
International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Approved by

INTERIM REPORT

IIASA

IR-97-58 /September

Quadratic Pareto Race

Pekka Korhonen (korhonen@iiasa.ac.at)
GuangYuan Yu (yu@hkkk.fi)

Gordon MacDonald (macdon@iiasa.ac.at)
Director, IIASA

Contents

1. Introduction 1

2. Theoretical Foundations 2

2.1 Problem Formulation 2

2.2 A Parametric Model for Searching Efficient Frontier 3

3. Development of the Linear Complementarity Model 5

3.1 Linear Complementarity Formulation 5

3.2 Parametric Principal Pivoting Algorithm 6

4. Quadratic Pareto Race 8

5. A Numerical Example 14

6. Conclusion 17

References 18

Abstract

This paper presents a dynamic and visual “free-search” type of a decision support
system - Quadratic Pareto Race, which enables a decision maker (DM) to freely search
any part of the efficient frontier of a multiple objective quadratic-linear programming
problem by controlling the speed and direction of motion. The values of the objective
functions are presented in a numeric form and as bar graphs on a display. The
implementation of Quadratic Pareto Race is based on the theoretical foundations
developed by Korhonen and Yu [1996]. The system is implemented on a microcomputer
and illustrated using a numerical example.

Keywords: Multiple Objective Programming, Quadratic Programming, Reference
Direction, Linear Complementarity Model, Interactive Procedure, Decision Support
Systems.

Acknowledgments

The research was supported, in part, by grants from the Foundation of the Helsinki
School of Economics and the Academy of Finland.

About the Authors

Pekka Korhonen is Project Leader of the Decision Analysis and Support Project at
IIASA, and also Professor of Economics at the Department of Economics and
Management Science, Helsinki School of Economics and Business Administration.

Guang Yuan Yu is a Ph.D student at the Department of Economics and Management
Science, Helsinki School of Economics and Business Administration.

Quadratic Pareto Race

Pekka Korhonen
GuangYuan Yu

1. Introduction

Pareto Race was developed by Korhonen and Wallenius [1988] to solve multiple
objective linear programming problems and it was characterized as follows: “Pareto
Race represents a dynamic, visual, and interactive procedure for multiple objective
linear programming. In Pareto Race, a decision maker (DM) can freely search the
efficient frontier of a multiple objective linear programming problem by controlling the
speed and direction of motion. On a display, the DM sees the objective function values
in numeric form and as bar graphs whose lengths are dynamically changing as he
moves about on the efficient frontier. The keyboard controls include gears, an
accelerator, brakes, and a steering mechanism.” A key feature in Pareto Race is that it
does not dictate to the DM what to do. The system only controls that all the solutions
the DM evaluates are “reasonable”, i.e. efficient, but the DM is free to choose any from
among those reasonable solutions. The method behind the system is based on the use of
the reference direction approach which was developed by Korhonen and Laakso [1986].
In Pareto Race, the reference direction is specified implicitly in a dynamic manner. No
assumptions concerning the DM’s behavior is required.

Pareto Race is an essential part of VIG, which is a computer system developed by
Korhonen [1987] to support the structuring and solving of multiple criteria decision
making and planning problems. VIG is widely applied to many multiple criteria
decision problems, for instance, in determining the changes of optimal prices in an
alcohol sales monopoly in Finland (see, Korhonen and Soismaa [1988]), in stockpiling
critical materials for a national emergency in Finland (see, Kananen, Korhonen,
Wallenius and Wallenius [1990]), and in selecting a flexible manufacturing system (see,
Stam and Kuula [1991]), etc.

Pareto Race has been developed to solve multiple objective linear programming
problems. This restricts its use to the problems which include non-linear features.
Unfortunately, nonlinear multiple criteria problems are not an exception. For excellent
surveys, see e.g., White [1990], Saber and Ravindran [1993], and Boyan [1995].
However, not many interactive software systems exist for solving multiple objective
nonlinear programming problems. Typically, in those systems one or several
nondominated solutions are generated and presented for the DM’s evaluation at each
iteration. One example of those procedures is a “Light Beam Search” – procedure
developed by Jaszkiewicz and Slowinski [1994]. The procedure first finds a

2

nondominated solution and then defines a subregion of the nondominated set according
to the current solution by using the form of an outranking relation which takes into
account the preference information of the DM. Finally, a sample of nondominated
points in the subregion, composed of the current solution and a number of alternative
proposals, is presented to the DM. The LBS procedure is a typical nonlinear multiple
criteria procedure in the sense that the sample set of nondominated solutions is finite.
For this reason, some important nondominated solutions may not be available to the
DM. Generally, in a nonlinear case, it is very time consuming to generate – actually to
approximate – a continuous path on the nondominated frontier like, for instance, in
Pareto Race.

