RM-75-4

A STUDY ON THE DEMAND ASPECTS OF THE HÄFELE-MANNE MODEL -AN APPLICATION OF THE MATHEMATICAL TECHNIQUE OF THE HOFFMAN MODEL

Atsuyuki Suzuki Rudolf Avenhaus

February 1975

Research Memoranda are informal publications relating to ongoing or projected areas of research at IIASA. The views expressed are those of the author, and do not necessarily reflect those of IIASA. 1 .

<u>A Study on the Demand Aspects of the Häfele-Manne Model</u> -<u>An Application of the Mathematical Technique of</u> <u>the Hoffman Model</u>

Atsuyuki Suzuki and Rudolf Avenhaus*

1. Introduction

Wolf Häfele and Alan Manne [1] present a <u>dynamic model</u> to find an optimal strategy on a transition from fossil to nuclear fuels such that the following five constraints hold in the planning horizon, 1970 to 2045, for a model society:

- a) supply aspects:
 - 1) the limited reserves of petroleum-and-gas,
 - 2) the limited reserves of low-cost uranium,
 - the limited industrial capacity for construction of nuclear reactors,
 - 4) the limited financial resources available to the energy supplying sector, and
- b) demand aspects:
 - 5) the minimum requirement of exogenous energy demands of the two macroscopic sectors, electrical energy and nonelectrical energy.

The energy supply alternatives considered in the model are:

- a) for electrical energy:
 - 1) coal steam generating plant,
 - 2) light water moderated reactor (LWR), and
 - 3) liquid metal fast breeder reactor (FBR), and

The authors are indebted to Professors W. Häfele and W. Nordhaus for their valuable suggestions and encouragement. They also wish to thank Dr. C. Winkler for his instruction in using his own linear programming computer code. In addition, thanks are due to Mr. L. Schrattenholzer for his assistance with the calculations reported here.

- b) for nonelectrical energy:
 - 1) petroleum-and-gas,
 - hydrogen from thermochemical water splitting by process heat of high-temperature gas cooled reactor (HTGR), and
 - 3) hydrogen produced from electrolysis.

Almost all of the optimal solutions of the Häfele-Manne model indicate that the limited reserves of petroleum-andgas necessitate the rapid change of the nonelectrical energy supply pattern from a petroleum-and-gas basis to a hydrogen From the standpoint of individual energy consumers, basis. however, for one consumer such an abrupt change is beyond acceptability due to the consumer's high inertia, while for another consumer it is acceptable owing to the consumer's flexibility. Therefore it is worthwhile considering the question of how rapidly the changes required by the optimal solution of the Häfele-Manne model must occur for the individually more disaggregated energy demand sectors. The analysis of this question with the help of the Hoffman model [2] is the general subject of this paper.

Kenneth Hoffman built a <u>static model</u> to determine an optimal energy resource allocation to the following fifteen demand sectors:

- 1) space héat,
- 2) air conditioning,
- 3) intermediate load electricity,
- 4) base load electricity,
- 5) peak load electricity,
- 6) water desalination,
- 7) pumped storage and synthetic fuel,
- 8) water heating,
- 9) miscellaneous thermal uses,
- 10) air transport,
- 11) ground transport, public and commercial,
- 12) ground transport, private,
- 13) iron production,
- 14) cement production, and
- 15) petrochemistry and synthetic materials.

While Hoffman's numerical results were shown in the year 2000 for the USA, the mathematical framework of this model is useful for any year in the future. If one can find conditions for compatibility between the Hoffman model and the Häfele-Manne model then one will be able to obtain an answer for the question mentioned above by making sequential use of the Hoffman model. The compatibility is concerned chiefly with the input data used in the two models. The Häfele-Manne model treats the society (model society 1) in which the energy demands are projected under the assumption that the primary energy consumption per capita doubles from 10 to 20 KW_{th} between the years 1970 and 2015, and the population size increases from 250 x 10^6 to 350 x 10^6 . On the other hand the energy society treated in the Hoffman model is based on roughly 20 KW_{th}/cap with 300×10^6 people. Hence as far as the macroscopic specifications relevant to energy demand projections are concerned, it is possible to find a modelling condition which yields compatibility between the two models.

Now the purpose of this paper is to show the timing of an energy allocation pattern to Hoffman's fifteen demand sectors satisfying an optimal strategy of the Häfele-Manne model. More specifically, a linear programming optimization problem will be solved year by year by using the mathematical technique of the Hoffman model. The problem is characterized by:

- a) the upper bound of energy supply of the individual supply alternatives fixed by an optimal solution of the Häfele-Manne model. For an illustration, the model society 1.60 is chosen; and
- b) the lower bound of energy demand of the individual demand sectors fixed for each year, 1997, 2000, 2003, 2006, and 2009 in accordance with the demand projection of the Hoffman model.

2. Analytical Method¹

The Hoffman model formulates a national energy system in a transportation network format. The network is quantified with the energy flows from alternate resources through the various conversion and delivery activities to specific end uses. The problem to be treated here has six exogenous (coal, LWR, FBR, petroleum-and-gas, HTGR-hydrogen, and electrolytic hydrogen) and one endogenous (pumped

¹See [2], pp. 60-70.

storage²) supply sectors, and fifteen demand sectors. The schematic description of the problem is shown in Figure 1 according to the Hoffman network.

In the Hoffman model the intermediate energy form on the individual possible paths from each supply sector to each demand sector is chosen as an independent variable to be optimized, and therefore the number of variables in our problem is $7 \times 15 = 105$ including all the possibilities.

Figure 2 illustrates the analytical method of the Hoffman model. For a given path j, a resource S, is converted to intermediate energy form X_i at an efficiency e_{uj}. In turn the intermediate energy form is used to satisfy demand D_v at an efficiency D_{vj} . A cost c, and set of coefficients f_{wi} describing other additional constraints are also defined per unit of intermediate energy form.

