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The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

This report deals with two questions concerning the emergence of cooperative strategies in
repeated games. The first part is concerned with the Perfect Folk Theorem and presents a
vast class of equilibrium solutions based on Markovian strategies. Simple strategies, called
equalizers, are introduced and discussed: if players adopt such strategies, the same payoff
results for every opponent. The second part analyzes strategies implemented by finite
automata. Such strategies are relevant in an evolutionary context; an important instance
is called Contrite Tit For Tat. In populations of players adopting such strategies, Contrite
Tit For Tat survives very well—at least as long as errors are restricted to mistakes in
implementation (’the trembling hand’). However, this cooperative strategy cannot persist
if mistakes in perception are included as well.
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Equal Pay for all Prisoners

Maarten C. Boerlijst
Martin A. Nowak

Karl Sigmund

By prisoners we mean, of course, players of the well-known Prisoner’s Dilemma game
(to be described presently). We shall show that there exist simple strategies for the
infinitely iterated Prisoner’s Dilemma that act as equalizers in the sense that all co-players
receive the same payoff, no matter what their strategies are like.

The Prisoner’s Dilemma game, a favorite with game theorists, social scientists, philoso-
phers, and evolutionary biologists, displays the vulnerability of cooperation in a minimal-
istic model (see [1] to [5]). The two players engaged in this game can choose whether to
cooperate or to defect. If both defect, they gain 1 point each; if both cooperate, they gain
3 points; but if one player defects and the other does not, then the defector receives 5
points and the other player only 0. The right move is obviously to defect, no matter what
the other player does. As a result, both players earn 1 point instead of 3.

But if the same two players repeat the game very frequently, there exists no strategy
that is best against all comers. The diversity of strategies is staggering. If we simulate
on a computer populations of strategies evolving under a mutation-selection regime (with
mutation introducing new strategies and selection weening out those with lowest payoff),
we observe a rich variety of evolutionary histories frequently leading to cooperative regimes
dominated by strategies like Pavlov (cooperate whenever the opponent’s move, in the pre-
vious round, matched yours) or Generous Tit For Tat (always reciprocate your opponent’s
cooperative move, but reciprocate only two-thirds of the defections). Remarkably, all
strategies of the iterated Prisoner’s Dilemma, which can be very complex and make up a
huge set, obtain the same payoff against some rather simple equalizer strategies.

More generally, let us consider a two-player game where both players have the same
two strategies and the same payoff matrix. We denote the first strategy (row 1) by C (for
‘cooperate’) and the second (row 2) by D (for ‘defect’) and write the payoff matrix as

Opponent

You

C D

C R,R S, T

D T, S P, P

(1)

Such games include the Prisoner’s Dilemma, where T > R > P > S, and the Chicken
game, where T > R > S > P . (In the Prisoner’s Dilemma case, R stands for the reward
for mutual cooperation, P is the penalty for mutual defection, T is the temptation payoff
for unilaterally defecting and S the sucker payoff for being exploited.)

Let us assume that the game is repeated infinitely often. A strategy in such a supergame
is a program telling the player in each round whether to play C or D. The program may
be history-dependent and stochastic: it specifies at every step the probability for playing
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C, depending on what happened so far. If An is the payoff in the n-th round, the expected
long-run average payoff for a player is given by

lim
N→∞

A1 + · · ·+AN
N

(2)

provided it exists. It need not always exist: think of two players cooperating in the first 10
rounds, defecting in the next 100 rounds, then cooperating in the following 1000 rounds,
etc.

Memory-one strategies are particularly simple. Such a stategy is given by the probabil-
ity to play C in the first round, and a quadruple p = (pR, pS, pT , pP ), where pi denotes the
probability that the player plays C after having experienced outcome i ∈ {R, S, T, P} in
the previous round. Some of the most successful strategies belong to this class, including
Generous Tit For Tat (1, 1/3, 1, 1/3) and Pavlov (1, 0, 0, 1).

Theorem: If max(S, P ) < min(R, T ), then there exist, for every value π between these
numbers, memory-one strategies p such that every opponent obtains the long-run average
payoff π against a player using such a strategy. The vector p is given by

(1− (R− π)a, 1− (T − π)a, (π− S)a, (π− P )a) (3)

where a is any real number such that 1/a ≥ max(T − π, R− π, π − S, π − P ).
Proof: The condition on a guarantees that the pi are probabilities. Let us denote by

qi(n) the conditional probability that the opponent plays C in the following round, given
that the n-th round resulted in outcome i, and by si(n) the probability that the outcome
in the n-th round is i. By conditioning on round n, we obtain:

sR(n+ 1) = sR(n)qR(n)[1− (R− π)a] + sS(n)qS(n)[1− (T − π)a]
+sT (n)qT (n)(π − S)a+ sP (n)qP (n)(π − P )a.

(4)

Similarly,

sS(n+ 1) = sR(n)(1− qR(n))[1− (R− π)a] + sS(n)(1− qS(n))[1− (T − π)a]
+sT (n)(1− qT (n))(π− S)a+ sP (n)(1− qP (n))(π− P )a

(5)

Summing (4) and (5) yields the probability that you play C in round n+ 1

sR(n+ 1) + sS(n+ 1) = sR(n)[1− (R− π)a] + sS(n)[1− (T − π)a]
+sT (n)(π − S)a+ sP (n)(π − P )a.

Hence

a−1[sR(n) + sS(n)− sR(n+ 1)− sS(n+ 1)] =
RsR(n) + SsT (n) + TsS(n) + PsP (n)− π[sR(n) + sS(n) + sT (n) + sP (n)].

