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Abstract

The paper deals with the issues associated with identification of stocks generating
abnormal returns. Following the findings of a finance theory regarding portfolio
tilting, a set of price-related stocks’ attributes was analyzed. The analysis was
conducted with the help of rough sets methodology which allows to distinguish
“important” attributes for problem description, and to generate decision rules which
can be later used to predict stocks’ performance. Validity of the approach was tested
on the Toronto Stock Exchange data.
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Identifying Regularities in
Stock Portfolio Tilting

Robert Susmaga
Wojtek Michalowski
Roman Slowinski

1. Introduction
If a stock market’s behavior would exactly follow predictions of the efficient market
hypothesis and a single factor capital asset pricing model, there might not be a
possibility to outperform the market in a systematic fashion. However, an increasing
number of studies reports the departures in terms of stocks’ returns from what would be
predicted by classical finance methodology. Apart from enhancing our knowledge and
understanding of the risk/return trade-off, these studies also suggest that it is possible to
design certain investment strategies with potential to generate “abnormal” returns. Most
of the researchers and practitioners agree that these strategies should be based on
considering price-related stock attributes while making investment decisions. The
purpose of the research described in this paper is to determine relative importance of
well established price-related attributes in a so called “portfolio tilting” process. Our
approach is different from that reported in classical finance literature which essentially
considers a cross-sectional multivariate regression of stock or portfolio returns on a set
of predetermined price-related variables besides the systematic risk (Jog and Li, 1995).
Such an analysis does not provide important information regarding reduction of the
original set of the attributes and regarding performance of such a reduced set. In order to
generate this information, a stock performance should be studied from a different
perspective, such as, for example those provided by a broad range of knowledge
discovery methods. One such method, tested in a variety of applications, is a rough sets
(RS) methodology (Pawlak, 1991; Slowinski, 1992). We are proposing to apply the RS
to the evaluation of price-related attributes for portfolio tilting, and to the identification
of a predictive value of a reduced set.

The paper is organized as follows. In the next section we describe the main issues of
portfolio tilting. In Section 3 we present fundamental notions of the RS theory and
describe its software implementation. In Section 4 we discuss application of the RS to
analyze stock data from the Toronto Stock Exchange, and present the results of this
analysis. The paper concludes with the discussion.
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2. Portfolio Tilting
Since the advent of the Modern Portfolio Theory (MPT) arising from the work of
Markowitz (1959), the notion of diversified portfolios has become one of the most
fundamental concepts of portfolio management. While developed as a financial
economic theory in a conditional-normative framework, the MPT has spawned a variety
of applications and further theoretic constructs. For the purpose of this paper, three
aspects of the research arising from MPT are most relevant.

First, the MTP was derived using a representative investor belonging to the von
Neumann and Morgenstern family of functions, which manifested in portfolio
optimization techniques based on the mean-variance framework. There were many
attempts to evaluate the impact of the assumptions about specific types of utility
functions on portfolio optimization. However, the original Markowitz mean-variance
framework proved to be sufficiently rich to provide the main theoretical background for
the analysis of importance of diversification.

Second, MPT gave rise to a variety of asset pricing models for stock pricing, the most
known among them being the Capital Asset Pricing Model (CAPM) (Mossin 1966) and
the Arbitrage Pricing Model (APM) (Roll and Ross, 1984; King, 1966).

Third, it gave rise to performance measurement techniques designed to evaluate the
performance of professional portfolio managers against a benchmark portfolio (Jensen,
1968).

All these three aspects of the MPT led to the notion that the best managed portfolio is
the one which is most widely diversified and the sufficient value of such a portfolio may
be created through passive buy-and-hold investment strategy. This led to a belief that
investors should not expect professional portfolio managers to outperform a well-
diversified benchmark, such as the S & P500 in the U.S. or the TSE300 in Canada.
However, somewhat restrictive assumptions behind the MTP and CAPM have also
resulted in a line of research which has criticized this way of reasoning for portfolio
management and performance evaluation. The main thrust of this research was a notion
that reliance on the MTP and CAPM for active portfolio management may result in
ignoring both the firm (or stock) specific attributes as well as the multi-attribute nature
of the investor’s preferences. Consequently, the notion of ‘tilting’ was proposed, which
defines a systematic approach to constructing a portfolio which has a higher (or lower)
value of a particular attribute than this which can be found in a benchmark portfolio.

