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The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

Frequency-dependent selection may favour the evolution of mixed reproductive strate-
gies, resulting in polymorphic life-histories within a population. Here I explore the
theoretical and ecological possibilities for evolution of mixed reproductive strategies
in two minimal age-structured life-history models. The first model addresses evo-
lution of delayed maturity (i.e., competition between annuals and biennials), and
the second one deals with evolution of semelparity versus iteroparity. A necessary
condition for evolution of stable polymorphism is that the description of environ-
mental feedback in the model is two-dimensional. A two-dimensional description
is necessary if different age-classes experience the influence from the environment
differently and have a different influence on the environment. This might be caused
by resource utilization or predation risk being different between age-classes.
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Evolution of mixed reproductive strategies in

simple life-history models

Mikko Heino

1 Introduction

The diversity of life-histories between species, or between different populations of a
single species, can be attributed to differences in the environments they live in. The
theory of life-history evolution has been successful in giving understanding to why
certain environmental conditions favour, for example, delayed maturation, while in
others it might be better to reproduce at the earliest possible age (Roff 1992, Stearns
1992). Most simple life-history models predict that in a certain environment (rep-
resented as a set of parameters in the model) a single life-history is evolutionarily
‘optimal’. This result implies that populations should evolve towards monomorphic
composition, because individuals of a single population share the same environ-
ment. Therefore, the observation that life-history strategies may be diverse even
within populations has been theoretically perplexing. Here I explore the theoretical
and ecological possibilities for evolution of mixed reproductive strategies, resulting
in polymorphic life-histories, in two simple life-history models. The first model ad-
dresses the evolution of delayed maturity (i.e., competition between annuals and
biennials), and the second one the evolution of semelparity versus iteroparity.

Two explanations are commonly offered to close the gap between the theory pre-
dicting monomorphic populations and observations showing polymorphisms. First,
the observed variation is not adaptive and merely reflects mutation-selection bal-
ance, or that evolution has had not enough time to bring a population to the optimal
monomorphic composition. Therefore, the variation is seen as a mere ‘noise’ around
the optimal condition. The second explanation is that environmental variability or
non-equilibrium dynamics may select for strategies that help ‘spreading the risk’.
Such bet-hedging strategies usually involve producing offspring of two or more phe-
notypes, one doing better under certain environmental conditions, the other un-
der some other environmental conditions. In constant environments, polymorphic
strategies should then not occur.

The third explanation, largely overlooked in life-history theory, is that poly-
morphic life-history strategies can be maintained by frequency-dependent selection
(more precisely, strong frequency-dependence, see Heino, Metz and Kaitala 1998).
This mechanism allows evolution of phenotypic polymorphisms even under constant
environmental conditions (for life-history examples, see Bulmer 1994, Kaitala and
Getz 1995, Heino, Metz and Kaitala 1997, Kaitala, Mappes and Ylönen 1997). Un-
der selection with strong frequency-dependence, coexisting phenotypes get selective
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advantage when rare, such that at some intermediate frequency all coexisting phe-
notypes are equally fit. In other words, it is necessary that environmental feedback
levels down the fitnesses of the common phenotypes, and the rare phenotypes get a
relative advantage. The ecological processes that can cause frequency-dependence
are diverse. For example, predators specializing on the most frequent prey types
give advantage to the rare ones. Another example is a scenario in which different
phenotypes have only partially over-lapping resource usage, resulting in a sort of
resource refugium which helps to maintain rare phenotypes in a population. Theo-
retically, both of these examples have one thing in common: they require that the
description of the environmental feedback is at least two-dimensional. In general,
strong frequency-dependency, which makes stable coexistence of different pheno-
types possible, is only possible if the dimension of the feedback environment is at
least two (Heino, Metz and Kaitala 1997, 1998, Meszéna and Metz, this volume).