(6)

Since the si(n) sum up to 1, the right-hand side is just An − π, where An is the
opponent’s payoff in the n-th round (we must bear in mind that one player’s outcome S
is the other player’s outcome T ). Summing up (6) for n = 1, ..., N and dividing by N , we
obtain

1

aN
[sR(1) + sS(1)− sR(N + 1)− sS(N + 1)] =

A1 + · · ·+AN
N

− π,

and hence

lim
N→∞

A1 + · · ·+ AN
N

= π.



– 3–

A few final remarks. Two players using equalizer strategies are in Nash equilibrium,
which means that neither has an incentive to change strategy. Nash equilibria exist for
every game; for iterated games, they abound. Indeed, the so-called Folk Theorem in game
theory states that every feasible pair of payoff-values exceeding the minimax (the highest
payoff that a player can enforce, which in our case is max(S, P )) can be realized by a Nash-
equilibrium pair [2, p. 373]. Our theorem is related to this: the strategies are equalizers
with memory one. Two players using such strategies have no reason to switch unilaterally
to another strategy, since they cannot improve their payoff; however, they have no reason
not to adopt another strategy either, since they will not be penalised. Since their opponent
plays an equalizer strategy, they can switch to any other strategy, and not be worse off.
If both players opt for a change, however, they are likely to end up in a non-equilibrium
situation.

If a is chosen small enough, the runs of consecutive defections or cooperations can be
made arbitrarily long. The condition min(R, T ) > max(S, P ) and its converse are not only
sufficient, but also necessary for the existence of such equalizer strategies. It is easy to
construct other equalizer strategies. For example, play C until the opponent’s mean payoff
is larger than π, then play D until it is smaller than π, then play C until it is larger again,
etc. However, such a strategy requires monitoring the opponent’s entire payoff sequence.
The point is that even within memory-one strategies, equalizers exist.
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The Logic of Contrition

Maarten C. Boerlijst
Martin A. Nowak

Karl Sigmund

Abstract

A highly successful strategy for the Repeated Prisoner’s Dilemma is Contrite Tit For Tat,
which bases its decisions on the ’standings’ of the two players. This strategy is as good as
Tit For Tat at invading populations of defectors, and much better at overcoming errors in
implementation against players who are also using it. However, it is vulnerable to errors
in perception. In this paper, we discuss the merits of Contrite Tit For Tat and compare
it with other strategies, like Pavlov and the newly-introduced Remorse. We embed these
strategies into an eight-dimensional space of stochastic strategies which we investigate
by analytical means and numerical simulations. Finally, we show that if one replaces
the conventions concerning the ’standing’ by other, even simpler conventions, one obtains
an evolutionarily stable strategy (called Prudent Pavlov) which is immune against both
mis-perception and mis-implementation.

1 Introduction

Tit For Tat has an Achilles’ heel: it is vulnerable to errors (see Axelrod and Hamilton
(1981), Axelrod (1984), Molander (1985), Müller (1987), Axelrod and Dion (1988), Bendor
et al (1991), Bendor (1993), Kollock (1993), Nowak and Sigmund (1993b), Nowak et al
(1995a)). If a TFT player erroneously plays Defect against another TFT -player, this
leads to a long vendetta. There are several ways to overcome this problem. One can,
for instance, play Generous Tit For Tat (GTFT ): always cooperate if the other player
cooperated in the previous round, but defect only with a certain probability if he defected
(see Molander, 1985, and Nowak and Sigmund, 1992). Alternatively, one could use the
strategy PAV LOV : cooperate if and only if you and your opponent used the same move
in the previous round (see Kraines and Kraines (1988), Fudenberg and Maskin (1990) or
Nowak and Sigmund (1993b)). Both strategies are error-proof: a mistaken defection is
quickly corrected, and mutual cooperation resumed.

Another error-correcting strategy has been proposed by Sugden (1986) in his seminal
book on ’The Evolution of Rights, Co-operation and Welfare’. This is Contrite Tit For
Tat, or cTFT (see also Boyd (1989), Wu and Axelrod (1995) and Harrington and Axelrod
(1995)). Like GTFT and PAV LOV , this is a memory one-strategy: it decides according
to the outcome of the previous round. However, in contrast to its two rivals, this outcome
does not only depend on the moves of the two players (which can be C or D, cooperate or
defect), but also on their standing, which can be g (’good’) or b (’bad’). A player is in good
standing if he has cooperated in the previous round, or if he has defected while provoked
(i.e. while he was in good standing and the other player was not). In every other case
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defection leads to a bad standing. The strategy cTFT begins with a cooperative move,
and cooperates except if provoked.

If two cTFT -players engage in a repeated Prisoner’s Dilemma, and if the first player
defects by mistake, he loses his good standing. In the next round, he will cooperate,
whereas the other cTFT -player will defect without losing his good standing. Then both
players will be in good standing and resume their mutual cooperation in the following
round. This strategy is related to Dawkins’ (1989) Remorseful Prober, who defects once
in a while but accepts retaliation in the following round without complaint.

As Sugden has shown, cTFT is evolutionarily stable. Moreover, it is as good as TFT
in invading a population of defectors. In contrast, PAV LOV and GTFT fare both very
poorly in such an environment, and need a ’catalyser’ to create the type of cooperative
environment in which they can thrive.

On the other hand, the additional complexity of the cTFT strategy has its drawbacks.
In particular, while cTFT is immune to errors in the implementation of a move, it is not
immune to errors in the perception of a move. If, in a match between two cTFT players,
one player mistakenly believes that the other is in bad standing, this leads to a sequence of
mutual backbiting, just as with TFT . (Errors in perception – rather than implementation
– have been studied in Miller (1989), Kollock (1993), Nowak et al (1995b).)