Professional managers, as well as sophisticated investors, began evaluating the impact
of tilting the portfolio based on attributes other than the mean-variance and systematic
risk, believing that the resulting portfolio will allow for superior returns without
sacrificing risk. Thus, tilting results in over- or under-investing in stocks which have the
same (expected) mean-variance but which have certain values of other attributes
deemed as desirable by an investor. In addition, a variety of anomalies in stocks’ returns
reported in the literature allowed to further question the viability of sole reliance on the
MPT and CAPM for portfolio decisions. Researches started also to investigate the
impact of investor’s characteristics on portfolio decisions. As it is beyond the scope of
this paper to summarize the vast amount of literature in this area, we recommend an
interesting review by Fama (1991). Nevertheless, it is important to stress that all these
studies point to the fact that by choosing stocks with certain values of their attributes, an
investor may be able to achieve superior performance compared to the buy and hold
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portfolio strategy. The main thrust of the frameworks for such portfolio construction has
been to investigate the potential models for and consequences of moving away from the
benchmark portfolios or their proxies as represented by various stock indices. The intent
has been to provide tools and techniques to allow for deviating from passive portfolios
which are considered to be optimal portfolios in the long run. Such deviation is identical
to ‘tilting’ the portfolio for certain attributes in expectation to generate excess returns, or
to be more consistent with the investor’s preferences. For example, if the investor
believes that, all else being equal, he/she would prefer a low dividend paying stock over
high dividend paying stock, it implies tilting the portfolio in such a way that it would
either include a higher number of low dividend paying stocks or would have a higher
investment in the few low dividend paying stocks.

In our analysis we are interested in tilting the portfolios according to some well
established price-related stock attributes. The information provided to an investor
through an analysis of these attributes can sometimes be confusing, so it is important to
acquire a clear picture regarding importance and validity of the stocks’ attributes in a
tilting process. This can be accomplished by analyzing the contribution of specific
price-related attributes to the identification of top performing stocks in terms of their
returns. As a by-product of such an analysis it maybe also possible to determine
predictive power of specific subsets of price-related attributes. All this required
information can be generated by analyzing stock data with the help of the RS
methodology which introduces reducts and decision rules – the notions which are very
useful in determining attributes’ relative importance and predictive power.

3.  Rough Set Theory

3.1  Main Notions

The rough set (RS) theory proposed by Pawlak (1991) is concerned with qualitative data
analysis. The data set being analyzed consists of objects (also examples, cases) which
may represent states, clients, stocks, etc., described by values of the attributes,
representing features, parameters, etc. of the objects. The set of attributes is divided into
two disjoint subsets, called condition and decision attributes. The important distinction
between these two sets is that the condition attributes express some descriptive
information about the objects, while the decision attributes express some decisions or
conclusions made about the objects. The set of objects described by attributes and
represented in a table form is called a decision table.

One of the fundamental notions of the RS theory is the indiscernibility relation.
Indiscernibility identifies groups of objects which are indiscernible from one another
when only some of the attributes are taken into account. The relation is the
exemplification of the fact that the values of attributes are the sole source of knowledge
about the objects. Indiscernibility is a equivalence relation, so it defines a partition of
objects into disjoint subsets. The main concern of the RS theory is to examine different
partitions induced by sets of condition and decision attributes and the relationship
between these two partitions.

Two particular partitions of the objects are of special interest. One of them is the
partition induced by the set of all the decision attributes. This partition defines classes
of objects – namely the sets of objects described by the same values of the decision
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attributes. Because often there is only one decision attribute in the table, the classes are
sets of objects featuring the same value of the decision attribute. The other partition of
interest is induced by the set of all the condition attributes. The elements of this
partition, called atoms, contain objects which are indiscernible from one another with
regard to all of the condition attributes. The name ‘atom’ is intended to stress the fact
that it is possibly the smallest and unsplittable ‘granule’ of information. Any two
objects belonging to the same atom are consequently described by the same set of
values and should be treated in exactly the same way in further analysis.

Defining the atoms and classes allows for the next step of the RS analysis in which the
equivalence sets induced by the condition attributes (atoms) and the decision attributes
(classes) are matched to check if the classes can be expressed by the atoms. Any subset
of objects (called a concept) is definable by some attributes if it may be represented as a
union of elements of the partition generated by this set of attributes. In that sense the
concept is built of atoms. A very interesting situation arises in case of inconsistency,
that is when a concept is not definable by a subset of attributes, and thus it cannot be
constructed from the atoms, because there are atoms in the decision table which contain
objects both within the concept’s definition and outside it. Because the atoms cannot be
split any further, the RS theory introduces a notion of approximation and instead of
representing the concepts it represents their approximations.