Following the original idea of Pareto Race, our aim is to develop a similar system –
called Quadratic Pareto Race – for dealing with a special case of a multiple objective
non-linear problem: multiple objective quadratic-linear programming problem
(MOQLP). Our problem consists of one quadratic objective, several linear objectives,
and a set of linear constraints. For instance, an extension of the classical portfolio
selection problem is of this type. The problem can be transformed into a parametric
linear complementarity problem and solve using techniques developed for solving
multiple objective linear programming problems. The underlying theory is developed in
two papers by Korhonen and Yu [1996] and [1997].

Quadratic Pareto Race is based on the use of reference directions (Korhonen and Laakso
[1986]) and weighted-sums. Reference directions for the linear functions, and weighted-
sums for combining the quadratic function with the linear ones are used as parameters to
implement a free search on the nondominated frontier. The interface of Quadratic Pareto
Race is very similar to the original Pareto Race.

The rest of the paper is organized as follows: In section 2, we briefly review theoretical
foundations. In section 3, we describe the parametric linear complementarity
formulation of the problem and its solution procedure. In section 4, Quadratic Pareto
Race is developed and a numerical example is given in section 5. In the last section, we
present some concluding remarks and discuss future applications.

2. Theoretical Foundations

2.1 Problem Formulation

The multiple objective quadratic-linear programming problem is defined as follows:

 Min V(x) = 1
2
x'Dx

"Max" l(x) = Cx

Subject to: (2.1)

A x ≤ b

 x ≥ 0,

3

where D is a symmetric positive semi-definite matrix of order n × n, C is the k × n
matrix of coefficients of the linear objective functions, A is an m × n matrix (rank m) of
coefficients of the constraints, b is an m-vector of the rhs, and x is an n-vector of the
decision variables. By "Max" we mean that all linear objective functions have to be
maximized while the quadratic objective function is to be minimized.

We will denote the objective function vector by f(x) and refer to its components as
follows:

f(x) = 



-V(x)

l(x) =







f0(x)

 f1(x)
 ...

 fk(x�

.

The problem can now be written as:

"Max" f(x)

Subject to: (2.2)

x ∈ X = {x Ax ≤ b, x ≥ 0}

We define efficiency and weak efficiency for a point x0 ∈ X in the usual manner:

Definition 1. x0 ∈ X is efficient iff ∃/ x ∈ X such that f(x) ≥ f(x0) and f(x) ≠ f(x0).

Definition 2. x0 ∈ X is weakly efficient iff ∃/ x ∈ X such that f(x) > f(x0).

The objective function vectors q ∈ Q = {q  q = f(x), x ∈ X} corresponding to
(weakly) efficient points are called (weakly) nondominated solutions.

2.2 A Parametric Model for Searching Efficient Frontier

To search (weakly) nondominated solutions of a problem (2.1), Korhonen and Yu
[1996] introduced the following parametric model:

Min 1
2
x'Dx + (λ+ t∆λ)ε

Subject to: (2.3)

Cx+ εw ≥ g + t∆g

Ax ≤ b

 x ≥ 0,

4

where t ∈ [0, tu), tu =


 ∞ , if ∆λ ≥ 0

λ
-∆λ, if ∆λ < 0

 , λ > 0, and thus (λ + t∆λ) > 0 for all t ∈ [0, tu).

By varying t, ∆λ and ∆g we may search the nondominated frontier of problem (2.1).

Parameter λ ← λ + t∆λ combines the quadratic objective function with the linear ones.
When λ increases the “relative meaning” of the quadratic function in the combined
objective function in model (2.3) decreases, and when it approaches zero, the solution
approaches to the minimum of the quadratic function. Vector ∆g ∈ ℜk is a so-called
reference direction vector and is used to control desirable changes in linear objective
functions. Respectively, parameter ∆λ is used to change the “relative meaning” of the
quadratic part. By varying the values of ∆λ and ∆g, the DM may control a search
direction on the nondominated frontier, and parameter t is used to control a ‘speed’ on
that frontier.

In model (2.3), we made a clear distinction between linear objective functions and linear
constraints. However, from the technical point of view, the distinction is rather artificial
as we can see from the following formulation:

Min 1
2
x'Dx + (λ + t∆λ)ε

Subject to: (2.4)

Hx + εw+ ≥ g++ t∆g+

 x ≥ 0

 t : 0 → t* ∈ [0, tu),

where H = 



 C

-A ∈ ℜ
(k+m)×n

��w+�!�



w

0 ∈ ℜk+m, g+ = 



 g

-b ∈ ℜk+m, ∆g+ = 



∆g

0 ∈ ℜk+m,

and tu =


 ∞ , if ∆λ ≥ 0

λ
-∆λ, if ∆λ < 0

.