In this paper, we discuss the relative merits of all (stochastic or deterministic) memory
one strategies with or without standing. cTFT is not the only evolutionarily stable rule
which is Pareto-optimal (and hence yields the maximal payoff if the whole population
adopts it). Depending on the exact payoff values, either PAV LOV or another strategy
called REMORSE has the same qualities. A player using the REMORSE strategy coop-
erates if he was in bad standing in the previous round, or if both players cooperated. This
strategy, again, is error-correcting. Indeed, suppose that both players use REMORSE.
If the second player defects by mistake, he cooperates in the next round, whereas the first
player defects and remains in good standing. In the following round, both players defect
and obtain a bad standing; from then onward, both resume cooperation.

We discuss cTFT , PAV LOV and REMORSE with analytical methods and numerical
simulations, embedding them in a large class of stochastic strategies. Finally, we show that
by replacing the conventions concerning the ’standing’ by another set (which is even easier
to implement, and only depends on an ’internal variable’) one is led to a PRUDENT -
PAV LOV strategy which is an ESS and immune against errors both in implementing and
in perceiving moves.

2 Preliminaries on the Repeated Prisoner’s Dilemma

The Prisoner’s Dilemma (or PD) is a game between two players each having two options,
namely to cooperate (play C) or to defect (playD). If both cooperate, they get a reward R
higher than the punishment P which they receive if both defect. If one player defects and
the other cooperates, the defector get the payoff T (for temptation) and the cooperator
the sucker’s payoff S. We shall always assume

T > R > P > S (1)

so that the option D dominates C (it is better no matter what the other player chooses).
But if both players use D, they fail to get the reward.

In the iterated PD, the game is played for several rounds. We shall assume that there is
a constant probability w for another round. The length of the game is a stochastic variable
with mean value 1

1−w . A strategy for the iterated PD is a program telling the player in
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each round whether to chose C or D (this can be a randomised decision: cooperate with
such and such a probability). If An is the payoff for one player in the n-th round, his
expected payoff is

∑
Anw

n (note that wn is the probability that an n-th round occurs).
We shall mostly be interested in large w (close to 1). Frequently, the limiting case w = 1
is considered (the infinitely repeated PD). In this case, the payoff is the limit of the mean
1
n (A1 + ...+An), for n→∞ (if it exists). We shall assume

2R > T + S (2)

so that it is better for the two players to cooperate jointly rather than to alternately defect.
Let us now assume that in every round, each player is provided with a standing, which

can be g (good) or b (bad). In the following round, the player acts (i.e. opts for C or D)
and obtains a new standing which depends on his action and on the previous standing of
both players. As mentioned in the introduction, the rules for updating the standing are
the following: if the other player has been in good standing, or if we both have been in bad
standing, I receive a good standing if I cooperate, and a bad standing otherwise. If I have
been in good standing and the other player in bad standing, I receive a good standing no
matter what I am doing.

Thus if I cooperate in a given round, I will always obtain a good standing: but if
I defect, I will be in good standing only if, in the previous round, I have been in good
standing and my opponent has been in bad standing.

In a given round, a player can be in three possible states: Cg, Dg and Db: the first
means that he has cooperated (which automatically entails good standing), the second
that he has defected with good reason, the third that he has wantonly defected. The state
of the game in a given round is made up of the states of the first and the second player.
There are nine such combinations: (Cg, Cg), (Cg,Dg), (Cg,Db), (Dg, Cg), (Dg,Db),
(Db, Cg), (Db,Dg), (Db,Db) and (Dg,Dg). It is easy to check that this last state can
never be reached: we therefore omit it, and number the remaining eight states in this
order.

cTFT is the strategy which cooperates except if it is in good standing and the other
player is not, whereas REMORSE is the strategy which cooperates only if it is in bad
standing, or if both players had cooperated in the previous round.

3 In Search of Stability

A strategy Ŝ is said to be an evolutionarily stable strategy, or ESS, if in a population
where all members adopt it, no other strategy can invade under the effect of selection.
More precisely, if A(S, S ′) is the expected payoff for an S-player in a population of S ′-
players, then Ŝ is an ESS if for all strategies S different from Ŝ one has A(S, Ŝ) ≤ A(Ŝ, Ŝ)
and, if equality holds, A(S, S)< A(Ŝ, S) (see Maynard Smith (1982)).

It is easy to see that for the infinitely repeated Prisoner’s Dilemma, i.e. for w = 1,
there exists no ESS.

This is due simply to the fact that two strategies differing only in their first – say –
three hundred moves will have exactly the same payoff.

But as shown in Sugden (1986), for w < 1 the strategy cTFT is evolutionarily sta-
ble in a very important sense: if there is a small, but non-vanishing probability of mis-
implementing a move, every strategy that deviates, against a cTFT -player, from what the
cTFT -rule would prescribe, fares less well than it would have by following this rule. Note
that if there is such an error probability, every finite sequence of moves will have a positive
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D
D

C
D

C
C

D
C

S

S

T

T

P

PRR

Figure 1: PAV LOV is an ESS if T + wP < R + wR. Solid lines indicate the moves
specified by the PAV LOV strategy; dotted lines indicate the alternative moves. See text
for further explanation.

probability. (See Selten (1975), Selten and Hammerstein (1984), and Boyd (1989) where
the connection with Selten’s concept of a perfect equilibrium is discussed.)