Lower approximation of a concept is a set of objects belonging to atoms which are
completely included in the concept’s definition. If an atom contains objects of which
only some belong to the concept’s definition, such an atom constitutes the upper
approximation of the concept. Final notion of interest to the RS analysis is a boundary
region which is defined as the difference between the upper and lower approximations.
In the case when inconsistency does not occur and the concepts are definable in terms of
atoms, then both the lower and upper approximations of the concept are simply equal to
each other. This implies that a boundary region is empty.

The RS theory introduces a measure of inconsistency, called the quality of
approximation, which is defined as the ratio of the number of all objects belonging to
lower approximations of all classes to the number of all objects in the decision table.
Maximum value of this measure, being 1.0, indicates that all the classes may be fully
defined using the condition attributes. If the quality of approximation is satisfactory,
then it may be interesting to see if there are some subsets of condition attributes which
are sufficient to generate the same quality of approximation as a whole set. This notion
leads directly to the idea of attributes’ reduction.

3.2  Reducts and Their Computation

A reduct is defined as a subset of attributes which ensures the same quality of
approximation as the original set. In general, it is possible that there is more than one
reduct for a given decision table. In that case the set called the core of attributes is
defined as the intersection of all reducts. Removal of any single attribute included in the
core always leads to the drop of the quality of approximation.

Generating reducts is a computationally complex task and normally two classes of
reduct generating algorithms are used:
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• Exact algorithms: designed for generating all reducts from a decision table. Their main
disadvantage is the computational complexity that may grow non-polynomially with the
number of attributes in the table.

• Approximate algorithms: designed for generating single reducts, with the aim of reducing
the computing time. This allows for avoiding the non-polynomial computational load but it
produces approximate solutions1 which are not true reducts.

3.3  Decision Rules

A very important part of the RS analysis concerns expressing the dependencies between
the values of the condition and the decision attributes. The main task is to find these
dependencies and represent them in an easily interpretable manner. One possible way of
doing this is through the construction of decision rules. A decision rule is expressed as a
logical statement consisting of the condition and decision parts. The interpretation of the
rule is as follows:

‘IF the condition attributes assume values indicated in the condition part of the rule
THEN the value of decision attribute(s) is one of those indicated by the decision part’.

Decision rule may be categorized as consistent if all objects matching its condition part
have the value which is indicated by the decision part of the rule, otherwise a rule is
inconsistent; and it may be categorized as exact if the decision part of the rule contains
only one elementary condition, otherwise a rule is approximate. Approximate rule is a
result of an approximate description of concepts in terms of atoms. It implies that using
the available knowledge, it is not possible to decide whether some objects (from the
boundary region) belong to a given decision class or not.

Each decision rule is characterized by its strength, which is defined as the number of
objects satisfying the condition part of the rule (or, in other words, which are covered by
a rule) and belonging to a given decision class. In the case of approximate rules, the
strength is calculated separately for each possible decision class. Stronger rules are
often more general, i.e. their condition parts are shorter and less specialized, and they
are usually more interesting from an analyst’s point of view.

Procedures for generating decision rules from decision tables are mostly based on
induction. The existing inductive algorithms use one of the following strategies to
produce the set of decision rules:

• generation of a minimal set of rules covering all objects,

• generation of an exhaustive set consisting of all possible rules,

• generation of a set of ‘strong’ decision rules, consistent or not, each covering relatively
many objects, but not necessarily all of them.

An important feature of the RS methodology is that the rules for a given decision class
are actually generated not from the concept definition but from its approximations.
Lower approximation serves first to produce exact rules for the class, while the
                                                
1 An approximate solution is a set of attributes that achieves or exceeds the required degree of
discrimination but is not minimal (i. e. it could be further reduced by removing some attributes without
violating the discrimination degree) or a set of attributes that does not achieve the required discrimination
degree (but its degree is high enough).
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boundary regions are subsequently used to generate approximate rules that cover the
inconsistencies.

3.4  Classification of New Objects

Decision rules derived from a decision table can be used for recommendations regarding
the classes of new objects (classification). Specifically, the classification of a new
object can be supported by matching its description to one of the decision rules. This
matching may lead to one of three situations (Slowinski and Stefanowski ,1994a):

(a) the new object matches exact rules indicating one decision class,
(b) the new object matches exact or approximate rules indicating different decision classes,
(c) the new object does not match any of the rules.

In case of situation (a) the recommendation is univocal. In the case of ambiguous
matching (situation (b)), the final classification is made on a basis of rule strengths. For
each class which is indicated by any of the rules, a coefficient called class support
defined as the total strength of all the rules supporting this class is computed. The
decision class featuring the highest value of the class support is assigned as a class for
the new object.