The mathematical formulation of the model is as follows:

minimize	the total cost: 3	$C = \sum_{i} c_{j} x_{j}$
subject	to]
1)	supply constraint:	∑ l x _j ≤ S _u , j ^{uj} xj ≤ S _u ,
2)	demand constraint:	∑ d _{vj} x _j ≥ D _v , j
3)	other constraints:	$\int_{w_j} f_{w_j} x_j \leq B_w$, and
4)	nonnegativity condit	$x_{j} \ge 0$.

Supply constraint equations are defined for each supply sector, and demand constraint equations are defined for each demand sector except for peak electricity because the amount of peak electrical demand is given not exogenously but endogenously. Other constraints to be considered here are:

²In the Hoffman model the supply sector of pumped storage has an important role in describing the mathematical constraints on energy load fluctuation, and the energy amount required for this sector is determined endogenously.

³In his original work, Hoffman used various objective functions. We here used his first one which he classified as "technological" strategy.

- off-peak constraints that specify the maximum amount of energy available from each central station electrical source to serve off-peak electrical or thermal demands,
- 2) pumped storage and synthetic fuel balance equations that ensure equality between the amount of energy supplied to pumped storage and/or synthetic fuel and that delivered from pumped storage and/or synthetic fuel including losses, and
- endogenous demand constraints by which portions of central station electrical demands can be reassigned internally to categories with different load factors.

3. Input Data Preparation

Now our problem has one objective function and three sorts of constraint equations: hence four sets of coefficients c_j , e_{uj} , d_{vj} , and f_{wj} and three sets of right-hand side values, S_u , D_v , and B_w are to be assigned for each year. For the purpose of this examination it is necessary in preparing these input data to use as much data of the Häfele-Manne model as possible.

While the Hoffman model considers the whole of the network shown in Figure 1, the Häfele-Manne model focuses on one-half, i.e. the energy supplying subsystem from each energy resource to each intermediate energy form (electrical and nonelectrical energy). Therefore the Häfele-Manne model gives the input data for supply constraint equations and cost coefficients excluding delivery costs, and the Hoffman model is utilized to make up the input data for all the other constraint equations.

Table 1 shows the cost coefficients for our problem which are obtained from adding the Hoffman energy delivery costs to the Häfele-Manne energy costs. Further, Appendix A makes a comparison of the energy costs for each of the supply alternatives between the two models.

Table 2 gives the coefficients for supply constraint equations which correspond to the inverse of thermal efficiencies for coal, LWR, and FBR technologies and correspond to the production efficiencies of oil products and hydrogen for petroleum-and-gas and hydrogen technologies respectively.

In preparing the right-hand side values of supply constraint equations the compatibility study was done; it was found at the first computing trial that the equilibrium activity level 20 KW_{th}/cap of the model society 1.60 is not

enough to satisfy the Hoffman demand constraints. Then a kind of trial-and-error computation was done in such a way that the equilibrium activity level was increased gradually up to the level which satisfies the Hoffman demand constraints.

As a result it turned out that the revised activity level of the Häfele-Manne model society 1.60 should be between 24 KW_{th}/cap and 25 KW_{th}/cap depending on the year, and finally the level 25 KW_{th}/cap was selected to yield the right-hand side values of supply constraint equations for each year, as shown in Table 3.

The coefficients of demand constraint equations were made up generally in accordance with the energy utilization efficiencies used in the Hoffman model. It is to be noted here that not only the Hoffman model but also the Häfele-Manne model defines the hydrogen utilization factor which implies BTU of petroleum-and-gas replaceable for one BTU of hydrogen utilized in end uses, and yet the values of that factor assessed in the two models are quite different (see Table 4). One of the authors did a sensitivity analysis on that factor of the Häfele-Manne model and demonstrated that the hydrogen utilization factor, the value of which was distributed from unity to two in the analysis, has a significant effect on the solution of the Häfele-Manne model [3]. In our problem treated here, however, the value is fixed as 1.5 for each demand sector according to the Häfele-Manne estimation.

The right-hand side values of demand constraint equations were assigned under the assumptions that the minimum requirement of energy, D_v , for each demand constraint, which the Hoffman model assesses for the year 2000, is kept relatively constant during the years 1997 to 2009, although total energy demand does vary with time in accordance with the Häfele-Manne demand projection. The values are shown in Table 5.

With respect to the other constraints, the input data used in the Hoffman model were also employed for our problem. Appendix B is attached to exhibit a complete set of the input data.

4. Calculation Result

Figures 3.1 to 3.15 are the representation of the time sequential changes of energy supply pattern for individual demand sectors which were obtained from our calculation.

The result indicates that:

- For the demand sectors of space heat and air conditioning the rapid changes from petroleumand-gas to hydrogen are observed (Figures 3.1 and 3.2).
- 2) Concerning the electrical demand sectors it is to be noted that the FBR supplies 100% of the requirements for both intermediate and base load electricities, and that, for peak electricity as well, it replaces the 1997 LWR energy supply role by 2009 (Figures 3.3 to 3.5).
- 3) For water desalination, petroleum-and-gas and LWR electricity are used almost equally for each year, and the energy supply pattern is at a steady state (Figure 3.6).
- 4) With respect to the pumped storage and synthetic fuel demand sector, all the energy is used for synthetic fuel (hydrogen) production and it is given in the form of electricity (Figure 3.7).
- 5) The water heating demand sector uses only hydrogen for each year. There is no change of energy supply pattern (Figure 3.8).
- 6) As for the demand sector of miscellaneous thermal uses, while LWR electricity meets about 40% of the total demand for each year, the remarkable change from petroleum-and-gas to hydrogen is required to meet the remaining 60% (Figure 3.9).
- 7) The energy supply pattern for the air transport is hardly realistic since the solution indicates that the revival use of petroleum-and-gas comes to pass in 2009 after the rapid change from petroleum-and-gas basis in 1997 to hydrogen basis in 2003 (Figure 3.10).
- 8) The optimal solution for the demand sectors of ground transports suggests that electric motor propulsion units which use electricity directly from central power stations and electric vehicles whose batteries are charged by off-peak electric energy should be employed for publicand-commercial uses and for private use respectively in place of internal combustion engines (Figures 3.11 and 3.12).