The basic idea of Sugden’s proof allows to decide for every deterministic rule Ŝ based on
finitely many states whether it is evolutionarily stable in the sense defined above. Because
of the error probability, every state can be reached with positive probability. Let us start
in any of the possible states, assuming for the moment that no error will occur in the
following rounds, and let us follow the fate of a player invading a Ŝ population.

Since the next move of his adversary is always specified, there are only two possible
states that can be reached in the next round, depending on whether the invader uses C
or D. ¿From each of these states, two states can be reached in turn, etc. Since there are
only finitely many states, each branch of the game-tree must eventually return to a state
it had visited before. Therefore, it is possible to compute the payoff along every branch,
discounting by the factor w at every step.

One of the two branches issued from each state describes what happens if I use Ŝ myself.
If this always yields the highest payoff, and no alternative does, then Ŝ is evolutionarily
stable, provided the probability for mistakes in implementation is sufficiently small.

In Fig. 1 we check this for PAV LOV . Two arrows issue forth from each state,
depending on whether the invader plays C or D against his Ŝ-adversary. The vertices of
the graphs describe the invader’s state in the first (or upper) position, and the state of his
opponent in the second (or lower) position. The arrows describe the possible transitions,
which only depend of my choice, since the opponent’s moves are specified by Ŝ. The solid
arrow indicates the move the invader would choose if he were also a Ŝ-strategist. We see
in Fig.1 that PAV LOV is an ESS if and only if T + wP < R + wR, as has been shown
by Harrington and Axelrod (1995). The critical decision occurs when we are in (D,D) or
(C, C) and I have to decide whether to get two R’s in succession, or a T followed by a
P . On the other hand, Fig. 2 shows that TFT is never an ESS: in (C,D), my best move
leads to (C, C).
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Figure 2: TFT is no ESS.

In Fig. 3, we see that cTFT is always an ESS, and in Fig. 4 that REMORSE is
an ESS if and only if T + wP > R + wR (the opposite as with PAV LOV ). The critical
case, here, comes when in state (Dg,Db) or (Cg,Db). Defecting twice (as REMORSE

specifies) will get me T+wP . Cooperating twice yieldsR+wR. We note thatREMORSE

can handle AllD very well and is threatened by more cooperative strategies; PAV LOV
exploits AllC to the hilt, but is endangered by AllD.

One can use the same method to verify, for instance, that AllD and GRIM are evo-
lutionary stable rules (GRIM cooperates only if both players cooperated in the previous
round. If one defects against a GRIM -player, that player will never revert to coopera-
tion.) For certain payoff values, the strategy WEAKLING is also an ESS: it cooperates
if and only if it is in bad standing. However, these strategies are far from optimal. If
a population is stuck with such a strategy, it does very poorly (the average payoff is P
for AllD and GRIM , and R+P

2 for WEAKLING). In contrast, if a whole population
adopts PAV LOV , GTFT , cTFT or REMORSE, it will on average obtain the payoff R
per round.

So far, we looked at errors in implementing a move. But there also exist, as we
know from everyday life, errors in understanding which can threaten cooperation. cTFT
is not immune to misperception of the other’s move, as can be seen from the following
table, where the first row is the sequence of my states, as I perceive them; the second
the sequence of the opponent’s states, as I perceive them (my error occurs in the second
round, indicated by the asterisk) whereas the third and fourth row are the sequences of
my (resp. my opponent’s) true moves.

Cg Cg Dg Cg Dg ...

Cg Db∗ Cg Db Cg ...

Cg Cg Db Cg Db ...

Cg Cg Cg Dg Cg ...
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Figure 3: cTFT is an ESS.
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Figure 4: REMORSE is an ESS if T +wP > R+wR.
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The average payoff, after the mistake, is T+S
2 , which is less than R.

Similarly, REMORSE is not immune to misperception of the other’s move:

Cg Cg Dg Db Cg Dg Dg ...

Cg Db∗ Cg Db Db Db Cg ...

Cg Cg Db Db Cg Db Db ...

Cg Cg Cg Dg Dg Db Cg ...

The average payoff, after the mistake, is T+S+2P
4 , which is less than R.

In contrast to this, PAV LOV is immune to misperception of the other’s move (or the
own, for that matter):

C C D D C ...

C D∗ C D C ...

C C D D C ...

C C C D C ...

The error is quickly corrected and the average payoff remains R. (For a precise computa-
tion of the effect of the errors in perception, we refer to Nowak et al, 1995b).

4 Stochastic Strategies with Standing

If we assume that each move can be mis-implemented with a certain probability, we
are encountering stochastic strategies. As the example of Generous Tit For Tat (GTFT )
shows, such strategies can be important in their own right, not just as imperfect realisations
of deterministic strategies (see e.g. May (1987) and Sigmund (1995)).

Within the huge class of strategies for the iterated PD, we shall concentrate on the
memory one strategies, where the decision, for each move, is uniquely based on the outcome
of the previous move. Let us first omit the ’standing’. The outcome in every round, then,
can be completely characterised by the payoff for the first player, which is R, S, T or P .
We shall number these outcomes by 1 to 4 (in this order) and consider strategies given by
p = (p1, .., p4) where pi is the probability to cooperate after outcome i. For instance, AllD,
the strategy that always defects, is given by (0, 0, 0, 0) and TFT by (1, 0, 1, 0). These
are so-called reactive strategies, where the decision depends only on the other player’s
previous move, not on the own, i.e. where p1 = p3 and p2 = p4 (see Nowak (1990) and
Nowak and Sigmund (1990)). Examples of non-reactive strategies are GRIM (1, 0, 0, 0)
and PAV LOV (1, 0, 0, 1). These are deterministic strategies, where the pi are 0 or 1. If
we assume that errors occur, we obtain stochastic versions, for instance (1− ε, ε, 1− ε, ε)
as an approximation to TFT (cf. Nowak and Sigmund (1993a) and (1995))