In the case when no rule matches a new object (situation (c)), an object may remain
unclassified. However, some other method (such as the default class classifier) for
predicting an object’s class may be used in this case. The default classifier assigns an
object to a selected class, so called default class (each object is assigned the same class).
Usually the most frequently occurring class in a decision table is selected to be a default
class, in which case a classifier is referred to as majority class classifier.

In summary, the process of classifying objects may actually consist of two phases, the
first of them being classification using the rules, while the second involves handling the
still unclassified objects. These objects may be assigned class membership according to,
for example, a majority class classifier.

3.5  Validation Tests

Proper validation of the decision rules generated for a set of objects should be provided
by the domain expert. However, it could also be done by classifying new objects for
which the classes are already known. When no new objects are available, the rules may
be still evaluated using validation tests. In a validation test, a subset of objects (testing
sample) is selected randomly and removed temporarily from the set of all objects while
the decision rules are being generated for this reduced set of objects (learning sample).
Subsequently, objects from a testing sample are classified, and their real classes are
compared to those established by the decision rules. As a result, a percentage of
incorrectly classified objects (error ratio) is computed. It should be stressed that the
error ratio obtained through validation tests may be only considered as an
approximation of the real error ratio of the rules.

Validation tests may be employed with any classifying method, but if used with the
decision rules, apart from generating ratios of correctly classified objects (accuracy of
classification) and incorrectly classified objects (error ratio), they also generate ratio of
unclassified objects.
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The major validation tests can be categorized as:

• Random Tests. The testing sample is selected and classified only once, with its size
being set arbitrarily to a constant percentage of all objects (e.g. to 33%), or
generated randomly. Generally, random validation tests should be used with large
data sets.

• N-fold Cross-Validation Tests. The set of all available objects is initially divided
into N disjoint subsets, called folds. The learning and classifying phases are then
conducted N times, with each of the folds acting successively as the testing sample
and all the remaining folds as the learning sample. The main idea behind the cross-
validation test is that every object is classified exactly once and it serves to generate
the decision rules N-1 times. The final results of the N fold cross-validation test are
given as averages of the N individual tests. This type of test should be used with
medium-sized data sets.

• Leaving-1-out Tests. It is a variation of the N-fold cross-validation test in which N is
set to the number of all objects. That means that in every iteration only 1 object is
excluded from the learning sample and this object is subsequently classified by the
generated classifier (at each time it is a different object). This test should be applied
to small data sets (below one hundred of objects).

3.6  Discretization of Continuous Attributes

The discernibility relation of the RS may be applied only if the values of the attributes
are discrete, as even very small differences in continuous values might affect calculation
of the atoms. To prevent this from happening, the continuous attributes in the decision
table should be discretized. As a result of discretizing, precision of the original data is
decreased (in the sense that the original values of the attributes cannot be reconstructed
on a basis of the discrete values), but its generality is increased.

It should be stressed also that discretization of continuous values is embedded in human
reasoning. For example, a doctor evaluating body temperature rarely operates on actual
value of the measurement, but instead considers discretized values such as ‘low’,
‘medium’ or ‘high’.

Most typical discretization information (called a hard discretization) consists of a finite
set of numbered subintervals defined over the range of values of continuous attributes.
This type of discretization is also referred to as norms, because the subintervals are
frequently defined following some norms in the subject domain. The subintervals are
used to discretize the continuous values by substituting an original value with a number
of an interval to which it belongs. A more advanced form of discretization involves
subintervals represented as fuzzy numbers with overlapping bounds. This fuzzy form of
discretization requires different, usually more advanced techniques for processing the
discretized decision tables (Slowinski and Stefanowski, 1994a).

When the subintervals for the discretization are specified by a domain expert following
his/her judgement or using some norms established in the subject domain, then they are
called expert discretizations. On the other hand, when they are defined automatically,
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then they are called automatic discretizations (for review of the automatic discretization
procedures see for example, Chmielewski and Grzymala-Busse (1995), Dougherty et al.
(1995)).

3.7  Software Implementation of the RS Methodology

All the computations reported in this paper were conducted using the ProFIT computer
system (Mienko et al., 1996) which implements the generalized RS methodology
(Slowinski and Stefanowski, 1994a). The functions incorporated in the ProFIT system
include:

• discretization of continuous attributes,

• building approximations,

• generating reducts,

• generating decision rules,

• classifying new objects,

• conducting cross-validation tests.