9) For all the remaining demand sectors of industrial uses, iron production, cement production, and petrochemistry-and-synthetic materials, the solution implies that nothing but petroleum-andqas is used (Figures 3.13 to 3.15).

After all, the calculation result says that:

- a) Ground transports must be based on electric propulsion systems instead of internal combustion engines before the year 2000. The energy requirement for these demands is about 25% of the total electrical demand in terms of primary energy form.
- b) The energy demand for water heating must be met by hydrogen energy before the year 2000. The energy requirement for this demand is about 10% of the total hydrogen use in terms of primary energy form.
- c) The technological renovation in the field of energy utilization on space heat, air conditioning, miscellaneous thermal uses and air transport must be done so as to accept the rapid change from petroleum-and-gas basis to hydrogen basis about the year 2000. The sum of these energy requirements is about 65% of the total petroleum-and-gas use in the year 2000.

Appendix C is attached for the complementary purpose of giving a complete set of the solutions.

5. Concluding Remarks

This study is just to observe the acceptability of the Häfele-Manne model strategy from the standpoint of the energy consumer's society, and it is not the aim of this paper to draw general conclusions on the acceptability. As far as the calculation result illustrated here is concerned, the optimal strategy of the Häfele-Manne model society 1.60 necessitates the rapid transformation of the manner of energy utilization in some demand sectors, such as space heat, water heating, miscellaneous thermal uses, air transport and ground transports.

If this transformation is beyond the acceptability of the individual demand sector, the Häfele-Manne model should be improved in this sense: one of the possible methods is to additionally take into consideration the constraint on the acceptability being described by an upper bound of increasing or decreasing rate of individual energy supply technology uses. While both the Häfele-Manne and the Hoffman models presume that per capita primary energy consumption will be approximately 20 KW_{th}/cap in the year 2000, the illustrated example indicates that there is 20% to 25% difference between the two presumptions. This difference is due mainly to the fact that the Häfele-Manne model projects the energy demands in terms of primary energy form while the Hoffman model does so in terms of final energy form. There are two types of energy efficiency in the process from the primary energy form to the final energy form, and the energy requirements for individual end uses described in terms of primary energy form are significantly dependent on the two efficiencies lying in the corresponding process.

The demand sector where the efficiency dependency is the most remarkable is water desalination; it is presumed in the Hoffman model that the utilization efficiency of solar energy for water desalination is 100% while the efficiency of every other supply alternative is only 10%. Hence the optimal solution of the Hoffman model indicates that solar energy is the best for that sector because of this high efficiency, and yet, in our calculation result, more than 10% of the total primary energy requirement must be used for this sector because of the exclusion of the solar energy alternative. The inclusion of a solar option will be considered in subsequent work. Table 1. Cost coefficients.

(\$/10⁶ BTU of intermediate energy form, 100% Load factor)

	Current	Capital	Total
Coal Electricity ^{l)}	2.80	2.82	5.62
LWR Electricity ^{l)}	.58	3.25	3.83
FBR Electricity ¹⁾	. 29	3.47	3.76
Pumped Storage ²⁾	.17	1.52	1.69
Petroleum-&-Gas ³)	2.26/1.75/1.36		2.26/1.75/1.36
HTGR Hydrogen	.67	1.73	2.40
Electrolytic Hydrogen ²⁾	.20	.33	• 55

 1 Corresponding intermediate energy form is electricity except for

water desalination.

² Excluding the cost for used electricity.

 3 Corresponding intermediate energy forms are classified into three gasoline/fuel oil/residual oil. forms:

Table 2. Supply coefficients.

Supply Efficiency	Hoffman	Häfele-Manne
Coal Electricity	428	40%
LWR Electricity	30%	338
FBR Electricity	428	408
Pumped' Storage	71%	2)
P-and-G Nonelectric	<u>918</u>	3)
HTGR Hydrogen	2)	50%
Electrolytic Hydrogen	83%	80%
	1	

Note: 1) The values underlined are taken as input data.

- 2) The corresponding supply sector is not considered.
- 3) The value is not written explicitly.

Table 3. Supply constraints.

(Unit: $mQ = 10^{15}$ BTU of primary energy form)

Year	1997	2000	2003	2006	2009
Coal Electricity	15.00	15.00	11.40	8.10	4.80
LWR Electricity	88.50	88.50	83.70	80.10	74.70
FBR Electricity	47.10	58.50	70.50	82.80	94.80
Pumped Storage	1.00	1.00	1.00	1.00	1.00
Petroleum-and-Gas	76.20	76.20	65.40	54.30	42.90
HTGR Hydrogen	10.80	29.40	49.20	68.70	87.30
Electrolytic Hydrogen	20.26	20.26	20.26	20.26	20.26

Table 4.	Hydrogen	utilization	factor η _u	estimated in
	the Hoffm	an model and	d the Häfe	le-Manne model.