Traditionally, life history theoreticians have sought optimal life-histories that
maximize some density independent fitness ‘measure’, such as the expected lifetime
fecundity (or basic reproductive number) R0, or intrinsic rate of increase r (Roff
1992; Stearns 1992). This approach is valid only if the dimension of the feedback
environment is one (Mylius and Diekmann 1995, Metz, Mylius and Diekmann 1996,
Metz and Mylius, this volume). The other way round: determining optimal life-
histories by assuming that they maximize a certain optimization criterion is a valid
approach, but its implicit assumptions generically preclude the possibility that se-
lection will maintain polymorphic phenotypic composition of a population. The
adaptive dynamics approach does not share this severe shortcoming. In this paper
I address two classical problems in life-history theory with the adaptive dynamics
approach: timing of first reproduction, and competition between semelparous (re-
producing only once during the lifetime) and iteroparous (reproducing more than
once) life-histories. Specifically, I seek for the conditions under which polymorphic
life-history strategies are expected to evolve. For this purpose, I use two minimal
population dynamical models with only two age-classes and two possible life-histories
(phenotypes). The first model has been already analyzed in Heino, Metz and Kaitala
(1997).

The concept of evolutionarily stable strategies (ESS) play an important role in
understanding evolution of life-history strategies because ESSs represent potential
resting points of long-term evolutionary change. An ESS, when common, is unbeat-
able, or immune, against invasion of any alternative strategy (Maynard Smith and
Price 1973; for a rigid definition, see e.g. Eshel 1996). However, the ESS prop-
erty does not guarantee that a population playing some other strategy will evolve
towards an ESS. Convergence towards an ESS requires that mutants with a trait
value closer to an ESS than the resident trait value can invade. Such an ESS is then
evolutionarily attractive, i.e. convergent-stable, and it is referred to as a continu-
ously stable strategy (CSS, Eshel and Motro 1981). Alternatively, a strategy that is
an ESS but not convergent stable is an evolutionarily stable repeller (ESR).

Two main assumptions restricting the applicability of the theory outlined in this
paper should be mentioned: First, population dynamics converges to a stable point
equilibrium. This assumption is commonly made in order to keep models analyti-
cally tractable. The second assumption is more specific: invasion fitness of a rare
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Figure 1 The pairwise invasibility plots in vicinity of an evolutionarily stable strategy
(ESS) when mutant fitness is linear in its strategy. Only two non–generic configurations
are possible: in (a), the ESS is evolutionarily attractive and called as a continuously stable
strategy. In (b), the ESS is an evolutionary stable repeller.

mutant can be given as a linear function of its strategy. While making the an-
alytical description of adaptive dynamics particularly easy, this latter assumption
also restricts the possible kinds of adaptive dynamics that can be observed. Adap-
tive dynamics can be conveniently studied by means of “pairwise invasibility plots”
(PIPs) (Metz et al. 1996, Geritz et al. 1997a, 1997b, Geritz, this volume). In
a PIP, sign of the mutant fitness for different mutant strategies is plotted against
different resident strategies. A positive sign indicates invasibility of resident popu-
lation by a mutant type. If mutant fitness is linear in its strategy, then the PIP has
a non-generic configuration in which the curve with zero mutant fitness intersects
the diagonal vertically (Figure 1, see also Dieckmann and Metz, this volume). This
configuration precludes the existence of evolutionary branching points. Therefore,
the model always has at least one ESS, which, nevertheless, may be either a CSS or
an ESR.

In the next section I will present the two life-history models. Section 3 outlines
the way to analyze adaptive dynamics of life-history strategies in models with linear
mutant fitness. This first requires introduction of some theoretical concepts which
are not yet in common use in life-history theory. In section 4 the theory is applied
to the analysis of adaptive dynamics of reproductive strategies in two simple age-
structured models. The details of the analysis are given in the appendix.

2 Life-history models

Consider an organism with potentially two reproductive age-classes (N1 and N2)
and with age-specific fecundities (fi) and survival probabilities (si). Three types
of life-histories which differ qualitatively in their age schedules of reproduction and
survival are now possible:

1. Annual (semelparous) life-history: reproduction at age one and dying there-
after
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2. Biennial (semelparous) life-history: reproduction is delayed until age two

3. Iteroparous life-history: reproduction occurs at both ages

These basic types of life-histories are common in both animals and plants. However,
in botanical phrasing, the third life-history is called as perennial, and the term
monocarpic is used as a synonym for semelparous.

The different life-histories can be viewed as different phenotypes of a single
species. By studying competition between these phenotypes, two basic questions
of life-history theory can be addressed: When is delayed reproduction favoured
(life-history 1 vs. 2)? When does selection favour iteroparity over semelparity (life-
history 3 vs. 1 or 2)? The reproductive strategy, denoted as γ, can now be defined
as the proportion of a given phenotype among the offspring. An equivalent inter-
pretation is that the reproductive strategy is the probability of expressing certain
phenotype. Reproductive strategies γ = 0 and γ = 1 are then pure strategies: par-
ents and their offspring are phenotypically alike. A reproductive strategy between
zero and one is a mixed strategy. An individual playing a mixed strategy will pro-
duce a phenotypically polymorphic progeny. A reproductive strategy is called as a
population strategy if it is adopted by all the individuals in a population.