3.7.1 Input Data, Discretization and Creation of Approximations

The ProFIT system accepts both discrete and continuous input data. To handle the
continuous attributes the system implements a way to store discretizations in either hard
or fuzzy form. In the latter case the discretizing process usually leads to non-unique
assignment of continuous values to intervals (this is because the fuzzy intervals may
overlap and a continuous value of an object may be positioned within the overlapping
region, which results in this value being assigned simultaneously to two subintervals).
The generalized RS methodology implements a technique of splitting the objects to
overcome the problem of multiple assignment and allows for imperfect input data.

ProFIT includes an automatic method of generating discretizations according to a
supervised hard discretization algorithm first introduced by Nguyen and Skowron
(1995). The method conducts a breadth-first search for the cutting points in the domains
of the attributes to discriminate globally objects of different classes. At every step the
best cut on all the attributes is chosen. The original algorithm terminates after all
possible pairs of objects from different classes have been discriminated, which
corresponds to the quality of classification equal to 1.0. The actual procedure
implemented in ProFIT has been modified to be quality driven, which means that it is
terminated after an arbitrarily specified value of quality is reached. Another important
modification concerns the breadth-first search combined with some randomness in
choosing the cuts. This modification deprives the original procedure of its strictly
“greedy” character and allows for more diversified discretization to be accomplished.

After all continuous condition attributes are discretized, ProFIT allows for creating the
approximations of classes including: computing atoms, computing lower and upper
approximations, and calculating quality of approximation.
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3.7.2 Reduct Generation

ProFIT implements two exact and one heuristic method of generating reducts.

• An exact method for generating all reducts introduced by Skowron and Rauszer
(1992). The algorithm is based on the notion of the discernibility matrix that is
computed for all pairs of objects in the decision table. The reduct computing
procedure utilizes the fact that the discernibility matrix, after being created, may
be substantially reduced in size using the law of absorption. As a result, the
computing time may drop considerably, thus making the reduct computation very
efficient even with non-trivial data sets.

• An exact method for generating all reducts based on scanning all supersets of the
core of the attributes. This method should normally be used for smaller data sets,
but may also prove effective in case of decision tables in which the core includes
relatively many attributes. The method may also be applied for searching for
pseudo-reducts, that is subsets of attributes that guarantee the quality of
classification equal to or higher than an arbitrarily specified value.

• A heuristic method for generating single reducts based on the forward selection
principle. The method creates a candidate reduct using core of the attributes in a
repetitive manner. In every iteration, the quality of approximation for the
candidate reduct is calculated, and, if it is still too low, each of the attributes not
included in candidate reduct is appended to it temporarily and the quality is
recalculated. Finally, the attribute which gave the highest increase of the quality
is added to the candidate reduct and the calculations are repeated. The method
terminates as soon as the quality of approximation reaches the required value.

3.7.3 Rule Generation

ProFIT implements two procedures for rule generation.

• ‘LEM2’ by Grzymala-Busse (1992) is a machine learning based heuristic which
seeks to generate the minimal number of rules that cover all the objects. In each
iteration, a rule which can cover the biggest number of objects is produced and
the objects being covered by this rule are removed from a learning sample. The
iterations continue until the learning sample is empty, which signifies that all of
the objects are covered by at least one of the rules.

• ‘All Rules’ by Stefanowski and Vanderpooten (1994) is a knowledge acquisition
based algorithm. In its standard version it generates all possible rules for a given
data set. However, its computing effectiveness increases rapidly when some
constraints are imposed on the rules which are to be generated. The first one
involves a rule length upper limit, so as a result only the rules which are shorter
than the specified limit are generated. The second one is a rule strength lower
limit, so only the rules which are stronger than the specified limit are generated.
It is also possible to generate rules satisfying both constraints.

3.7.4 Classifying New Objects

The following automatic classification procedures are employed in ProFIT for
classification of new objects:
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• classification using the rules,

• classification using the rules and the Valued Closeness Relation (VCR)
(Slowinski and Stefanowski, 1994b),

• classification using the rules and the default class classifier.

Classifying by the rules remains the main classification method, however, it is possible
to use the VCR or the default class classifier at the second stage for the remaining
unclassified objects. To test the quality of rules, ProFIT implements three types of
cross-validation tests discussed in Section 3.5.

