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Optimal Compensation Programmes

In Water Control Distribution

Ilya V. Gouevsky

I. Introduction

Let a region R be given, having water control system
WR. The remaining part of the region R will be called
environmental system Z=.

The system WR is a controlled set of water sources
(i.e. reservoirs) and users. All processes in both

systems WR and = are considered in a period of integer time

t, t=1,...,8,...,k.
. . th .
Suppose, in the region R at the s stage, a production
o. O o. o0 o o}

S s S s s S ]
programme '™ = \P ,Y ) = Po,Pl,...,Pi,...,PN;
Yi,...,Y?,...,YS) and a programme Es = (BS) are given,

o) o

where P° and Y° are subprogrammes, while B®° is a value
equivalent to the programme rs (the total income obtained

if r° is realized).
Og Os
The element Pi’ i =1,N of the programme P~ is the

th

amount of the i output which is to be produced in the

O
S

region R by means of available water resources. Po is

the amount of water distributed as mandatory releases,
i.e. municipal water supply, low-flow augmentation and

other needs unconnected with the programme re.
o
Realization of any element Pi, i=1,N of the sub-
o
programme p° is carried out by producing the output Piu

using u production units u = 1, belonging to the system WR.
o
s .
To produce output Piu every unit needs an amount of water

o o
s . . . =
X7 . If Xiu is changed in the interval (KEU,X§

iu lu), then




the output of the unit is changed in the interval (Eiu’ﬁiu

o (o]
. S s =S S S =S
Obviously, xiu€2(§iu,xiu) and P, € (B] ,PT,

).

). Apparently,

o
to produce output Pi in the system WR, the following

conditions have to be satisfied:

o 2
(1) PP = ]

It is assumed that the programme P° is realized if the

equality (2) is fulfilled:

(o]
S S .
(2) Pi = Pi , i=1,N

: o)
where Pi is the real output and Pi is the planning output.

o
The element Y?, j = 1,M of the subprogramme v® is the

quantity of jth output which is to be produced in the system

h

% from the jt unit without using water resources. The out-

put of the jth

unit varies in the interval (X?,Y?), and
o
hence Y5 € (v%,¥%).
] =) ]
In the cases when the condition (2) cannot be fulfilled
because of the shortage or flood in the system WR, the region

is required to realize the programme ES instead of TS. (As

was already mentioned above, both programmes are equivalent

in terms of total income.) If
N s N os
] apf= ] [p% - Pf) >0 ,
i=1 i=1

it is necessary to calculate

M S M S c)S
2 (Y. - ¥Y>) >0
521 3 521 \73 J

in such a way that the programmes r® and E® are equivalent.



This condition will be written in the following

abbreviated form:

N S M S S S
(3) Y} oA P. > 0] » Y o y: >0f]| » (I” ~E) .
i=1 - ' I =

= j=1
s
J
compensation programme and (3) the compensation condition.

The programme ys = (y?,...,y

i ,...,y;) is called

The elements of the subprogramme p° can be divided
into two groups: elements producing output that cannot
be compensated (i.e. replaced by its equivalent value),
and elements producing output that can be compensated.

The water demands of the first kind of elements are
included in gi.

In some cases, condition (3) can be modified in the
following way. Suppose that the decision maker (DM) in the
region has at his disposal funds y?, 0 < yi < §? for buying
the unproduced output from other regions. This means that

in the region there is the possibility for producing output
M S

) Y3 and/or for buying it with y?. This condition will
j=1

be written as follows:

N
(4) (Z AP§30)+(2 y?zo)V(yfsio) +> (T
i=1 j=1

s ., Es) .

The conditions (3) or (4) are required by the national

planning authorities of many countries. Their quantitative
description and introduction into water optimization models
is of great interest. One of the possible ways to do this

is discussed below.



II. Formulation of the Problem

Suppose a multi-reservoir system WR is given having u
production units. By means of these units N outputs are
produced.

With every unit belonging to WR (e.g. enterprises,

crops, etc.) the following function, fiu (Xiu),l can be

associated. This function represents the dependence

th

between the loss of the u unit producing the output i

at stage s and the amount of water distributed to this
unit.

