n t o  two s u b s e t s :  p1 and p 2 ,  where p1 U p 2  = p 

and v l f l  p 2  # 0.  For  a l l  u n i t s  hav ing  t h e  f i r s t  t y p e  of 
1 

f u n c t i o n  f i u ( X i u )  t h e  index  u € p l  and f o r  t h e  rest of  t h e  

u n i t s  u  € p 2 .  

With each  p r o d u c t i o n  u n i t  be long ing  t o  t h e  sys tem I 

( u s i n g  no w a t e r  from WR) can  be  a s s o c i a t e d  t h e  f u n c t i o n  

g j ( y . ) ,  j  = 1, ..., M, f o r  e v e r y  s t a g e  s. T h i s  f u n c t i o n  
3 

r e f l e c t s  t h e  c o n n e c t i o n  between a d d i t i o n a l  o u t p u t  from t h e  

jth u n i t  a t  t h e  sth s t a g e  and i n c r e a s i n g  y  
1 .  

The v a r i a b l e  y  
j  

c o u l d  be  i n t e r p r e t e d  a s  t h e  amount o f  raw m a t e r i a l s ,  l a b o u r ,  

e n e r g y ,  o r  it c o u l d  b e  a  s y n t h e s i s  o f  a l l  t h e  f a c t o r s  

t o g e t h e r .  A p p a r e n t l y ,  t h i s  f u n c t i o n  i s  s i m i l a r  t o  t h e  one 

shown i n  F i g u r e  3 .  Because of  t h e  r e s t r i c t e d  p r o d u c t i o n  

c a p a c i t y  of  t h e  u n i t s ,  t h e  maximum a d d i t i o n a l  o u t p u t  from 

any u n i t  c a n n o t  be  i n  e x c e s s  o f  g 
1  

T h i s  o u t p u t  is o b t a i n e d  
- 

when y  j  - - Y j -  

The e x p e n d i t u r e  connec ted  w i t h  p roduc ing  a n  o u t p u t  g . ( y . )  
3 3 

by t h e  jth u n i t  b e l o n g i n g  t o  t h e  sys tem I i s  deno ted  by 

When one u s e s  t h e  compensat ion  c o n d i t i o n  ( 4 )  a  f u n c t i o n  

$ f ( y f )  i s  i n t r o d u c e d .  T h i s  f u n c t i o n  q u a n t i f i e s  t h e  p r e f e r e n c e s  

of t h e  DM a s  t o  t h e  e x t e n t  of  u s i n g  t h e s e  f i n a n c i a l  r e s o u r c e s .  

One p o s s i b l e  f u n c t i o n  of t h i s  t y p e  i s  shown i n  F i g u r e  4 .  

A f t e r  t h e s e  p r e l i m i n a r y  n o t a t i o n s ,  l e t  u s  c o n s i d e r  t h e  

problems connec ted  w i t h  p u t t i n g  i n t o  p r a c t i c e  t h e  compensat ion 

i d e a  g i v e n  i n  ( 4 )  . 



FIGURE 3. ADDITIONAL OUTPUT gj ( yj ) OF THE 
COMPENSATION UNITS IN THE SYSTEM Z. 

FIGURE L. FINANCIAL COMPENSATION OUTPUT. 
THE INTERVALS (0.r)  AND (rjif ) REFLECT 
THE DIFFERENT PREFERENCES OF THE DM ABOUT 
U Sl  N G FINANCIAL RESOURCES AS COMPEN - 
SATION OUTPUT. 



In [l] it was pointed out that optimum control of a 

multi-reservoir system can be carried out on two hierarchical 

levels. On the first level the optimum amount of water 

released from the reservoir at all stages of time is deter- 

mined. On the second level this amount of water is distributed 

amongst the units. 
* 

Suppose the optimum amount of water W , allocated to the 

units at the sth stage, is distributed to the set of canals 

V = 2 , p , ,  r . Every canal has a restricted capacity 

C pcV. In addition, there are N units producing output 
P' 
in the system WR. 

The goal of a system control on the second level is to 
* 

distribute the amount of water W amongst the units in such a 

manner that: 

a) the total loss in the system will be minimized, 

b) the compensation condition (4) will be fulfilled, 

c) all the physical constraints described below are 

satisfied. 

This goal could be formularized in terms of non-linear 

programming by the following two-step optimization problem. 
* 

In the first step, the amount of water W , allocated to all 

the units u€p in the system WR, is distributed to every 

unit, taking into account all the constraints except for 

compensation condition (4). In terms of non-linear programming, 

this problem (called problem A) is as follows: 



Minimize 

subject to 

By means of (7) the amount of water distributed amongst 

- - 
'iu 

the units is restricted in accordance with the capacity of 

) 0 , if xiu ) Xiu 
r YUCIJ~ - 

the pth canal, pcV. 