4.  Case Study: Analyzing Stocks on the Toronto Stock
Exchange
The data set analyzed in this study includes all publicly traded companies listed on the
Toronto Stock Exchange (TSE) available in version 4.6 of the Stock Guide database.
The rate of return for the stocks under consideration and the market indices were drawn
from the return and index files of the TSE/Western database. To qualify for inclusion in
the analysis for a given year, a firm had to meet the following requirements:

1) the firm must belong to an industry group other than “Gold and Precious Metal”;
“Mining Exploration without Production”; “Utilities”; “Financial Services
including Insurance”,

2) the firm must be listed on the TSE,

3) the firm’s common stock must be traded at a yearly closing price equal to or
above CAD $1.50 in 1985 constant dollars,

4) the firm must have a total annual revenue higher than CAD $1.5 million in 1985
constant dollars,

5) the firm must have a year-end total asset base larger than CAD $3.0 million in
1985 constant dollars,

6) the firm must have defined total annual revenue, year-end price, year-end total
assets and other relevant data available in the Stock Guide database as per
requirements (2), (3), and (4) above and for calculating price-related stock
attributes,

Requirement (1) excludes firms in those industry groups where price-related attributes
may not be easily interpreted. Requirements (2), (3), and (4) impose size constraint on
the firms, to ensure that the considered companies are large enough to be frequently
researched and considered by investment professionals. In addition, these requirements
control potential biases that characterize very small firms. The requirements (5) and (6)
ensure that meaningful data are available. Although a number of stocks under
consideration are reduced by enforcing the above requirements, a net benefit associated
with clarity of the data set is considerable.
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4.1  Experimental Design

The data set used in the experiment includes stocks’ information of the TSE traded
firms for the period 1989-93. Each stock was described using 11 attributes, including
annual rate of return. The list of the attributes is given in Table 1.

Attribute name Attribute description

ANR Annual rate of return

RE_Q4 Relative earnings past 4 quarters

RE8_Q4 Relative earnings past 8 quarters

RP8_Q4 Relative price past 8 quarters

PMR_Q4 Price momentum rank

UE_Q4 Unexpected quarterly earnings over the same quarter last year

QPR_Q4 Price at the end of 4th quarter

PBR_Q4 Price to book ratio

MC_Q4 Market capitalization

PSR_Q4 Price to sales ratio

QEM_Q4 Quarterly earnings momentum

Table 1. Attributes and their description

Since financial theory does not provide strong guidance for the identification or
construction of the specific price-related attributes, the selection given in Table 1 was
directed by existing evidence for the US market and was influenced by its popularity
among practitioners of “attribute investing”. The annual rate of return (ANR) was
treated in our study as a decision attribute used to determine ex post evaluation of
stocks’ performance. All remaining attributes were treated as condition attributes for
which data was collected for the fourth quarter of every year. Table 2 includes
information on the number of stocks (objects) meeting the requirements for inclusion in
the analysis, for which data was available for every year during a five year period of the
analysis.

Year Number of stocks

1989 346

1990 345

1991 364

1992 362

1993 405

Table 2. Number of stocks analyzed in consecutive years
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4.1.1 Discretization

The condition attributes were discretized using standard norms which were specified by
a financial expert. A decision attribute (ANR) was discretized by dividing stocks into
performance groups depending on the values of the ANR. The top 25% performers were
categorized as TOP group, bottom 25% performers were categorized as BOTTOM group,
and all remaining stocks were assigned to a MIDDLE group. Determination of the TOP or
BOTTOM groups as a sharp 25% cut of all stocks proved to be too categorical, hence a
technique of adjusting the groupings was introduced. Adjusting was especially required
when the sharp 25% border of a group happened to appear in the middle of a streak of
ordered stocks featuring the same value of the ANR. In this case the actual border of a
group needed to be shifted so as to prevent splitting objects with the same value of ANR
into two different groups.

4.2  The Analysis

4.2.1 Establishing the Class Definitions

The stocks outperforming the others in terms of the ANR (TOP group) are of particular
interest to the investors, therefore the class definitions used in the RS analysis should be
carefully scrutinized in order to examine their influence on the results produced by the
ProFIT system. Four schemes of class definitions were considered:

• 3-class cut: TOP, MIDDLE and BOTTOM,

• 2-class cut: TOP and REST,

• 4-class cut: TOP, BUFFER, MIDDLE and BOTTOM,

• 3-class cut: TOP, BUFFER and REST,

where class REST includes stocks normally belonging to the MIDDLE and BOTTOM
groups, while BUFFER class contains stocks from the TOP group which form an
immediate boundary of that group with a MIDDLE group. With the distinction of the
BUFFER class, the TOP class was further contracted to include just top stock performers.
Table 3 presents exemplary results of the analysis of impact of class definitions on rule
parameters and the accuracy of classification, applied to the 1989 data set. The column
‘Rule strength’ presents the average strength for rules generated by the LEM2
algorithm, and the column ‘10-fold CV’ shows the results of applying the 10-fold
Cross-Validation test.