If the rule p is matched against a rule p′ = (p′1, p
′
2, p
′
3, p
′
4), this yields a Markov process

where the transitions between the four possible states R, S, T and P are given by the
matrix

T =


p1p
′
1 p1(1− p′1) (1− p1)p

′
1 (1− p1)(1− p′1)

p2p
′
3 p2(1− p′3) (1− p2)p

′
3 (1− p2)(1− p′3)

p3p
′
2 p3(1− p′2) (1− p3)p

′
2 (1− p3)(1− p′2)

p4p
′
4 p4(1− p′4) (1− p4)p

′
4 (1− p4)(1− p′4)

 (3)

(Note that p2 is matched with p′3 and vice versa; one player’s S is the other player’s T ). If p
and p′ are in the interior of the strategy cube, then all entries of this stochastic matrix are
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strictly positive, and hence there exists a unique stationary distribution s = (s1, s2, s3, s4)

such that p
(n)
i , the probability to be in state i in the n-th round, converges to si for n→∞

(i = 1, 2, 3, 4). The components si are strictly positive and sum up to 1. They denote the
asymptotic frequencies of R, S, T and P . The stochastic vector s is a left eigenvector of T
for the eigenvalue 1, i.e. satisfies s = sT.

It follows that for w = 1, the payoff for a player using p against an opponent using p′

is given by

A(p,p′) = Rs1 + Ss2 + Ts3 + Ps4. (4)

If, for instance, a TFT player is matched against another TFT player, and if errors
occur, the payoff is reduced to R+S+T+P

4 , which is less than R. On the other hand, two
PAV LOV -players receive R (up to an ε-term) because their errors are quickly corrected.
We note that the si and hence also the payoff in (4) are independent of the initial condition,
i.e. of the moves of the players in the first round. For w < 1, the payoff has a more
complicated expression and depends on the initial move, see Nowak and Sigmund (1995).

Let us now take the ’standing’ into account. A stochastic strategy based on the out-
come of the previous round is now given by a vector q = (q1, ..., q8) where qi is the
probability to play C if the state in the previous round was i (we keep the ordering as
described at the end of section 2). There are 28 = 256 deterministic strategies (where all
qi are 1 or 0).

The strategies p = (p1, ..., p4) considered previously do not depend on the standings,
but only on the actions of the two players in the previous round. Such a p-strategy can
be viewed as a q-strategy, with

q = (p1, p2, p2, p3, p4, p3, p4, p4) .

Tit For Tat, for instance, is (1, 0, 0, 1, 0, 1, 0, 0) and Pavlov is (1, 0, 0, 0, 1, 0, 1, 1). The
strategy cTFT is given by (1, 1, 0, 1, 0, 1, 1, 1) and REMORSE by (1, 0, 0, 0, 0, 1, 1, 1).

If the first player is a q-strategist and the second a q′-strategist, the transition proba-
bilities from one state of the game to the next are given by the following matrix T:



q1q
′
1 0 q1(1−q′1) 0 0 (1−q1)q′1 0 (1−q1)(1−q′1)

q2q
′
4 0 q2(1−q′4) 0 0 (1−q2)q′4 0 (1−q2)(1−q′4)

q3q
′
6 0 q3(1−q′6) (1−q3)q′6 (1−q3)(1−q′6) 0 0 0

q4q
′
2 0 q4(1−q′2) 0 0 (1−q4)q′2 0 (1−q4)(1−q′2)

q5q
′
7 0 q5(1−q′7) (1−q5)q′7 (1−q5)(1−q′7) 0 0 0

q6q′3 q6(1−q′3) 0 0 0 (1−q6)q′3 (1−q6)(1−q′3) 0

q7q
′
5 q7(1−q′5) 0 0 0 (1−q7)q′5 (1−q7)(1−q′5) 0

q8q′8 0 q8(1−q′8) 0 0 (1−q8)q′8 0 (1−q8)(1−q′8)


(5)

Note that, due to the rules about standing, there are four vanishing entries in each row
of this 8 × 8-matrix. In spite of these zeros, T is irreducible, and even mixing, provided
all qi are distinct from 0 and 1; indeed, the entries of Tn are all strictly positive for
n > 2. It follows that there exists a uniquely defined strictly stochastic vector s such that
sT = s, yielding the stationary probabilities of the eight states. The payoff obtained by
the q-player against the q′-player is

Rs1 + S(s2 + s3) + T (s4 + s6) + P (s5 + s7 + s8) . (6)
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Let us compute this, for example, if a REMORSE-player (whose strategy, if the error
probability is ε, is given by (1− ε, ε, ε, ε, ε, 1− ε, 1− ε, 1− ε)) confronts a cTFT -player with
strategy (1− ε, 1− ε, ε, 1− ε, ε, 1− ε, 1− ε, 1− ε). The transition matrix T is given by



(1− ε)2 0 (1− ε)ε 0 0 ε(1− ε) 0 ε2

ε(1− ε) 0 ε2 0 0 (1− ε)2 0 (1− ε)ε
ε(1− ε) 0 ε2 (1− ε)2 (1− ε)ε 0 0 0
ε(1− ε) 0 ε2 0 0 (1− ε)2 0 (1− ε)ε
ε(1− ε) 0 ε2 (1− ε)2 (1− ε)ε 0 0 0
(1− ε)ε (1− ε)2 0 0 0 ε2 ε(1− ε) 0
(1− ε)ε (1− ε)2 0 0 0 ε2 ε(1− ε) 0
(1− ε)2 0 ε(1− ε) 0 0 ε(1− ε) 0 ε2