Which linear inequalities are standing for linear objective functions and which for linear
constraints depends on the components of vectors w+ ∈ ℜk+m and ∆g+ ∈ ℜk+m:

w
+
i



 = 0 , if i refers to a constraint
 > 0 , if i refers to an objective

and

∆g
+
i



 = 0 , if i refers to a constraint
 ≠ 0 , if i refers to an objective.

Formulation (2.4) now provides us with a simple formulation to change the role of
linear objectives and constraints. When a constraint is changed into an objective, a
certain positive value is given to the corresponding component of the weight vector w+,

5

and a non-zero value is given to the corresponding component of vector ∆g+. When the
change is made in the opposite direction, the corresponding components of vectors w+

and ∆g+ are set to zero.

Using the unified formulation for linear objective functions and constraints, we do not
need to fix their role in the beginning of the search process, but we may freely change it
during the search process. The quadratic function is the only function, which is fixed to
be one of the objective functions. The decision support system described in the
following section, supports this kind of an evolutionary approach. We will use the
common term ‘goal’ to refer to objectives and constraints. Following Ignizio [1983]
objectives are sometimes called ‘flexible goals’ and constraints ‘inflexible or rigid
goals’.

Model (2.4) does not provide an operational way to continuously search an efficient
frontier. For that purpose, we transform the model (2.4) into a linear complementarity
form, which makes it possible to apply the methods developed for multiple objective
linear programming.

3. Development of the Linear Complementarity Model

3.1 Linear Complementarity Formulation

To simplify notation, we drop the superscript “+” from the vectors w+, g+, and ∆g+. For
each given t, ∆λ, and ∆g ∈ ℜk+m�� XLI�quadratic problem (2.4) can be transformed to a
linear complementarity problem as shown in Korhonen and Yu [1996]:

Find a solution for the problem:

–Dx + H’y + α = 0

w'y + β = λ + t∆λ

–Hx – εw + δ = –g – t∆g (3.1)

 x, y, α, δ ≥ 0, β = 0

αixi = 0, i = 1,2, ..., n

δjyj !��, j = 1,2, ..., k+m,

t : 0 → t* ∈ [0, tu),

where tu =


 ∞ , if ∆λ ≥ 0

λ
-∆λ, if ∆λ < 0

.

Above we have transformed the original MOQLP-problem into a parametric linear
complementarity problem. The model (3.1) now provides us with a straightforward way

6

to make search similar to Pareto Race in multiple objective linear programming. The
search is controlled by means of the problem parameters: t, ∆λ, and ∆g ∈ ℜm+k�

The search is started with t = 0. After finding an initial solution, we use a parametric
principal pivoting method to move on the efficient frontier. The method is briefly
reviewed in the following subsection. For a more detailed description, see, e.g., Cottle,
Pang, and Stone [1992, pp. 288–308]. The implemented procedure is called Quadratic
Pareto Race and explained in more detail in section 4.

3.2 Parametric Principal Pivoting Algorithm

In this subsection, we briefly describe the parametric linear complementarity problem
and the parametric principal pivoting method for solving it. To keep the text readable,
we will use notation commonly used in the context of the linear complementarity
problem.

Given a p × p matrix M, and a vector q ∈ ℜp��the linear complementarity problem is to
find nonnegative vectors w ∈ ℜp and z ∈ ℜp such that

w – Mz = q (3.2)

w ≥ 0, z ≥ 0

w’z = 0.

For our purposes, it is sufficient to assume that M is positive semi-definite. This
assumption simplifies considerations.

Correspondingly, a parametric linear complementary problem is the family of linear
complementarity problems:

w – Mz = q ��X∆q� (3.3)

w ≥ 0, z ≥ 0

w’z = 0

where ∆q ∈ ℜp is a parametric vector and parameter t is running over a closed interval I
= [a, b] in ℜ. We will consider the case, where 0 ∈ I.

First, we solve the problem (3.2), which corresponds to the case t = 0. If the problem
has a solution, then under the assumptions we made about M, the problem has a solution
for all t ∈ I provided that the problem has a solution for t = a and t = b. To solve the
problem (3.2), we may use the traditional Complementary Pivoting Algorithm proposed
by Lemke [1968], or the parametric principal pivoting method in the way as explained
later on.