Demand Sector (v)	η _u (τ	7)
	Hoffman	Häfele-Manne
Space Heat Air Conditioning Intermed. Elec. L.F. 0.5 Base Load Elec. L.F. 1.0 Peak Elec. L.F. 0.1 Water Desalination Pumped Storage & Synth. Fuel Water Heating Misc. Thermal Uses Air Transport Ground Trans. Pub. & Coml. Ground Trans. Private Iron Production Cement Production Petrochem. & Synth. Matl.	1.26 1.10 1.47 1.47 1.47 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	av. 1.5

Table 5. Demand constraints.

(Unit: $mQ = 10^{15}$ BTU of final energy form)

······································		· · · ·			
	1997	2000	2003	2006	2009
Space Heat	11.46	12.20	12.85	13.39	13.80
Air Conditioning	3.66	3.90	4.11	4.28	4.41
Intermed. Elec.	2.54	2.70	2.84	2.96	3.05
Base Load Elec.	12.21	13.00	13.69	14.27	14.71
Peak Elec.	-	-	-	_	-
Water Desalination	2.44	2.60	2.74	2.85	2.94
Pump. Storage & Synth. Fuel	5.92	6.30	6.64	6.92	7.13
Water Heating	2.54	2.70	2.84	2.96	3.05
Misc. Thml. Uses	35.50	37.80	39.82	41.50	42.77
Air Transport	1.60	1.70	1.79	1.87	1.92
Ground Trans. Pub. & Coml	2.82	3.00	3.16	3.29	3.39
Ground Trans. Private	5.73	6.10	6.43	6.70	6.90
Iron Production	1.88	2.00	2.11	2.20	2.26
Cement Production	1.31	1.40	1.47	1.54	1.58
Petrochem. & Synth. Matl.	9.86	10.50	11.06	11.53	11.88

Hoffman model.

problem in the format

of O

-15-

Definition of terms:

Su Supply constraints, u = 1,n Dv Demand constraints, v = 1,m xj Quantity of intermediate energy form j delivered from Su to Dv; j=1,p where p=n·m euj Supply efficiency for energy xj dvj Utilization efficiency for energy xj fj Other constraint equation coefficients for variables xj, constrained by B. Both fj and B are column vectors of dimension # cj Cost per unit quantity of energy xj Figure 2. Graphical representation of linear Dv = 1, not set the set to s

programming model (after K.C. Hoffman [2], p. 61).

Figure 3.1. Time sequential change of energy supply pattern for space heat.

supply pattern for air conditioning.

Time sequential change of energy

Figure 3.2.

-18-

Figure 3.6. supply pattern for peak electricity. Time sequential change of energy Figure 3.5.

supply pattern for water desalination.

Time sequential change of energy

-19-

1.10

pattern for pumped storage and synthetic fuel.

Figure 3.7.

Figure 3.10. Time sequential change of energy supply pattern for air transport.

Figure 3.11. Time sequential change of energy supply pattern for ground transportation, public and commercial.

Figure 3.12. Time sequential change of energy supply pattern for ground transportation, private.

-22-

100%

80

pattern for cement production.

2009

Petroleum-2-Gas

APPENDIX A

Comparison of Cost Estimations

The Hoffman estimation:

in terms of 1970 US dollars;

The Häfele-Manne estimation:

in terms of 1974 US dollars;

Coal Electric	city	Hoffman	Häfele- Manne	Our problem
a) Current				
base ¹⁾	\$/10 ⁶ BTU _{th}	0.25	1.00	1.00
delivery	\$/10 ⁶ BTU _{th}	0.12		0.12
subtotal	\$/10 ⁶ BTU _{th}	0.37	1.00	1.12
thermal effi	ciency	0.42	0.40	0.40
for IEF ²⁾	\$/10 ⁶ BTU _e	0.88	2.50	2.80
b) Capital (100	% LF ³⁾)			
base	\$/KWe	278	400	400
transmission	\$/KWe	250		250
subtotal	\$/KWe	528	400	650
CRF ⁴⁾	/year	0.1	0.13	.13
for IEF ²⁾	\$/10 ⁶ BTU _e	1.76	1.73	2.82
c) Total				
for IEF ²⁾	\$/10 ⁶ BTU _e	2.64	4.23	5.62

Table A.1. For coal electricity.

¹Including operating and maintenance cost. ²IEF = Intermediate Energy Form. ³LF = Load Factor. ⁴CRF = Capital Recovery Factor. Table A.2. For LWR electricity.

	LWR Electricity		Hoffman	Häfele- Manne	Our problem
a)	Current				
	base	\$/10 ⁶ BTU _{th}	0.16	0.19 ¹⁾	0.19 ¹⁾
	thermal efficie	ncy	0.30	0.33	0.33
	for IEF '	\$/10 ⁶ вти _е	0.53	0.58	0.58
b)	Capital (100% L	F)			
	base	\$/KWe	337	500	500
	transmission	\$/KWe	2 50		250
	subtotal	\$/KWe	58 7	500	7 50
	CRF	/year	0.1	0.13	0.13
	for IEF	\$/10 ⁶ BTU _e	<u>1.96</u>	2.17	3.25
c)	Total				
	for IEF	\$/10 ⁶ BTU _e	2.49	<u>2.75</u>	3.83
			5		

¹Including enrichment costs.

-27-

Table A.3. FBR electricity.