In any ecologically realistic model, it is important to recognize that individuals
influence the environment they live in – by depleting resources, or by being a resource
(a prey or a host) for other individuals of the same or another species. At the same
time, the combined effect of other conspecifics on the environment influences the
well-being of individuals of the focal population. This is the feedback from the envi-
ronment. The part of the environment which is both influenced by the population,
and which will have influence on the population, is called the feedback environment.
Assume that the condition of the feedback environment can be described with a
two-dimensional vector E = (E1, E2) depending on some, as yet unspecified way
on the densities N1 and N2. The increase of population size must eventually be
manifested as changes in mortality risk and/or reproductive rate. Here I specifically
assume that the age-specific survival probabilities are decreasing functions in both
components of the feedback environment. The density-dependence of the survival
parameters is denoted with a tilde.

Figure 2 shows two life-history models which are used to study competition be-
tween annual and biennial phenotypes (Figure 2a), and competition between annual
(semelparous) and iteroparous phenotypes (Figure 2b). The population dynamical
equations can be directly read from these life-cycle graphs. Note that in the graphs,
the newborns occur as a “pseudo-stage”: newborns are not present at the time of
population census (which is assumed to take place just before reproduction), and
therefore they do not occur at the population dynamical equations. Nevertheless,
their inclusion to life-cycle graphs makes them more readable.

In evolution of delayed reproduction model, the age-class dynamics are given by
the following equations (Figure 2a):

N1(t + 1) = s̃0f1γN1(t) + s̃0f2N2(t) (1)

N2(t+ 1) = s̃1(1− γ)N1(t), (2)

where fi is the fecundity at age i.



– 5 –

Newborns

1

1
f  γ

s
0

N
2

N1

Newborns

s  (1-γ)(a) (b)∼
1

s  (1-γ)∼

∼
s
0

∼

N
2

N1

1
f  γ

2
f

2
f

3
f  (1-γ)

Figure 2 The life-history models. Model (a) is the “evolution of delayed maturity”
model in which two possible phenotypes, annual and biennial. Model (b) is the “evolution
of semelparity versus iteroparity” model with an annual semelparous and an iteroparous
phenotype. In both model, reproductive strategy γ is the fraction annual phenotype among
the offspring. Survival probabilities s̃i are assumed to be influenced by environmental
feedback. fi denote the age- and phenotype-specific fecundities.

The reproductive strategy γ can be interpreted as the fraction of annuals among
the offspring, i.e. individuals maturing in their first year of life. This model has
been analysed by Heino, Metz and Kaitala (1997). The basic reproductive number
is (Figure 2a):

R0(γ,E) = s̃0[f1γ + s̃1f2(1− γ)]. (3)

The second model the evolution of semelparity versus iteroparity model. The
dynamics for this model can be written as (see Figure 2b):

N1(t+ 1) = s̃0[(f1γ + f3(1− γ))N1(t) + f2N2(t)] (4)

N2(t+ 1) = s̃1(1− γ)N1(t). (5)

Here f1 is the fecundity of the annuals, and f2 and f3 are the fecundities of the
perennials at ages two and one, respectively. In this model, the reproductive strategy
γ is the fraction of individuals reproducing only once, at their first year of life. Note
that setting f3 = 0 would yield the first model.

The basic reproductive number in the evolution of semelparity versus iteroparity
model is

R0(γ,E) = s̃0[f1γ + f3(1− γ) + s̃1f2(1− γ)]. (6)

3 Theoretical background

I assume that population dynamics converges to a stable point equilibrium. Further,
assume that the condition of the feedback environment depends on these densities
in such a way that each reproductive strategy uniquely determines the steady state
condition of the feedback environment, and vice versa. Therefore, on the long run,
the time-dependence of the condition of the feedback environment can be neglected:
after possible transient dynamics, the condition of the feedback environment stays
constant. The dimension of the feedback environment can then be conveniently
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defined as the dimension of the vector E (for non-point-equilibrium dynamics the
situation is more complex, see Meszéna and Metz, this volume). In the present
context, the dimension of the feedback environment is then two. The dimension of
the feedback environment plays a crucial role in adaptive dynamics of reproductive
strategies: two is the lowest dimension which allows evolution of mixed reproductive
strategies which result in phenotypic polymorphisms.