Following 'SXXPI�� 4ERK�� ERH� 7XSRI� ?������ TT�� ���r���A�� [I� HIWGVMFI� XLI Symmetric
Parametric Principal Pivoting Algorithm�

7

Step 0.Let’s assume that problem (3.2) has a nondegenerate solution. Without loss of
generality, we may assume that q > 0 implying that (w, z) = (q, 0) is the solution of
problem (3.2). We define h:= 0, qh = q, ∆qh = ∆q, wh = w, zh = z, and Mh = M. We also
specify tmax ∈ [0, ∞).

Step 1.Determine the next critical value of t:

th+1 = min{

min
 i

 {
-q

h
i

∆q
h
i

  ∆q
h
i < 0}, tmax}

and set

(wh(t), zh(t)) = (qh + t∆qh, 0) for all t ∈ [th, th+1].

If t h+1 = tmax, Stop. Otherwise let

r = arg

min
 i

 {
-q

h
i

∆q
h
i

  ∆q
h
i < 0}.

The new critical value of t is th+1 =
-q

h
r

∆q
h
r

 .

Step 2. If m
h
rr > 0, then pivot matrix Mh using as a pivot element m

h
rr, and denote a

resulting matrix by Mh+1. Set

w
h+1
r = z

h
r , z

h+1
r = w

h
r ,

w
h+1
i = w

h
i , z

h+1
i = z

h
i , i ≠ r,

and h := h+1. Return to Step 1.

If m
h
rr = 0, determine the index of the leaving variable as usually in the parametric

linear programming. Let it be s. Pivot Mh twice using as pivot elements m
h
sr and m

h
rs, and

denote a resulting matrix by Mh+1. Set

8

w
h+1
s = z

h
r , z

h+1
s = w

h
r ,

w
h+1
r = z

h
s , z

h+1
r = w

h
s,

w
h+1
i = w

h
i , z

h+1
i = z

h
i , i ≠ r, s

and h := h+1. Return to Step 1.

See below the Remark following the algorithm.

Remark. Assumption q > 0 made in Step 0, is not restrictive, because we can transform
the problem (3.2) into a parametric form. Choose an arbitrary vector q* > 0, and
formulate the problem as follows:

Find a solution for the problem, when τ = 1:

w – Mz = q* ��τ�q�r�q
� (3.4)

w ≥ 0, z ≥ 0

w’z = 0.

Because q* > 0, the solution of the problem (3.4) is w = q* when τ=0. To solve the
problem, when τ = 1, we use the algorithm above. The problem has always a solution,
when τ = 0, and if the problem has a solution with τ=1, then under the assumptions we
made about M, the problem has a solution for all τ ∈ [0, 1].

4. Quadratic Pareto Race

The description of Quadratic Pareto Race follows the description of Pareto Race as
proposed by Korhonen and Wallenius [1988] and it is also implemented in a similar
way.

Step 0. Problem Setup

Provide the rows and variables of the problem with names; define the constraint matrix
H and give a symmetric positive semi-definite matrix D in a lower-triangular form (see,
Figure 1); specify the initial aspiration levels (g vector) for linear goals; and define the
goal categories (≥, ≤, or =) (see, Figure 2). (To simplify the notation. we assume that all
inequality goal categories are “greater than or equal to”. When a goal with the category
“greater than or equal to” is defined as a flexible goal, the optimization is interpreted to
mean “maximize”.)

9

Step 1. Classification of Goals

Specify the goals you consider objectives (flexible goals), and denote the corresponding
index set by G. (Initially, G = {0}, where index 0 refers to the quadratic objective
function.) The set of constraints is denoted by R = {1, 2, …, k+m}. (This step is
implemented exactly as in Pareto Race (Korhonen and Wallenius [1988]).

Step 2. Specification of Ranges

Specify approximate (subjective) lower and upper bounds g
L
i and g

U
i for all objectives, i

∈ G, and require g
U
i > g

L
i . Set wi = g

U
i – g

L
i , when i ∈ G – {0}and wi = 0, when i ∈

R+{0}. (The initial ranges are used for the initialization of the race and for the
specification of reference directions for linear objectives. The ranges are automatically
updated during the race if necessary.) If the DM is unable to specify the ranges, the

system will generate them by using previously (in Step 0) specified goal values g: g
U
i =

1.5gi and g
L
i = 0.5gi. If gi = 0, then g

U
i = 1 and g

L
i = –1.

Define an initial reference direction vector ∆g0 and ∆λ0 as follows:

∆g
0
i =



 0 , i ∉G-{0}

g
U
i - g

L
i

 ∑
j∈G

 (g
U
j - g

L
j)

 , i∈G-{0}

and

∆λ0 =
g

U
0 - g

L
0

 ∑
j∈G

 (g
U
j - g

L
j)

 .