	FBR Electricity		Hoffman	Häfele- Manne	Our problem
a)	Current				
	base	\$/10 ⁶ BTU _{th}	0.11	0.12	0.12
	thermal efficie	ency	0.42	0.40	0.40
	for IEF	\$/10 ⁶ BTU _e	0.26	0.29	0.29
b)	Capital (100% I	.ғ)			
	base	\$/KWe	384	550	550
	transmission	\$/KWe	250		250
	subtotal	\$/KWe	634	550	800
	CRF	/year	0.1	0.13	0.13
	for IEF	\$/10 ⁶ BTU _e	2.11	2.38	3.47
c)	Total				
	for IEF	\$/10 ⁶ BTU _e	2.37	2.67	3.76

	Pumped Storage		Hoffman	Häfele- Manne	Our problem
a)	Current for IEF	\$/10 ⁶ btu _e	0.17	<u>0.17</u>	0.17
b)	Capital (100% I	F)			
	base	\$/KWe	100		
	transmission	\$/KWe	250		
	subtotal	\$/KWe	3 50		
[CRF	/year	0.1	0.13	0.13
	for IEF	\$/10 ⁶ BTU _e	<u>1.17</u>	1.52	<u>1.52</u>
c)	Total				
	for IEF	\$/10 ⁶ btu _e	1.34	<u>1.69</u>	<u>1.69</u>

t

Table	A.5.	For	petroleum-	and-gas.
TUDIC		101	POOLOTOUM	and gab.

	Petroleum-and-G	as Nonele.	Hoffman	Häfele- Manne	problem
a)	Current crude oil base	\$/barrel \$/10 ⁶ BTŲ	shale oil ¹⁾	10	10
	gasoline fuel oil		1.06 0.82	2.15 ²⁾ 1.67 ³⁾	2.15^{2} 1.67^{3}
	residual oil delivery ⁵⁾	\$/10 ⁶ btu	0.64	1.304)	1.304)
	gasoline fuel oil		0.11		0.11
b)	Capital		nil	nil	nil
с)	Total for IEF	\$/10 ⁶ btu			
	gasoline fuel oil residual oil		<u>1.17</u> <u>0.90</u> <u>0.70</u>	$\frac{2.15}{1.67}$ $\frac{1.30}{1.30}$	$\frac{2.26}{1.75}$ $\frac{1.36}{1.36}$

¹ It is assumed that price of crude oil will escalate to but not exceed price of shale oil.

$$\frac{2}{barrel} \times \frac{barrel}{6 \times 10^{6} BTU} \times \frac{1.06}{0.82} = \$2.15/10^{6} BTU$$

$$\frac{3}{barrel} \times \frac{barrel}{6 \times 10^{6} BTU} \times \frac{0.82}{0.82} = \$1.67/10^{6} BTU$$

$$\frac{4}{barrel} \times \frac{barrel}{6 \times 10^{6} BTU} \times \frac{0.64}{0.82} = \$1.30/10^{6} BTU$$

⁵ Cost of delivery in large quantities for utility and industrial uses.

	HTGR Hydrogen		Hoffman	Häfele- Manne	Our Problem
a)	Current				
	base	\$/10 ⁶ BTU _{th}		0.23	0.23
	production effici	ency		0.5	0.5
	base	\$/10 ⁶ btu _{Hyd}		0.47	0.47
	delivery	\$/10 ⁶ btu _{hyd}	0.20		0.20
	subtotal for IEF	\$/10 ⁶ BTU _{Hyd}		0.47	0.67
b)	Capital (100% LF)				
	base	\$/KWe		50 0	500
	subtotal	\$/KWe		500	500
	CRF		0.1	0.13	0.13
	for IEF	\$/10 ⁶ BTU _{Hyd}		<u>1.73</u>	<u>1.73</u>
c)	Total				
	for IEF	\$/10 ⁶ btu _{Hyd}		2.20	2.40

Table A.7. For electrolytic hydrogen.

	Electrolytic Hyd	rogen	Hoffman	Häfele- Manne	Our problem
a)	Current	:			
	base				
	delivery	\$/10 ⁶ btu _{Hyd}	0.20		0.20
	subtotal	\$/10 ⁶ btu _{hyd}	0.20		0.20
b)	Capital (100% LF)			
	base	\$/KWe		60	60
	CRF	/year	0.1	0.13	0.13
	production efficiency		0.83	0.80	0.80
	for IEF	\$/10 ⁶ btu _{Hyd}	0.50	0.33	0.33
c)	Total				
1	for IEF	\$/10 ⁶ btu _{Hyd}	0.70	<u>0.33</u>	0.55

I

.

•

APPENDIX B

A Complete Set of Input Data

Number of Variables <u>72</u>
Number of Constraints 29
(1) Supply Constraints 7
(2) Demand Constraints 14
(3) Off-Peak Constraints 6
(4) Pumped Storage and Synthetic
Fuel Balance Equation 1
(5) Endogenous Demand Constraint 1

Table B.l. Specification of indices j of variables

representing intermediate energy form.

.

Реtrochem and Synth Matl.	*	*	*	*	52	*	*
Cement Production	13	26	39	*	51	62	72
Tron Production	12	25	38	*	50	61	11
Ground Trans. Private	11	24	37	*	49	60	70
.гиатТ bnuor9 Гто) bns .du9	10	23	36	*	48	59	69
Air Transport	*	*	*	*	47	58	68
Misc. Thermal Uses	6	22	35	*	46	57	67
Матег Неатілд	ω	2.1	34	*	45	56	66
Sγnth Fuel Pump Stge and	2	20	33	*	*	*	*
Water Desalination	9	19	32	*	44	55	65
Peak Elec. Peak Elec.	5	18	31	41	* *	* *	* *
Base Load Elec L.F. 1.0	4	17	30	*	* *	* *	* *
Intermed. Elec L.F. 0.5	m	16	29	40	* *	*	*
Air Conditioning	2	15	28	*	43	54	64
зрасе Неаt	I	14	27	*	42	53	63
Demand Supply	Coal Electricity	LWR Electricity	FBR Electricity	Pumped Storage	P-and-G Nonelectric	HTGR Hydrogen	Electrolytic Hydrogen

* The corresponding possible paths are omitted in Hoffman's model. Note:

** The corresponding possible paths are omitted in our problem because the supply sectors for nonelectrical demand should not be used for electrical demand according to Häfele-Manne's model.