Under steady state population dynamical regime, fitness can be most conve-
niently measured as the basic reproductive number (also known as the expected
reproductive success). Fitness depends on both strategy of an individual (γ), and
the feedback environment (E) it lives in, which is made explicit in the notation:
R0(γ,E) (cf. Mylius and Diekmann 1995). Only mutants with the basic reproduc-
tive number greater than one can spread, while those with the basic reproductive
number less than one are doomed to go extinct. Necessarily, for a population strat-
egy, the basic reproductive number R0(γ,Eγ) = 1 – the population size will stay
constant and every individual will, an average, just replace itself. Further, I assume
that the basic reproductive number is monotonically decreasing in both of the com-
ponents of the feedback environment, E1 and E2, and that mutant fitness is linear in
the reproductive strategy γ. This latter assumption makes the analysis of adaptive
dynamics particularly easy, and is crucial for the line of analysis presented here.

If a population strategy is an evolutionary stable strategy (ESS), then all mutant
strategies have zero or negative fitness in the resident feedback environment. In
models with linear fitness in the mutant strategy, ESSs that make the mutant fitness
exactly zero play a key role in understanding the adaptive dynamics. In particular,
this is true for pure strategies, which implies equalities

R0(0,Eγ∗) = R0(1,Eγ∗) = 1. (7)

Generically, these ESSs are mixed strategies (γ ∈]0, 1[), although a pure strategy
can also have this special property. The analysis can be outlined as follows (skipping
the non-generic case):

1. Determine if there exist an ESS which makes fitness of all possible mutant
types equal by finding out if there exists a reproductive strategy γ which
satisfies the equation (7). This involves first solving E from the equation (7)
and then checking if it is an equilibrium feedback environment for some feasible
reproductive strategy (i.e. 0 < γ < 1). If such a solution exists, then it is a
mixed ESS γ∗. Otherwise, a pure strategy is the only ESS (and CSS).

2. If a mixed ESS exists, determine its attractivity. This can be deduced from the
configuration of isovalue contours R0(0,E) = 1 and R0(1,E) = 1 relative to
the steady state feedback environments determined by equation R0(γ, Êγ) = 1
(Figure 3). Assuming that the components of the feedback environment have
been numbered in such a way that γ increases from left to right on the curve
R0(γ, Êγ) = 1, then a crossing of isovalue contour R0(0,E) = 1 byR0(1,E) = 1
from above implies that the ESS is also evolutionarily attractive (Figure 3a): if
equilibrium point Eγ is on the right hand side of Eγ∗ (necessarily γ > γ∗), then
mutants γ′ with γ∗ < γ′ < γ can invade. The opposite dynamics occur on the
left hand side of Eγ∗. The reproductive strategy γ∗ is therefore a convergent
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stable ESS, i.e. a CSS. The opposite pattern of crossing between the isovalue
contours would imply that the mixed ESS lacks attractivity (Figure 3b). The
mixed ESS would then be called as an evolutionarily stable repeller (ESR,
Heino, Metz and Kaitala 1997).

If a model structurally allows at most one mixed ESS (which occurs if isovalue
contours are linear), adaptive dynamics can have only three different, mutually
exclusive outcomes (Heino, Metz and Kaitala 1997):

1. There is a single, unique, globally attractive pure ESS.

2. There is a single, unique, globally attractive mixed ESS.

3. There are two locally attractive pure ESSs, separated by a repelling mixed
ESS.

4 Adaptive dynamics of reproductive strategies

The theory outlined above is now used to analyze the life-history models given in
section 2. Only the results are given here, while the details of the analysis are to be
found in the appendix.