(7)

We write T = P + εQ1 + ε2Q2 and s = x + εy + ε2z, where x is a stochastic vector,
so that the components of y and z both sum up to 0. Developing sT = s in powers of ε
we obtain xP = x, xQ1 +yP = y and zP+ yQ1 + Q2 = z. The first equation yields x =
(1−2a, a, 0, 0, 0, a, 0, 0) for unknown a. Hence xQ1 = (−2+6a,−2a, 1−2a, 0, 0, 1−4a, a, a)
so that the second equation yields a = 2

7 . Hence x = (3
7 ,

2
7 , 0, 0, 0,

2
7 , 0, 0). It follows that

the payoff for REMORSE against cTFT is given, up to ε, by

3

7
R+

2

7
(S + T ) , (8)

which is the same as the payoff for cTFT against REMORSE. Since both cTFT and
REMORSE are error-correcting, and therefore obtain payoff R against their like, the
competition between these two strategies leads to a bi-stable situation which is symmetric:
both basins of attraction are equally large. If it had been otherwise, this would have
suggested that one strategy is stronger than the other.

A similar situation holds between cTFT and PAV LOV , i.e. (1− ε, ε, ε, ε, 1− ε, ε, 1−
ε, 1−ε). The stationary distribution (up to ε) is now (3

9 , 0,
2
9 ,

2
9 ,

2
9 , 0, 0, 0) so that the payoff

for PAV LOV against cTFT is now

1

3
R+

2

9
(S + T + P ) . (9)

We can easily compute the perturbation term for the payoff: in the above case, for
instance, it is ε

81(−6R− 13S + 23T − 4P ).
If a PAV LOV -player plays against REMORSE, the payoff is R (up to ε). Indeed,

this interaction is error correcting. The reason is that the two strategies (which both are
error-correcting against their own) obey quite similar rules: as long as both players are in
good standing, they follow the same program. (However, REMORSE does not exploit
suckers, i.e. AllC-players, whereas PAV LOV does.)

We mention in passing that there exist equalizers within the class of q-strategies. More
precisely, every payoff between P and R can be written as P + π. Against a strategy of
the form

q = (1 + πa− a(R− P ), 1 + πa− a(T − P ), 1 + πb− b(T − P ),
1 + πa+ a(P − S)− a

b , πb, πa+ a(P − S), πa, πa

(where a and b are real parameters such that all qi lie between 0 and 1) every strategy
obtains the same payoff, namely P + π. This can be shown by a computation similar to
that in Boerlijst et al (1996), but considerably more tedious. For a = b we obtain the
(p1, ..., p4)-strategies described in Boerlijst et al (1996).
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5 Numerical Simulations

In this section we present results of random mutation experiments in order to enhance
the understanding of the dynamics and attainability of the different ESS’s. In these
experiments a population of strategies is simulated for 1 million time steps (and more,
if no steady state is reached). Payoff values between strategies are computed on the
assumption that w = 1. The next fraction of a strategy Xi is computed by:

Xi(t+ 1) = Xi(t)

∑
jXj(t)A(i, j)∑

kXk(t)
∑
j Xj(t)A(k, j)

. (10)

where A(i, j) is the payoff that strategy i gets when playing against strategy j and Xi(t)
is the frequency of strategy i at time t. In Eq. (10) the change of a fraction is determined
by the average score of the strategy divided by the average score of the population (com-
parable to replicator dynamics, see Hofbauer and Sigmund (1988)). Whenever a fraction
drops below 0.001, it is regarded as extinct and set to zero. Therefore, the total number of
different strategies can never exceed 1000. Mutant strategies are introduced at a fraction
of 0.0011. The chance of the appearance of a mutant is 0.01 per time step. After mutation
and extinction events the population is rescaled to 1. Strategies are given by a vector
q = (q1, ..., q8). There is a background noise ε = 0.001. Mutants have a random set of
q-values, with a bias towards pure strategies. q-values are set to ε or (1 − ε), each with
probability 1/3, or to the U-shaped distribution (1 + cos(πρ))/2 (with random variable ρ
uniform between 0 and 1), if necessary rounded to ε or (1 − ε). In this way the chance
of obtaining a particular pure strategy is (1/3 + cos−1(1− 2ε)/π)8, and hence the chance
that a particular pure strategy appears within a simulation exceeds 99% .

We simulate for two different sets of payoff values, which differ in dynamics. The first
set of (S = 0, P = 1, R = 3, T = 5.5) is at high temptation to defect, whereas the second
set of (S = 0, P = 1, R = 3, T = 3.5) is at low temptation. The two sets differ on whether
2R > T + P or not.

High temptation (T = 5.5): At high temptation we find the ESS’s: ALLD, GRIM ,
cTFT and REMORSE. Simulations starting with just one of these strategies show that
populations of ALLD and GRIM do not persist for a long time, whereas populations
consisting of cTFT and REMORSE do persist. This still holds if w is slightly smaller
than 1. The apparent contradiction that an ESS population can be invaded by mutants
can be explained by the fact that in our model the score of a newly introduced mutant
is (marginally) influenced by the mutant playing against itself. We argue that ESS’s that
are not stable against such small perturbations are structurally unstable: biologically, we
assume that mutant strategies invade in small clusters, or clones.