	Рестосћет ала Ултћ Маці.					1.36		
-	τοάμοτ Ρεοάμετοη	5.93	4.19			1.36	2.57	0.53
	Production Iron	5.93	4.19	3.41		1.36	2.57	0.53
	Ground Trans Private	2.80	0.58	0.29		2.91	4.77	2.73
	snsıT bnuolð. Pub. алд СомЈ.	8.43	7.08	7.23		2.91	4.77	2.73
1	JioqeneiT iA					2.26	3.57	1.53
	Misc. Thermal Uses	6 . 56	4.91	4.91		1.75	2.57	0.53
	Матеr Неатілд	2.80	0.58	0.29		2.36	3.27	1.23
	ςλυςμ Έυεl Ρυπρ Stge and	2.80	0.58	0.29		# 	aj	
	Water Desalination	1.12	0.19	0.12		1.36	2.57	0.53
	Г.F. 0.1 Реак Бlec.	30.97	33.08	34.96	15.34			_
	Base Lead Elec.	5.93	4.19	3.41				
	Intermed. Elec. L.F. 0.5	8.43	7.08	7.22	3.20			
	Αίτ Conditioning	11.25	10.33	10.80		2.36	3.27	1.23
	двасе Неа с	2.80	0.58	0.29		2.36	3.27	1.23
	Demand Supply	Coal Electricity	LWR Electricity	FBR Electricity	Pumped Storage	P-and-G Nonelectric	HTGR Hydrogen	Electrolytic Hydrogen

Table B.2. Cost coefficients $(\$/10^{6} \text{BTU} \text{ of intermediate energy form})$.

-35-

Table B.3. Coefficients $1/e_{u_1}$ and right-hand side values S_u (mQ) of supply constraint equations.

Z TqquS Constraint l	15.00	88.50	58.50	1.0	76.20	29.40	20.26
Реtrochem and Synth Matl.					1.1	×	
Сетел с Ргодистіол	2.5	3.0	2.5		1.1	2.0	1.25
Production Production	2.5	3.0	2.5		1.1	2.0	1.25
.znsıT bnuolð Private	2.5	3.0	2.5		1.1	2.0	1.25
.znsrT bnuorð .LmoJ bns .du¶	2.5	3.0	2.5		1.1	2.0	1.25
JioqanaiT iA					1.1	2.0	1.25
Misc. Thermal Uses	2.5	3.0	2.5		1.1	2.0	1.25
Матег Неатілд	2.5	3.0	2.5		1.1	2.0	1.25
Synth Fuel Pump Stye and	2.5	3.0	2.5				
Water Desalination	1.0	1.0	1.0		1.1	2.0	1.25
Peak Elec.	2.5	3.0	2.5	1.4			
Base Load Elec. L.F. 1.0	2.5	3.0	2.5				
Intermed. Elec.	2.5	3.0	2.5	1. 4			
λίτ Οοηάιτίοη: Ουλάτου Ουλαιτου Ουλάτου Ουλάτου Ουλαιτου Ουλαιτου Ουλου Ουλου Ουλου Ουλου Ουλου Ουλου Ουλου Ουλου Ουλου Ουλου Ουλο Ουλο	2.5	3.0	2.5		1.1	2.0	1.25
урасе Неа с	2.5	3.0	2.5		1.1	2.0	1.25
Demand Supply	Coal Electricity	LWR Electricity	FBR Electricity	Pumped Storage	P-and-G Nonelectric	HTGR Hydrogen	Electrolytic Hydrogen

l For the year 2000, for example. -36-

cs $d_{\mathbf{v}\mathbf{i}}$ and right-hand side values $\mathtt{D}_{\mathbf{v}}(\mathtt{mQ})$	
Coefficients d	Leves Level 20
Table B.4.	

「中に、うち

	equations.
1	constraint
	demand
	of

Space Heat		ουττ ττ	Intermed. Elec.	3ase Load Elec. .F. l.0	eak Elec.	Vater noijanilasə(synth. Fuel Pump Stge and	Иатег Неатілд	ises. Thermal	jir Transport	.znsrT bnuor .lmoJ bns .du ^o	snsıT bnus stivate	roduction ron	τοάμετίοη Έφπεητ	ьта тэргог) ГјаМ dјиу
3)		I	I	1	5 E	4	n M	J	I C	E	I I	E	5 4
1.0 3	~~	0.	1.0	1.0		0.1	1.0	1.0	1.0		0.8	0.6	0.6	1.0	
1.0 3	المس	0.	1.0	1.0		0.1	1.0	1.0	1.0		0.8	0.6	0.6	1.0	
1.0 3		0.	1.0	1.0		0.1	1.0	1.0	1.0		0.8	0.6	0.6	1.0	
			1.0						-						
0.7 2	~ 1	• 5				0.1		0.7	0.7	0.2	0.2	0.2	0.4	0.7	1.0
1.0 3	~ ~ !	.4				0.1		1.0	1.0	0.3	0.3	0.3	0.5	1.0	
1.0	~ ~	. 4				0.1		1.0	1.0	0.3	0.3	0.3	0.5	1.0	
2.2 3	~	6.	2.7	13.0		2.6	6.3	2.7.	37.8	1.7	3.0	·6 - 1	2.0	1.4	10.5
_	I														