First, however, it is necessary to make the models complete by specifying the
form of density-dependence and the relation of the feedback environment to the
densities of the age-classes. To assure that the population dynamics has a point
attractor in a largish range of parameter space, I use a Beverton-Holt –type density
dependence. For the environmental condition E I take the densities of newborns
and adults which try to survive till the second year of their life, before the density-
dependent mortality occurs (compare to Figure 2):

(E1, E2) :=
(
(f1γ + f3(1− γ))N1 + f2N2 , (1− γ)N1

)
. (8)

Note that in Model 1 f3 = 0 and E1 simplifies accordingly. The survival probabilities
can be now given as

s̃0(t) =
s0

1 + α11E1(t) + α12E2(t)
(9)

s̃1(t) =
s1

1 + α21E1(t) + α22E2(t)
, (10)

where s0 and s1 are survival probabilities in environment with no adverse effects
from density-dependence – the virgin environment of Mylius and Diekmann (1995).
These equations allow a wide range of ecological interpretations, depending on the
non-negative coefficients α. At least α11 must be positive so that the population
size stays bounded, no matter which reproductive strategy prevails. The terms
α11E1 and α22E2 represent the effect of increasing density of an age group to its
own survival. This might be due to competition of resources such as food, space
or light, or due to predation or parasitism. The coefficients α12 and α21 represent
competition or interference between the age groups, or in case of shared predators
or parasites, apparent competition.
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Figure 3 The adaptive dynamics in the vicinity of a mixed evolutionarily stable strategy
(ESS). All mixed ESSs are crossing points of unity reproductive number contours for the
pure reproductive strategies γ = 0 and γ = 1, R0(1,E) = 1 and R0(0,E) = 1. Whether
an ESS is evolutionarily attractive or not depends on the way these contours cross each
other; an ESS is then either a continuously stable strategy (a), or an evolutionary stable
repeller (b).
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The first main result is that in both models, the attractivity of mixed reproduc-
tive strategies depend only on the coefficients α. A necessary condition for existence
of a mixed, attractive evolutionarily stable strategy is that

α11α22 > α12α21. (11)

Ecologically, this condition means that phenotypic polymorphisms are only possible
if within age-class interactions are more important than interactions between age-
classes.

The presentation of the results is greatly simplified by introducing few notational
conventions. Let ∆1 denote the difference in reproductive success between biennials
and annuals in the virgin environment: ∆1 := s1f2−f1. Let ∆2 be a similar measure
between iteroparous and semelparous annual phenotypes: ∆2 := s1f2 + f3 − f1. A
third shorthand is just a rescaled measure for the basic reproductive ratio of annuals
in the virgin environment: φ := s0f1 − 1. The viability of the annual life-history
implies that φ is positive, the other two measures might be negative as well.

Assuming now that within age-class interactions are more important than inter-
actions between age-classes (α11α22 > α12α21) and mixed CSSs are therefore pos-
sible, an evolutionarily stable and attractive reproductive strategy in the delayed
reproduction model is

γ∗ =


1 if ∆1 ≤ α21

α11
f1φ,

1 + f1
f1α21φ−α11∆1

f1α22φ−α12∆1
if −1 < f1

f1α21φ−α11∆1

f1α22φ−α12∆1
< 0,

0 otherwise.

(12)

If α11α22 < α12α21, the equations remain virtually intact, but the former mixed
reproductive strategy would be an evolutionary repeller. A population would then
evolve either towards pure annual life-history (γ = 1) or towards pure biennial
life-history (γ = 0), depending on the initial population strategy.

Annual life-history can be thought to be the ancestral life-history strategy. A
relevant question is then when are biennials able to invade a population of annu-
als? Because of linearity of the mutant fitness, this happens whenever pure annual
strategy is not an ESS. The invasion condition of biennials is therefore (see equation
12)

∆1 >
α21

α11

f1φ. (13)

Because the right-hand-side of this equation is always non-negative, a necessary
condition for biennial invasion is that biennials have higher reproductive success
than annuals in the virgin environment (∆1 > 0). The higher effect annuals have
on the survival of biennials relative to their on survival (ratio α21/α11 is high), the
higher must be the advantage of biennials in the virgin environment for biennial life-
history to be favoured. Note that the success of biennial invasion does not depend
on the effect of biennials on the survival of annuals (coefficient α12), or the severity
of density-dependence on the second year (α22). However, whether the eventual
outcome of the invasion is either a pure population of biennials or a mixture of both
life-histories depends on all the parameters of the model.

Next turn to the evolution of semelparity versus iteroparity. Assuming again
that within age-class interactions are more important than interactions between
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age-classes, an evolutionarily stable and attractive reproductive strategy is

γ∗ =


1 if ∆2 ≤ α21

α11
(f1 − f3)φ,

1 + f1
(f3−f1)α21φ−α11∆2

(f3−f1)α22φ−α12∆2
if −1 < f1

(f3−f1)α21φ−α11∆2

(f3−f1)α22φ−α12∆2
< 0,

0 otherwise.