Simulations starting fromALLD sooner or later end up in populations of either cTFT (-
like) or REMORSE(-like) strategies. Fig. 5 shows two typical runs: Fig. 5a settling in
cTFT , and Fig. 5b settling in REMORSE. The average population score very quickly
approaches 3, indicating cooperation. Before the population reaches the steady state, pe-
riods of relative stasis alternate with periods of rapid change, comparable to e.g. Lindgren
(1991). In Fig. 5b the population initially shows alternations between PAV LOV -like, and
REMORSE-like dominance. In fact, these two types of strategies behave similarly in
most cases.

Some cTFT -like and REMORSE-like strategies play almost neutral against pure (up
to ε) cTFT and pure REMORSE. Often the final state is composed of a mixture of
either these cTFT -like or REMORSE-like strategies. Fig. 6 shows a simulation that
ends in a cTFT -like population. The scores within such a mixture are all alike, so that
the dynamics are governed by the score against ’background mutants’. This explains the
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Figure 5a: Settling in cTFT . Evolution of a population of strategies starting from pure
ALLD with high temptation to defect (T = 5.5). In the upper panel the solid line
indicates the average population score whereas the dotted line indicates the number of
different strategies.
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Figure 5b: Settling in REMORSE. After Lindgren (1991). Evolution of a population
of strategies starting from pure ALLD with high temptation to defect (T = 5.5). In the
upper panel the solid line indicates the average population score whereas the dotted line
indicates the number of different strategies.
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Figure 6: Simulation settling in a mixture of cTFT -like strategies.

drift and the accumulation of neutral mutants. Note that pure cTFT is also present in
Fig. 6, but it fails to dominate the population.

To explore the basins of attraction of the ESS’s we ran 100 simulations starting
from ALLD: 68 ended in cTFT -like mixtures, 11 ended in pure cTFT , 15 ended in
REMORSE-like mixtures, and 6 ended in pure REMORSE. It seems that competition
is decided on the base of which strategy first exceeds a certain threshold. The fact that
there are more neutral mutants around cTFT than around REMORSE explains the bias
towards the former strategy. Simulations starting from 100 random mutants show similar
statistics.

Low temptation (T = 3.5): Known ESS’s at low temptation are ALLD, GRIM ,
cTFT , PAV LOV and WEAKLING. Again, ALLD and GRIM are easily invaded,
whereas the other strategies persist. Starting 100 simulations from ALLD we get 63
cTFT -like mixtures, 8 pure cTFT , 17 PAV LOV -like mixtures, 3 pure PAV LOV , 6
WEAKLING-like mixtures, and 3 times pure WEAKLING. The dynamics resem-
bles that as described for high temptation. Fig. 7 shows a simulation that ends in pure
WEAKLING. It can be seen that the appearance of WEAKLING-like strategies causes
a drop in the score. Pure WEAKLING will slowly outcompete the other WEAKLING-
like strategies, and the population stays fixed in a sequence of alternating mutual cooper-
ation and defection, giving a score of (R+P )/2. Only 9 out of 100 simulations end in this
non-cooperative mode, PAV LOV (-like) and cTFT (-like) populations both reach a score
close to R.

Other payoff values: Results for other payoff values resemble the results of either of
the above described situations. At the bifurcation point T=5 the main attractor of simula-
tions is again pure cTFT or cTFT -like mixtures. At this value also stable REMORSE or
REMORSE-like mixtures, and PAV LOV -like mixtures are observed. Pure PAV LOV is
no longer an ESS for this T -value. Another bifurcation point is at T=4. Above this T -value
WEAKLING is no longer an ESS (more generally, the condition is T + S < R+ P ).

To conclude, we see that the addition of a standing in the Prisoner‘s Dilemma facil-
itates the evolution of cooperation. Populations with random mutations in most cases
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Figure 7: Evolution of a population of strategies starting from pure ALLD with low
temptation to defect (T = 3.5).

quickly adapt to a cooperative mode, and only rarely the population is trapped in the
WEAKLING strategy. Surprisingly, this suboptimal trapping is only observed in situa-
tions with low temptation to defect.

6 The Alternating PD

One can also investigate cTFT in the context of the alternating Prisoner’s Dilemma (see
Boyd (1988), Nowak and Sigmund (1994) and Frean (1995)). In the strictly alternating
case, the two players take turns in deciding which move to chose: either to offer or to
withhold assistance (C or D). As shown in Nowak and Sigmund (1994) the payoff values
must then satisfy T−R = P −S. In the alternating game, not only the state (Dg,Dg) but
also the states (Db,Db) and (Cg,Dg) are unreachable. (The state (Cg,Db) for instance
means: the first player has cooperated – he is by definition in good standing – and then, in
the following round, the second player has defected, but nevertheless is in good standing,
clearly an impossibility. We shall only consider the states where the first player’s move
has been answered by a move of the second player.) We denote the remaining states
(Cg, Cg), (Cg,Db), (Dg, Cg), (Dg,Db), (Db, Cg) and (Db,Dg) by 1 to 6 (in this order),
and consider stochastic strategies of the form q = (q1, ..., q6). If a q-player meets a q′-
player, the transition matrix is given by

T =



q1q′1 q1(1−q′1) 0 0 (1−q1)q′2 (1−q1)(1−q′2)

q2q
′
5 q2(1−q′5) (1−q2)q′6 (1−q2)(1−q′6) 0 0

q3q′1 q3(1−q′1) 0 0 (1−q3)q′2 (1−q3)(1−q′2)

q4q
′
5 q4(1−q′5) (1−q4)q6 (1−q4)(1−q′6) 0 0

q5q′1 q5(1−q′1) 0 0 (1−q5)q′2 (1−q5)(1−q′2)

q6q
′
3 q6(1−q′3) 0 0 (1−q6)q′4 (1−q6)(1−q′4)

 (11)
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If s, again, denotes the stationary vector, then the payoff for the q-player is

s1R+ s2S + (s3 + s5)T + (s4 + s6)P . (12)

We note that again, cTFT is evolutionarily stable. In this case ALLD is the only other
ESS. Numerical simulations (as described in the previous chapter) show that ALLD pop-
ulations do not persist. All simulations settle in cTFT(-like) mixtures, making the alter-
nating Prisoner’s Dilemma a favourite playground for cTFT .