] n
Two types of the function, fiu(xiu) and fi

shown in Figure 1 and Figure 2 respectively, are of

substantial interest.

n
The function fiu(xiu) differs from the function

(Xiu) in the way in which the water is distributed to
the u user. The variable Xiu for the function

£. (Xiu) is determined in the following way:

>0 ! if Xiu > giu
(5) X_ = *

o , if 0 <Xy, S Xiy

The condition (5) follows from the natural characteristics
of some users. For example in agriculture, if the amount of
water distributed to a given crop is less than a certain
boundary, then the harvest approaches zero. Hence, if the

amount of water distributed to the uth

unit is X, , then it
is better to give this crop the amount of water equaling zero

and to distribute the total amount of water to the other units.

lAll indexes s are omitted because they pertain to every
variable considered in this paper.
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FIGURE 1. THE FIRST TYPE OF THE LOSS FUNCTION.
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FIGURE 2. THE SECOND TYPE OF THE LOSS FUNCTION.
(IN THE INTERVAL(O,X ;, JONLY THE VALUES
OAND Xj,ARE ADMISSIBLE FOR THE
ARGUMENT X i,,.




It is assumed that all u indexes of the units in the
system WR belong to a set p = {1,...,2}, i.e. u€yp. This
set 1s divided into two subsets: My and LY where Mq U My = M
and ulﬂ My # 0. For all units having the first type of

1
function fiu(x.

lu) the index ue:ul and for the rest of the

units u Cuz.

With each production unit belonging to the system EZ
(using no water from WR) can be associated the function
gj(yj), j=1,...,M, for every stage s. This function
reflects the connection between additional output from the
jth unit at the sth stage and increasing yj. The variable yj
could be interp;eted as the amount of raw materials, labour,
energy, or it could be a synthesis of all the factors
together. Apparently, this function is similar to the one
shown in Figure 3. Because of the restricted production
capacity of the units, the maximum additional output from
any unit cannot be in excess of §j' This output is obtained
when Yy = Vi

J
The expenditure connected with producing an output gj(y.)

J
by the jth unit belonging to the system Z is denoted by
bitys) '

When one uses the compensation condition (4) a function
Ve(yg) is introduced. This function quantifies the preferences
of the DM as to the extent of using these financial resources.
One possible function of this type is shown in Figure 4.

After these preliminary notations, let us consider the

problems connected with putting into practice the compensation

idea given in (4).
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FIGURE 3. ADDITIONAL OUTPUT g; (y;) OF THE
COMPENSATION UNITS “IN °THE SYSTEM =.
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FIGURE 4  FINANCIAL COMPENSATION OUTPUT.
THE INTERVALS (0,t) AND (T,Yf ) REFLECT
THE DIFFERENT PREFERENCES OF THE DM ABOUT
USING FINANCIAL RESOURCES AS COMPEN -
SATION OUTPUT.




In [1l] it was pointed out that optimum control of a
multi-reservoir system can be carried out on two hierarchical
levels. On the first level the optimum amount of water
released from the reservoir at all stages of time is deter-
mined. On the second level this amount of water is distributed

amongst the units.

Suppose the optimum amount of water W*, allocated to the
units at the sth stage, is distributed to the set of canals
v=1(1,2,...,ps-.+,¥). Every canal has a restricted capacity
Cp’ p€V. In addition, there are N units producing output
in the system WR.

The goal of a system control on the second level is to
distribute the amount of water W* amongst the units in such a
manner that:

a) the total loss in the system will be minimized,

b) the compensation condition (4) will be fulfilled,

c) all the physical constraints described below are

satisfied.

This goal could be formularized in terms of non-linear
programming by the following two-step optimization problem.
In the first step, the amount of water W*, allocated to all
the units u€ p in the system WR, is distributed to every
unit, taking into account all the constraints except for
compensation condition (4). In terms of non-linear programming,

this problem (called problem A) is as follows:



Minimize
(6) F(X) = Z fiu(xiu) + 2 f;u(xiu)
UCUl UCUZ
subject to
(7) X.. < ¢ \
uéU = p pE
P
(8) y X. = W¥
ey lu
(9) ziu < Xiu < Xiu ' u€uy
(10) Xiu £ Xju v ue;
>0 ,ifxiu>§iu
(11) xiu = ’ VuCuz
0 , otherwise

By means of (7) the amount of water distributed amongst
the units is restricted in accordance with the capacity of

the pth canal, p¢€Vv.

The next constraint (8) requires the whole amount of

th

water released from the reservoir at the s stage to be

distributed amongst the units u€p in the system WR. This

constraint allows the entire planning problem to be decomposed

into problems A and B.

The lower boundary of all the variables Xiu reflects a
mandatory demand of unit output at the stage s.