(14)

The first thing to note is the similarity of the results between the semelparity versus
iteroparity model and delayed reproduction models. This was, of course, expected
on the basis of structural similarity of the models.

The invasion condition of iteroparous reproductive strategy to a population of
annuals is (from equation 14):

∆2 >
α21

α11
(f1 − f3)φ. (15)

If iteroparous phenotype has higher fecundity in the first year than annuals (f3 >
f1), then it can always invade. However, it is feasible to assume that iteroparous
individuals have lower fecundity in their first year of life as a cost for extending
their life-span, such that f3 < f1. This assumption leads to a similar invasion
condition to the one in the delayed reproduction model: for a successful invasion
to a population of annuals, it is necessary that the iteroparous phenotype have
higher expected reproductive success in the virgin environment. How much higher
reproductive success is necessary depends on the competitive effects annuals exert
on iteroparous phenotype and on annuals themselves.

The results are simplified a lot if the two age-classes do not interact at all
(α21 = α12 = 0). All mixed reproductive strategies are then evolutionarily attractive
(remember equation 11). A necessary and sufficient condition that a population of
annuals can be invaded by either biennial or iteroparous life-history strategies is that
they have higher expected reproductive successes in the virgin environment (∆1 > 0
or ∆2 > 0). If environmental feedback is strong enough to reduce the reproductive
success of these alternative life-histories to the level of annuals at the population
dynamical steady state, then a mixed reproductive strategy is an ESS. In that case
only, the population will be phenotypically polymorphic. Otherwise, annuals will
be outcompeted to extinction.

5 Discussion

The development of life-history theory shows a tendency towards increased recog-
nition of the importance of environmental feedback in understanding evolutionary
change. A parallel change has been observable in the development of fitness con-
cepts. In the early theory, fitness was measured as the intrinsic rate of increase,
and the environmental feedback was neglected altogether (e.g., Cole 1954). A major
conceptual breakthrough was the introduction of the idea of evolutionarily stable
strategies (Maynard Smith and Price 1973), which enabled to study life-history evo-
lution in density-dependent context (e.g., Hastings 1978). In this context, the most
powerful fitness concept is based on invasibility of resident populations by mutant
strategies (Metz et al. 1992, Rand et al. 1994, Ferrière & Gatto 1995). However,
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the choice for the way in which population regulation works in models has often
been rather arbitrary – usually just the most ‘convenient’ way of population regu-
lation has been chosen. In most cases, this means one-dimensional environmental
feedback. Unfortunately, this practice restraints the range of potential evolutionary
outcomes by precluding existence of polymorphic strategies. Recent models with
higher dimensional feedback environments have shown that polymorphic life-history
strategies are feasible in variety of models with firm ecological basis (e.g., Bulmer
1994, Kaitala and Getz 1995, Heino, Metz and Kaitala 1997, Kaitala, Mappes and
Ylönen 1997).

Cole’s paradox – why iteroparity exists at all – fuelled much of the early de-
velopment of life-history theory. The paradox itself was a result of major oversim-
plification, and has been resolved by including elementary biology into the model
– see Bulmer (1994) for a good account on Cole’s paradox. Bulmer (1994) also
shows how phenotypic polymorphism (coexistence of annual and perennials) may
occur in a two-dimensional feedback environment. The same result was obtained
here with a slightly different model. A necessary condition for a successful inva-
sion of iteroparous strategy is that it has higher expected reproductive success than
the semelparous strategy in the virgin environment. For exact predictions on when
iteroparity is favoured over semelparity and when coexistence of both phenotypes is
possible, it is necessary to know the details of the environmental feedback.

Delayed reproduction portrayed a similar kind of dilemma than Cole’s paradox
until the importance of environmental feedback was recognized (De Jong, Klinkhamer
and Metz 1987). Under-density dependence, lengthened generation time need not
to be a drawback – all that matters is the expected reproductive success at the
steady state. However, the details of population regulation matter again, and two-
dimensional feedback environment is probably needed to explain some of the ob-
served phenotypic polymorphisms (Heino, Metz and Kaitala 1997).