7 Discussion

All strategies considered in this paper can be implemented by finite automata. For the
extensive theory in this field, we refer to Binmore and Samuelson (1992). One might
ask whether the cTFT -strategy can be implemented by a strategy uniquely based on a
finite (but possibly very long) memory of the moves of the two players, and not using the
notion of standing. This however is not the case. If, for instance, a sequence of alternating
defections occurs, only the player that started to defect will have a bad standing. The next
move is not specified by a finite memory of previous moves in case the initial defection
happened prior to the memorised moves.

The concept of a ’standing’ introduces an interesting new twist to the theory of iter-
ated games played by finite automata. The most immediate step, there, is certainly to
study decision rules based on the outcome of the previous round, and the most immediate
extension is to consider rules based on two, three or more previous rounds. Both Axelrod
(1987) and Lindgren (1991) have studied by means of genetic algorithms the evolution of
strategies with memory two or three. In particular, Lindgren has pointed out the very
robust success of a class of memory-two strategies which usually cooperate with each other
and where a unilateral defection (due to a mistake in implementation) entails two rounds
of mutual defections (a kind of domestic row) before bilateral cooperation is resumed.
Such strategies are similar to PAV LOV , but use the outcome of the last two rounds.

cTFT and REMORSE are of a different nature. They only depend on the outcome
of the previous round, but this outcome, now, is more complex: it does not consist only
on the actions C or D of the two players, but on the standing – good or bad – after a
defection. The rules for determining this standing seem quite natural: we can identify
with a player who feels bad after having committed erroneously a defection, or who feels
provoked by the unilateral defection of the co-player after a string of mutual cooperation.
The rules embody a certain notion of ’fairness’ which seems to be rather common. If it
should indeed turn out that this notion is a human universal, we would have to explain
how it emerged.

In principle, one could apply other rules of ’standing’. To start with, we should replace
this term by a more neutral one, in order not to get trapped by its connotations, and
think only of an arbitrary ’tagging’ of the states C or D, without specifying which is
’good’ or ’bad’. A strategy now is specified by the probability to cooperate and/or change
the standing in the next round, depending on the current state (including the current
standing) of both opponents. It is plausible that we can obtain some evolutionarily stable
strategies for many such codes.

Here is, as an intriguing example, the strategyPrudent-PAV LOV (pPAV LOV ). This
strategy follows in most cases the PAV LOV -strategy, as the name suggests. However,
after any defection it will only resume cooperation after two rounds of mutual defection.
This is achieved by normally playing defections with standing D1, and only playing D0

after a mutual defection or an erroneous defection. Suppose that two pPAV LOV s are
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Figure 8: pPAV LOV is an ESS if T +wP +w2P < R+wR+w2R.

engaged in a match. They usually both cooperate. If one defects by mistake, the state is
(C,D0). In the next round, the state is (D1, D1); in the second-next round, it is (D0, D0),
and hereafter mutual cooperation is resumed. This strategy, which depends only on the
previous round, acts to all purposes like Lindgren’s (1991) memory two strategy. An
erroneous defection against its like entails two rounds of mutual defection, and then leads
back to mutual cooperation. An AllC-opponent will be exploited ruthlessly; but against
an AllD opponent, pPAV LOV will be suckered every third round. It is easy to see (cf.
Fig.8) that this strategy is an ESS whenever

R+ wR+ w2R > T +wP +w2P (13)

and numerical simulations show that it attracts very well.
Moreover, pPAV LOV has the big advantage to be immune to errors in perception, as

can be seen from the following table, which shows the evolution first from my (erroneous)
point of view (first row: my moves, including my standing; second row: my opponents
moves) and then from my co-player’s point of view (third row: my moves; fourth row: his
moves, including his standing). The mistake occurs in the second round (indicated by the
asterisk).
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C C D1 D1 D0 C ...

C D∗ C D D C ...

...

C C D D D C ...

C C C D1 D0 C ...

This is what happens if one of the pPAV LOV -players mis-interprets the other player‘s
C for a D. Something similar happens if he mis-interprets his own C for a D (a less likely,
but not completely impossible occurrence).

Altogether, we can interpret pPAV LOV as a sophisticated offspring of PAV LOV .
An interesting point about this strategy is that it distinguishes between D0 and D1

only for the own defections, but not for the other player’s defection. We can view the
’tagging’ by 0 or 1 as an internal action. The pPAV LOV strategy does not monitor the
standing of the adversary. This seems simpler than strategies like cTFT or REMORSE,
which also keep track of the other fellows standing.

It seems highly plausible that there exists a wide variety of workable ’taggings’ which
yield interesting ESS’s. The question is whether an evolution based on mutation and
selection would tend to lead to one form of ’tagging’ rather than another. This could
ultimately shed light on why humans developed a sense of fairness, feelings of guilt, and
highly effective social norms (see also Sugden (1986) and Young (1993) on the evolution of
conventions). The sheer combinatorial complexity of encompassing all conceivable codes,
or taggings, is enormous, and the costs (in fitness) for reckoning with these ’tags’ seem
difficult to evaluate. But it is a tempting problem.
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