 1 For the year 2000, for example.

-37-

-										
	яідht-Hand Side Value	0.0	0.0	0.0						
		Vł.	v I	vI					;	
	Ре́тгосћет ала́ Зулсћ Масј.						- Alandar - Printer and State			
ſ	Production Production		and the second							
I	Production Iron		An of the second se	and the state of t						
	.znsrT bnuorð Private	1.0	1.0	1.0			 			
	eround Trans. oup. and Coml.	-0.8	-0.8	-0.8						
	JioqanaiT iiA '	Section of the sector of the s		and any and a second						
	Тьтэ́чТ .эгіМ Тэег	-0.2	-0.2	-0.2						
	Water Heating	1.0	1.0	1.0		•	a na malan n			
	ςγητή Fuel Pump Stge and	1.0	1.0	1.0						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	Water Desalination	0.42	0.42	0.42						
	Реак Еlec. г.ғ. 0.1	0.81	-8.0	0 0 1						
	Base Load Elec. L.F. 1.0						A AND A THE ALM A REPORT OF A			
	Intermed. Elec. L.F. 0.5	-0.8	-0.8	-0.8	-		And and a subscription of the subscription of		And a state of the	
	Conditioning Conditioning						·		1	
	Jash soadS								1 1 1 1 1 1	
	Demand Supply	Coal Electricity	LWR Electricity	FBR Electricity	Pumped Storage	P-and-G Nonelectric	HTGR Hydrogen	Electrolytic Hydrogen		Demand Constraint

Table B.5. Coefficients of weekly off-peak constraint equations.

•

Table B.6. Coefficients of seasonal off-peak constraint equations.

sənlaV	0.0	0.0	0.0					
abi2 bn6H-Jdpi8	0	0	0					
	<u> </u>	VI	٧١					
Рефтосћет алд Зулсћ Масl.								
ρεοσμοέτοη Γεοσμοέτοη	Ĩ							
Production Iron								
eround Trans.								
eround Trans. Pub. and Coml.								
Air Transport								
Misc. Thermal Uses								
Water Heating								
ςγητή Fuel Pump Stge and								
Water Desalination								
Реак Еlec. Г.F. 0.1							•	
Base Load Elec. L.F. 1.0								
Intermed. Elec. L.F. 0.5								
Air Conditioning	-1.25	-1.25	-1.25					
Space Неаt	1.00	1.00	1.00					
Demand Supply	Coal Electricity	LWR Electricity	FBR Electricity	Pumped Storage	P-and-G Nonelectric	HTGR Hydrogen	Electrolytic Hydrogen	Demand Constraint

Table B.7. Coefficients of pumped storage and synthetic fuel balance equations.

·			1		1					
-Hand Side	аптеу Эптеу				0.0					
					11					
сћет алд Маѓl.	αλυεμ Δεετο	_								
t ction	Produ Cemen							1.25		
	npoıd Itou							1.25		
.znsrī b te	nuorð Príva Groun							1.25		
a Trans. and Coml.	Pub. Groun							1.25		
ransport	T TİA							1.25		
Гьютэd1	. Эгім Изег			, ,				1.25		
риітьэн	Маቲег							1.25		
Fuel Fuel	զդսՀջ Ճաղծ	-1.0	-1.0	-1.0						
п оітьпі	Vater Desad					 - 		1.25		
Elec. 0.1	г.ғ. Геак				1.4					
Load Elec. 1.0	Base L.F.								 	
0.5 0.5 0.5	rətal . a. l				l.4					
φηίησιά.	Air Condi							1.25		
деа г	Space			4	 -			1.25		·
Demand	ply	l Electricity	Electricity	Electricity	ped Storage	nd-G Nonelectric	R Hydrogen	strolytic Hydrogen		and Constraint
	Supl	Coa	LWR	FBR	Pum	P-a	HTG	Еle		Dem

-40-

Coefficients of endogenous demand constraint equations. Table B.8.

÷77

Demand	Неат	δυτυοτη	med. Elec. 0.5	Load Elec. 1.0	0.1 Slec.	поізьпі	Fuel Stge and	Неатілд	Тьетал	ransport	а Тталз. and Сомј.	.ansrī b te	noijo	t ction	сћет алд Маቲl.		эbi2 bnsH
	Space	Air Condi	Interi L.F.	Base L.F.	Реак I	төтьй ГезэД	վդս⊼ց Ճաղ _₫	матег	. DeiM Beeu	Τ ΊΑ	•qn _d	Ground	Produ Iron	гетел Сетел	ςλυεμ Γεετο		Аа1ие Кідћt-
Coal Electricity		0.2	0.1	0.05	-1.0				0.05		0.1						
LWR Electricity		0.2	0.1	0.05	-1.0				0.05		0.1						
FBR Electricity		0.2	0.1	0.05	-1.0				0.05		0.1						
Pumped Storage			0.1		-1.0											H	0.0
P-and-G Nonelectric																	
HTGR Hydrogen																1	
Electrolytic Hydrogen																	
Demand Constraint																	
												•					

-41-

ļ

APPENDIX C

Time Sequential Change of Energy Allocation Pattern of Individual Supply Alternatives

(Unit: $mQ = 10^{15} BTU$ of primary energy form)

.

Table C.l. Coal electric energy.