Class definitions Rule strength 10-fold CV

Top Middle Bottom ---------- 3.0 54.9

Top Rest ---------- ---------- 5.7 69.9

Top Buffer Middle Bottom 3.5 49.7

Top Buffer Rest ---------- 5.3 72.3

Table 3. Exemplary results of computations designed to examine the impact of class definitions

Analysis of the above results suggests that the most appropriate description of the
decision table is accomplished when the classification scheme involving TOP, BUFFER
and REST classes is used.
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4.2.2 Final Results

Table 4 presents the final results derived at for a whole time period under consideration.
The columns ‘Rule strength’ and ‘10-fold CV’ are the same as defined in Table 3, while
the column ‘Self-test’ gives the percentage of correctly classified stocks when rules are
applied to a learning sample. In the columns ‘# rules’ and ‘# reducts’ the numbers of
rules and reducts generated from the data sets respectively, are given.

Year # rules Rule strength Self-test 10-fold CV # reducts

1989 96 5.3 96.5 72.3 2

1990 72 8.4 99.7 79.1 3

1991 105 5.2 97.5 68.1 1

1992 85 7.0 98.9 72.9 1

1993 113 6.0 100.0 66.4 1

Table 4. Final results of computations for the selected classification

The results in Table 4 confirm good performance of the rules in classifying the stocks.
This is particularly evident while looking at the very good results of the self-test and the
10-fold CV test (the average of self-test results for consecutive years is 98.5% and the
average of cross-validation tests is 71.8%). The results of a self-test should be
considered despite the fact that the rules are applied to a learning sample.  In reality the
rules that would have been unable to correctly classify stocks (objects) from which they
were generated would be assigned only very limited credibility by the experts, making
the results of self-test the first plausible step of rules’ verification.

The results of the 10-fold CV tests are probably the most important in assessing quality
of the rules as classifiers. In cross-validation tests, the rules are applied to classify
objects not belonging to a learning sample, so these results are considered to be one of
the best approximations of the real-life performance of the rules. Again, the results
reported here are very promising.

The low number of reducts (see column “# reducts”) for each year indicates that there is
a distinct disproportion in the importance of condition attributes while considering their
ability to approximate the classes. This observation supports the idea of attributes’
reduction, indicating that some of the attributes may be discarded from further
considerations without much impact on the quality of classification. The attributes to be
discarded are those which do not appear in the reducts.

4.2  Idea of a Common Reduct

In this study we are interested in finding out if it is possible to tilt the portfolio using as
few of the stocks’ attributes as possible. In that sense, information provided by the
reducts becomes very important. Reducts calculated for each year include the subsets of
attributes that ensure the same quality of classification as the original set. However,
deciding about the number of attributes to be used in a general problem of portfolio
tilting just on a basis of the reducts is not a very easy task due to the following reasons:
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• usually there are more than one reduct per year,

• there is no consistency among the reducts for different years.

It is seldom possible to generate a single reduct that would be the same for all years
under consideration. In that case an artificial single reduct needs to be created with the
help of some heuristic. We call a reduct created in such a way a “Common Reduct
(CR)”.

One possible method of creating the CR is to consider jointly all of the reducts
identified by the ProFIT system, and computing for every attribute a frequency of
occurrence in those reducts. Subsequently, a histogram may be used to analyze the
frequencies, and the attributes most frequently occurring in the reducts should be
included in the CR.

Table 5 gives the frequencies of all the condition attributes in the reducts and Figure 1
presents the histogram of those values.

Attributes’ name Frequency

Relative earnings past 4 quarters 6

Relative earnings past 8 quarters 7

Relative price past 8 quarters 4

Price momentum rank 8

Unexpected quarterly earnings over the same quarter last year 8

Price at the end of 4th quarter 5

Price to book ratio 8

Market capitalization 7

Price to sales ratio 8

Quarterly earnings momentum 5

Table 5. Frequencies of the attributes in reducts

An analysis of the histogram suggests that the attributes that occur at least 7 times in the
reducts should be included in the CR. Thus, according to this heuristic, the CR (denoted
further as CR1) consists of the following condition attributes: relative earnings in past 8
quarters (RE8), price momentum rank (PMR), unexpected quarterly earnings over the
same quarter last year (UE), price to book ratio (PBR), price to sales ratio (PSR), and
market capitalization (MC).