0 , otherwise 

The next constraint ( 8 )  requires the whole amount of 

water released from the reservoir at the sth stage to be 

distributed amongst the units in the system WR. This 

constraint allows the entire planning problem to be decomposed 

into problems A and B. 

The lower boundary of all the variables XiU reflects a 

mandatory demand of unit output at the stage s. 

Solving problem A, particularly compensation of the 

losses in the system WR, is carried out because the absolute 



minimum of the functions fiu(Xiu) and fiu(Xiul is reached 

at the point having "negative loss" (see Figures 1 and 2). 

As a result of solving problem A, the optimal value 

* 
F (X ) is obtained, i.e. the total loss in the system WR 

at the sth stage. This loss is compensated through 

over-planned production by the units in system E. The 

whole over-planned production has to take place with 

minimum expenditure. In terms of mathematical programming, 

the second step, obtaining the optimal compensation programme 

(Problem B) , is as follows: 

Minimize 

* 
The optimal values g. (y*), j = m, and yf, obtained at the 

I I 

subject to 
f * * 

sth stage by solving (121, (13), (14) and (15), are components 

M 
(13 1 gj (yj) + yf = 

j=1 

of the optimal compensation programme which is to be fulfilled 

F ( X )  1 if F(X ) > 0 
4 * 

0 ,  if F(X - < 0 
b 

in the region R. 

111. Computational Procedure 

Although problems A and B described in the previous 

section are relatively simple ones, in many cases substantial 

computational difficulties may be encountered. These 



difficulties are due to the non-linear constraint (11). 

In the cases when the functions fiu(Xiu), $Jj (yj) and Qf (yf) 

are concave and g.(y.) is linear, problems A and B could 
3 3 

easily be solved by the method proposed in [ 2 ] .  Moreover, 

this method allows finding a parametrical solution for both 
* * 

problems A and B when W and F(X ) are changed. 

IV. Illustrative Exam~le 

The methodology described here is illustrated by the 

following numerical example. 2 

In the system WR, 5 outputs i = are produced using 

10 units u = 1,10 (Figure 5). For compensation of the 

unproduced output in the system WR, four compensation units 

are available for the system E (N=4). At the stage s = 7 

the amount of water from the reservoir allocated to the 

units is 21.778. 

Using the data available, the following functions 

fiu (xiu) , f iu (Xiu) , I#J . ( y  . , I#Jf (Xf) and g . (y . )  are obtained- 
3 I I 3 

L 
The data used here are taken from the investigation of 

the iskar River basin. 



(21) g. (y.) = h.y . I J I j 

All the coefficients of functions (16), (17), (18), 

(19), (20) and (21) are given in Table 1, 2, 3 and 4. 

The optimum results obtained by the method described in 

[2] are shown in Tables 5 and 6. 

F I G U R E  5 .  
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T a b l e  3. C o e f f i c i e n t s  o f  t h e  f u n c t i o n s  $ .  ( y . )  and 
qj ( y j )  , j = 1 , 2 , 3 , 4 , f .  I I 

T a b l e  4 .  The c a p a c i t y  o f  t h e  c a n a l s .  
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It is obvious that full compensation is impossible 

because some expenditure qi(y.) is needed to produce 
J 3 

compensation output g.(y.). For example, Table 6 shows 
3 3 * 

that the total loss F(X ) obtained, due to the shortage in 

the system WR, is 1.298. The system E produces output 
4 

g(y) = gj (yj) + yf = 1.298 but with total expendi- 
j=1 * 

ture @(y ) = 0.1447. This means that only 

- 100 = 88.85% of the loss in both systems 
1.298 

WR and E is compensated. The ratio F(x.') - $J(~.') will be - * 

called compensation ability of the systems WR and E. 

The method used for solving problems A and B makes 
* 

it possible to find the optimum solution when W and 
* 

F(X ) are changed. The results obtained with this method 

are shown in Figure 6 and Figure 7 respectively. 

In Figure 7, it can be seen that when a maximum loss 
* 

F(X ) = 9.014 in the system WR is obtained, the compensation 

ability of the systems WR and is only 56%. 

Conclusions 

The results of this study indicate that there are some 

possibilities for investigating the mutual impact of the water 

control system WR and the system E embracing WR. The term 

compensation ability is introduced to show the reaction of 

the systems WR and E to the loss due to shortage or flood 

in the system WR. 
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The p a r a m e t r i c a l  s o l u t i o n  of  t h e  problem e n a b l e s  t h e  

DM t o  make more r a t i o n a l  d e c i s i o n s  by t r a c i n g  a l l  changes of 

t h e  v a r i a b l e s .  Moreover, such a  s o l u t i o n  a l l o w s  t h e  DM t o  

compare t h e  r e s u l t s  " a t  once" and t o  g e t  c l e a r e r  i d e a s  f o r  

deve lop ing  t h e  sys tems WR and E under d i f f e r e n t  c o n d i t i o n s .  
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