Solving problem A, particularly compensation of the

losses in the system WR, is carried out because the absolute
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v '
minimum of the functions fiu(xiu) and fiu(Xiu) is reached
at the point having "negative loss" (see Figures 1 and 2).
As a result of solving problem A, the optimal value
F(X*) is obtained, i.e. the total loss in the system WR
at the sth stage. This loss is compensated through
over-planned production by the units in system Z. The
whole over-planned production has to take place with
minimum expenditure. In terms of mathematical programming,

the second step, obtaining the optimal compensation programme

(Problem B), is as follows:

Minimize
M
(12) oly) = | T wslyy) + velye)
j=1
subject to
* *
M F(X ) , if F(X)> O
13) . L) o+ =
( jgl 95 (yy) + vg .
0o , if F(X ) <0
14 0 <y. < vy. , =
(14) S Yy S Yy j=1,M
(15) 0 < vg < ¥,

: * . — *

The optimal values gj(yj), 3 = 1,M, and Yer obtained at the
sth stage by solving (12), (13), (14) and (15), are components
of the optimal compensation programme which is to be fulfilled

in the region R.

IITI. Computational Procedure

Although problems A and B described in the previous
section are relatively simple ones, in many cases substantial

computational difficulties may be encountered. These
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difficulties are due to the non-linear constraint (11).

In the cases when the functions fiu(xiu)’ wj(yj) and wf(yf)
are concave and gj(yj) is linear, problems A and B could
easily be solved by the method proposed in [2]. Moreover,
this method allows finding a parametrical solution for both

* *
problems A and B when W and F(X ) are changed.

IV. TIllustrative Example

The methodology described here is illustrated by the

following numerical example.2

In the system WR, 5 outputs i 1,5 are produced using
10 units u = 1,10 (Figure 5). For compensation of the
unproduced output in the system WR, four compensation units
are available for the system & (N=4). At the stage s = 7
the amount of water from the reservoir allocated to the

units is 21.778.

Using the data available, the following functions.

£iain)r 0y wj(yj), Ve (Xe) and gj(yj) are obtained.
o
(1) (1) (1) ,2 .
' iy’ * Pig Xiy * aju Xiu ’ if X34 2 Xy
U Faliad T L (2) 2 o
iiu * Piy Xiu * Ay Xiu o Af Xiu 2 Xiu
a=2,3,4,8,10;
o
(1) (1) (1) ,2 .
" %yt Biy Xia ¥ Yig % ¢ X4 2 Xy
(17) £. (X, ) =
e a(2) + 3(2)x + (2)x2 if X > ;
iu iu “iu iu “iu ! iu - “iu

u = 1’5’6’779;

2, . .
. The data used here are taken from the investigation of
the Iskar River basin.




—_—) )

-

- 12 -

_ 2 -
(18) wj(yj) = ajyj , j =1,4
P35
by
f4f .
ag (e -1, if 0 < Xe < T
(20) wf(xf) =
2 —
df + prf + quf r 1f T < Xe < Xe
. . = h.
(21) gj(yj) JyJ

All the coefficients of functions (16), (17), (18),
(19), (20) and (21) are given in Table 1, 2, 3 and 4.
The optimum results obtained by the method described in

[2] are shown in Tables 5 and 6.
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Table 3. Coefficients of the functions .(yj) and
g.(ys), 3 =1,2,3,4,f.
173
a b. da. . . T V. h,
j ] J pJ qJ yJ J
2.600| - - - - - 0.7 2.26
1.525 1 - - - - 1.0 5.00
2.100 1 - - - - 0.8 4,20
4.10 - - - - - 0.9 6.30
0.4 1 (0.1399 -1,.8653 6.2178 0.3 0.4 1
Table 4. The capacity of the canals.
P 1 2 3
Cp 19.55 18.05 20.20
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It is obvious that full compensation is impossible
because some expenditure wﬁ(yj) is needed to produce

compensation output gj(yj). For example, Table 6 shows

*
that the total loss F(X ) obtained, due to the shortage in

the system WR, is 1.298. The system = produces output
4

gly) = 7§ gj(yj) + ye = 1.298 but with total expendi-
j=1
*

ture V(y ) = 0.1447. This means that only

1.298 - 0.1447
1.298

100 = 88.85% of the loss in both systems

* *
WR and £ is compensated. The ratio F(X ) - y(y ) will be
*
F(X)

called compensation ability of the systems WR and E.

The method used for solving problems A and B makes
it possible to find the optimum solution when W* and
F(X*) are changed. The results obtained with this method
are shown in Figure 6 and Figure 7 respectively.

In Figure 7, it can be seen that when a maximum loss
F(X*) = 9.014 in the system WR is obtained, the compensation
ability of the systems WR and Z is only 56%.

Conclusions

The results of this study indicate that there are some
possibilities for investigating the mutual impact of the water
control system WR and the system % embracing WR. The term
compensation ability is introduced to show the reaction of
the systems WR and Z to the loss due to shortage or flood

in the system WR.
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The parametrical solution of the problem enables the
DM to make more rational decisions by tracing all changes of
the variables. Moreover, such a solution allows the DM to
compare the results "at once" and to get clearer ideas for

developing the systems WR and £ under different conditions.
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