A potential problem with the application of heuristic described above to calculating the
CR is that a number of reducts in different years is uneven, thus contributing to
overweighing years with bigger number of reducts. To account for that situation, an
alternative, two-phase method of establishing the CR was tested. In the first phase the
reducts generated for each year were analyzed using an entropy measure and one for
every year was selected. The second phase involved application of the heuristic
described above, but only to the five reducts identified in phase one. Table 6 and Figure
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2 give frequency information and a histogram of these frequencies for the attributes
analyzed according to the alternative procedure.

Figure 1. Histogram of attributes’ frequencies

Attributes’ name Frequency

Relative earnings past 4 quarters 3

Relative earnings past 8 quarters 5

Relative price past 8 quarters 3

Price momentum rank 5

Unexpected quarterly earnings over the same quarter last year 5

Price at the end of 4th quarter 3

Price to book ratio 5

Market capitalization 4

Price to sales ratio 5

Quarterly earnings momentum 4

Table 6. Frequencies of attributes according to the alternative procedure

The above results suggest that the following attributes should be included in the CR
(labelled as CR2 to distinguish it from the CR1 formed according to the first heuristic):
relative earnings in past 8 quarters (RE8), price momentum rank (PMR), unexpected
quarterly earnings over the same quarter last year (UE), price to book ratio (PBR), price
to sales ratio (PSR), market capitalization (MC), and quarterly earnings momentum
(QEM).

Both CR1 and CR2 are very similar, the only difference being the attribute QEM (which
is contained in CR2 and not in CR1).
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Figure 2. Histogram of attributes’ frequencies after applying alternative procedure

4.3  Application of the CR to Describe Tilting

After creating the CR, its classification performance needs to be verified by comparing
it with the situation when all the attributes are used. Tables 7 and 8 give results of
computations when only the CR1 and the CR2 are used to describe portfolio tilting.

Year # rules Rule strength Self-test 10-fold CV

1989 101 4.3 94.2 71.1

1990 87 6.3 98.6 79.4

1991 111 4.2 93.1 69.2

1992 103 5.2 95.9 72.9

1993 123 5.1 96.8 71.1

Table 7. Computational verification of the CR1

Information about the attributes is collected separately for every year. Therefore,
classifying stocks one or two years ahead using rules generated for a previous time
period may provide a good verification mechanism of the predictive quality of the CR
attributes. The results of such a classification are given in Tables 9 and 10.
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Year # rules Rule strength Self-test 10-fold CV

1989 97 4.6 94.8 69.1

1990 86 7.3 99.7 75.7

1991 116 4.6 95.3 70.1

1992 98 6.0 98.1 73.5

1993 124 4.8 97.8 69.1

Table 8. Computational verification of the CR2

Year Year + 1 Year + 2

1989 75.4 74.0

1990 68.4 66.0

1991 63.8 59.0

1992 69.6 -----

Table 9. Verification of the CR1 looking 1 and 2 years ahead

Year Year + 1 Year + 2

1989 72.5 67.6

1990 61.0 55.5

1991 66.6 66.4

1992 72.3 -----

Table 10. Verification of the CR2 looking 1 and 2 years ahead

The results presented in Tables 9 and 10 indicate good predictive quality of the decision
rules generated using only the CR attributes. When applied to predict stock membership
in the top performers group in the next year, a correct assignment was made on average
in almost 70% of cases. It should be stressed that this result is achieved with a reduced
attributes’ set, thus allowing potential investors to collect and analyze smaller amounts
of data. Moreover, results in Tables 9 and 10 confirm that predictive quality of the
decision rules diminishes as a time horizon extends, and suggests using a well defined
time frame in the analysis.

5.  Discussion
The purpose of this research was to analyze price-related attributes used normally in
portfolio tilting. Due to a possible number of the attributes involved in a process, it is
always useful to determine their contribution to identification of top stock performers.
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The RS analysis provides tools for such identification, allowing also for a construction
of the decision rules which might be applied to the evaluation of new stocks. Quality of
these rules indirectly validates the usefulness of reducing the original set of stocks’
attributes. Although results of cross-validation tests served as one of the main measures
in the analysis, our study was not concerned with establishing the best classifying
system. Instead, the positive results of cross-validation suggest that the portfolio tilting
may be conducted with equal efficiency when a smaller number of price-related
attributes is evaluated. This in turn provides information to potential investors regarding
which price-related attributes are more significant in designing successful investment
strategies.

The methodology applied by us is not unique for reducing a number of attributes for
portfolio tilting, however, the results support continuation of the research on using the
RS and machine learning techniques for describing and analyzing complex decision
problems, such as stock portfolio tilting decisions.
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