The aforementioned analyses have taken the life-history parameters ‘as given’.
Deeper understanding on the evolution of life-history strategies presumes also knowl-
edge on the trade-offs between the parameters. These trade-offs determine the feasi-
ble parameter combinations. For analyses of evolution of basic life-history patterns
taking the trade-offs into account, see Yodzis (1989) and Takada (1995).

The ecological processes behind a two-dimensional description of the feedback
environment has been mentioned already – differential resource usage, predation
or parasitism between age-classes (or between other relevant stages). However, a
question why these interactions should depend on age-class in the first place still
remains. The most obvious way such differences may arise is size differences between
age-classes. In most organisms vulnerability to predation and resource usage are
strikingly different between newborns and full-growns. Bigger individuals usually
have access to a larger range of food items than small ones. Predators are commonly
size-selective in their prey choice, leading to a differential mortality risk between
different size groups. In plants, size influences access to resources such as light
through shading effects. In models, these various interactions are usually greatly
simplified, and they may even take the same functional form. In any case, it is
important to recognize that the representation of environmental feedback cannot be
arbitrary but has to be rooted to the biological problem under consideration.
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Appendix: Adaptive dynamics in linear fitness mod-

els

The technical details of the procedure outlined in section 3, and applied to concrete
life-history models in section 4, are given here to a degree that the derivation of the
equations 11–15 becomes clear. I follow here a convention that the components of the
feedback environment are numbered in such a way that on the curve of equilibrium
feedback environments, defined by the equationR0(γ, Êγ) = 1, reproductive strategy
γ increases from left to right. The left and right end points of this curve correspond
then to population strategies γ = 0 and γ = 1, respectively.

The first step is to check existence of mixed evolutionarily stable strategies. As-
sume first that a mixed ESS exists, and denote it with γ∗. Mixed reproductive
strategies satisty equation R0(0,Eγ∗) = R0(1,Eγ∗) = 1. Solving two of the three
equalities yields a potential equilibrium feedback environment (E1, E2). Correspon-
dence between the environmental variables and the densities N1 and N2 (equation
8) allows substitution of (E1, E2) with (N1, N2), which results in two equations of
three unknown variables (N1, N2 and γ). Assumption of stable population dynam-
ics provides a third equation (N1(t) = N1(t+ 1)), and allows solving γ from these
equations. If resulting γ is not feasible (γ 6∈ [0, 1]), or there is no solution at all,
then the assumption that a mixed ESS exists was false. The borderline case is that
the solution is a pure strategy. Note also that there might be more than one feasible
solutions.

The next step is to determine attractivity of a mixed ESS Eγ∗, i.e. will a popu-
lation strategy which is not an ESS converge towards a mixed ESS or not. This can
be evaluated with help of local configuration of isovalue contours R0(0,E) = 1 and
R0(1,E) = 1, exctracted from equation 7 for arbitrary (E1, E2). Also a third iso-
value contour, R0(0,E) = R0(1,E), can be extracted from equation 7. Moreover, all
these isovalue contours have a common point of intersection. Simple algebra shows
that if isovalue contour R0(1,E) = 1 intersects R0(0,E) = 1 from above, so will
do the isovalue contour R0(0,E) = R0(1,E). Therefore the attractivity of a mixed
ESS can be determined from pattern of crossing of any two of the three isovalue
contours.

In the life-history models studied here, R0(0,E) = 1 defines a quadratic ex-
pression. However, the other two isovalue contours, R0(1,E) = 1 and R0(0,E) =
R0(1,E), are linear in E1 with slopes −α11/α12 and −α21/α22, respectively. Evo-
lutionary attractivity is obtained if R0(1,E) = 1 crosses R0(0,E) = R0(1,E) from
above, i.e. −α11/α12 < −α21/α22 (equation 11).

The above derivation allows to identify mixed ESSs and their attractivity. For
full description of the adaptive dynamics, it still needs to be determined which one
of the pure strategies is an ESS if there are no mixed ESSs. In that case, an ESS
is known to be unique (Heino, Metz and Kaitala 1997). Therefore it suffices to
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determine when either one of the pure strategies is an ESS. The other pure strategy
is then an ESS if and only if the first pure strategy is not an ESS and there are no
mixed ESSs.

In determining whether a pure strategy is an ESS or not, it is necessary to
calculate the equilibrium population densities for the pure strategies. In the life-
history models analysed here, this task is easily accomplished for the pure annual
life-history γ = 1, while it is formidable for the other pure life-history strategies.
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