	1997	2000	2003	2006	2009
Space Heat					
Air Conditioning					1
Intermed. Elec.					
Based Load Elec.					
Peak Elec.					
Water Desalination					
Pump. Stge. and Synth. Fuel	6.35		.01		
Water Heating					
Misc. Thml. Uses					
Air Transport					
Ground Trans., Pub. and Coml.	7.93	.20	.01		
Ground Trans., Private		.15			
Iron Production					
Cement Production					
Petrochem. and Synth. Matl.					
Total	14.28	.35	.02	.00	.00
Supply Constraint	15.00	15.00	11.40	8.10	4.80
Slack	.72	14.65	11.38	8.10	4.80

-43-

Table	e C.2.	LWR	electric	energy.
-------	--------	-----	----------	---------

	1997	2000	2003	2006	2009
Space Heat					
Air Conditioning					
Intermed. Elec.					
Base Load Elec.					
Peak Elec.	4.53	3.27	2.28	1.17	.12
Water Desalination	15.74	12.53	13.39	14.24	14.63
Pump. Stge. and Synth. Fuel		18.90	17.82	8.64	
Water Heating					
Misc. Thml. Uses	43.05	36.96	39.45	41.70	41.46
Air Transport				- -	
Ground Trans., Pub. and Coml.	.09	9.99	10.77	11.22	11.55
Ground Trans., Private	25.11	6.81			
Iron Production					
Cement Production					
Petrochem. and Synth. Matl.					
Total	88.50	88.50	83.70	76.96	67.75
Supply Constraint	88.50	88.50	83.70	80.10	74.70
Slack	.00	.00	.00	3.14	6.95

Table C.3. FBR electric energy.

	1997	2000	2003	2006	2009
Space Heat					_
Air Conditioning					
Intermed. Elec.	5.78	6.13	6.45	6.73	6.93
Base Load Elec.	29.08	30.95	32.60	33.98	35.03
Peak Elec.	.85	1.83	2.93	4.08	5.10
Water Desalination					
Pump. Stge. and Synth. Fuel	8.45		1.75	10.10	17.83
Water Heating					
Misc. Thml. Uses					1.18
Air Transport					
Ground Trans., Pub. and Coml.					
Ground Trans., Private	2.95	19.58	26.80	27.93	28.75
Iron Production					
Cement Production					
Petrochem. and Synth. Matl.					
Total	47.10	58.50	70.50	82.80	94.80
Supply Constraint	47.10	58.50	70.50	82.80	94.80
Slack	.00	.00	.00	.00	.00

-45-

	1997	2000	2003	2006	2009
Space Heat					:
Air Conditioning					
Intermed. Elec.					
Base Load Elec.					
Peak Elec.					
Water Desalination				- -	
Pump. Stge. and Synth. Fuel					- - - -
Water Heating					
Misc. Thml. Uses					8
Air Transport					,
Ground Trans. Pub. and Coml.					
Ground Trans., Private					
Iron Production					
Cement Production					
Petrochem. and Synth. Matl.					
Total	.00	.00	.00	.00	.00
Supply Constraint	1.00	1.00	1.00	1.00	1.00
Slack	1.00	1.00	1.00	1.00	1.00

Tab.	le C	2.5	. P	etro	leu	um-	and	l-g	as.	•
------	------	-----	-----	------	-----	-----	-----	-----	-----	---

				a providence of the second sec	the second s
	1997	2000	2003	2006	2009
Space Heat	6.07				
Air Conditioning	1.61	1.72	1.80	1.88	
Intermed. Elec.					
Base Load Elec.					
Peak Elec.					
Water Desalination	9.53	15.21	15.41	15.69	16.25
Pump. Stge. and Synth. Fuel					
Water Heating					
Misc. Thml. Uses	32.12	39.06	27.91	5.29	10 M
Air Transport	8.80	1.36		10.29	4.88
Ground Trans., Pub. and Coml.					
Ground Trans., Frivate					
Iron Production	5.17	5.50	5.81	6.05	6.22
Cement Production	2.06	2.20	2.31	2.42	2.49
Petrochem. and Synth. Matl.	10.85	11.55	12.17	12.68	13.07
Total	76.20	76.20	65.40	54.30	42.90
Supply Constraint	76.20	76.20	65.40	54.30	42.90
Slack	.00	.00	.00	.00	.00

	1997	2000	2003	2006	2009
Space Heat	10.80	14.32	15.08	26.78	22.30
Air Conditioning					2.60
Intermed. Elec.					
Base Load Elec.					
Peak Elec.					
Water Desalination					
Pump. Stge. and Synth. Fuel					
Water Heating		5.40	5.68		
Misc. Thml. Uses			16.52	41.92	55.54
Air Transport		9.68	11.94		6.88
Ground Trans., Pub. and Coml.				1	
Ground Trans., Private					
Iron Production					
Cement Production					
Petrochem. and Synth. Matl.					
Total	10.80	29.40	49.20	68.70	87.30
Supply Constraint	10.80	29.40	49.20	68.70	87.30
Slack	.00	.00	.00	.00	.00

	1997	2000	2003	2006	2009
Space Heat	2.75	6.30	6.64		3.31
Air Conditioning					
Intermed. Elec.					
Base Load Elec.					
Peak Elec.					
Water Desalination					
Pump. Stge. and Synth. Fuel					
Water Heating	3.18			3.70	3.81
Misc. Thml. Uses				3.23	
Air Transport					
Ground Trans., Pub. and Coml.					
Ground Trans., Private					
Iron Production					
Cement Production					
Petrochem. and Synth. Matl.					
Total	5.92	6.30	6.64	6.92	7.13
Supply Constraint	20.26	20.26	20.26	20.26	20.26
Slack	14.34	13.96	13.62	13.34	13.13

Table C.7. Electrolytic hydrogen.

References

- [1] Häfele, Wolf and Alan S. Manne. "Strategies for a Transition from Fossil to Nuclear Fuels." Laxenburg, Austria, IIASA Research Report RR-74-7, June 1974.
- [2] Hoffman, K.C. "The United States Energy System--A Unified Planning Framework." Unpublished doctoral dissertation, Polytechnic Institute of Brooklyn, June 1972.
- [3] Suzuki, A. and L. Schrattenholzer. "Sensitivity Analysis on Hydrogen Utilization Factor of the Häfele-Manne Model." Laxenburg, Austria, IIASA Research Memorandum RM-74-30, December 1974.