Step 3. An Initial Solution

Find an efficient (possibly weakly-efficient) solution to the following linear
complementarity problem:

–Dx + H’y + α = 0

w'y + β = λ

–Hx – εw + δ = –g (4.1)

x, y, α, δ ≥ 0, β = 0

10

αixi = 0, i = 1,2, ..., n

δjyj !��, j = 1,2, ..., k+m.

Initially, let λ be a small positive number. (We use the value λ := ∆λ0
•10–7). This

guarantees that the initial solution is the efficient solution of problem (2.3) (see, e.g.,
Geoffrion [1968]), but it might still be a weakly efficient solution of the original
problem (2.1). If λ is small enough, the race is started from the optimum of the
quadratic term or from its neighborhood.

Specify ∆g = ∆g0 and ∆λ = ∆λ0.

Step 4. Moving About the Efficient Frontier (Quadratic Pareto Race)

The use of Quadratic Pareto Race is illustrated in Figures 1–5.

To implement the moving mechanism, we have to initialize several sets of constants and
have found the following experimented values most suitable:

ω := 2.5 the multiplier determining the degree of change in the direction of the
motion

 ρ := 3 Multiplier determining the increase in speed

∆t0 := 10–5 “base speed”; i.e. a step size.

There are three parameters which can be used to control the motion on the efficient
frontier: the reference vector ∆g for linear objectives, the parameter ∆λ for varying the
“relative meaning” of the quadratic objective, and the scalar t. By varying ∆g and ∆λ we
change the direction of motion, and “speed” is controlled by t. The value of t is varied
using the step-size ∆t, which is initially set ∆t := ∆t0.

The DM does not need to explicitly specify these parameters. We have built a
mechanism that changes them. When the DM wants to “travel” faster, the step size
parameter ∆t is increased. When he/she wants to improve some objectives, we change
∆g and ∆λ in such a way that the DM can see improvements in the value of objectives
in question.

For each given ∆g and ∆λ, we can find the range [tL, tU] for which the basis of the model
(3.1) is the same, when t ∈ [tL, tU]. When the new values of the parameters are specified
or the basis change is performed, then a new range has to be determined. When the DM
reaches the point, from which he/she cannot continue the search with current parameter
values, he/she is guided to respecify new values for parameters.

Quadratic Pareto Race is controlled by using the following function keys which are the
same as already used in Pareto Race, see for more details Korhonen and Wallenius
[1988]:

11

 (SPACE) BAR: An "Accelerator"

Proceed in the current direction at constant speed. (The step-size is constant.)

On the screen, the DM will see the solutions corresponding to the following values of t:

t :=


 min{t+∆t, tU}, if ∆t > 0
 max{t-∆t, tL} , if ∆t < 0

.

If t = tU, change the basis, and update the range. If tU = ∞ or tU = tmax or (∆t < 0 and t = tL),
ask the DM to initiate a turn.

When t ∈ [tL, tU], i.e. the basis remains the same, we can present the values of the
quadratic function and the linear functions as follows:

V(x(t)) = V(x0) + tx0 ’D∆x + 1
2
t2∆x0 ’D∆x

l(x(t)) = Cx0 + tC∆x,

where ∆x = ∆x(∆λ, ∆g) indicates how the values of the vector of decision variables x
depend on the direction parameters ∆λ and ∆g. (Actually, we will use in the
implemented algorithm a so-called indirect method for computing V(x(t)) and l(x(t) as
explained in Korhonen and Yu [1997]. However, an indirect method is less illustrative.
That’s why the direct method is used here to illustrate the idea.)

F1: "Gears (Backward)"

Increase speed in the backward direction. (The absolute value of the step-size is
increased and the sign is negative.)

∆t :=


-∆t0 , if ∆t > 0
 ρ•∆t, if ∆t < 0

F2: "Gears (Forward)"

Increase speed in the forward direction. (The absolute value of the step-size is increased
and the sign is positive.)

∆t :=


 ∆t0 , if ∆t < 0
 ρ•∆t, if ∆t > 0

F5: "Brakes"

Reduce speed as follows. (The absolute value of the step-size is decreased.)

∆t :=


 max{∆t/ρ, ∆t0}, if ∆t > 0
 min{∆t/ρ,-∆t0} , if ∆t < 0

12

F10: "Exit"

Return to Main Menu.

num: "Turn"

Change the direction of motion by increasing the component of the reference direction
corresponding to the objective function’s ordinal number j ∈ [1,h] pressed by the DM.
Each j ∈ [1,h] and i ∈ G has a one-to-one correspondence. We define that ordinal
number h corresponds to the index of the quadratic objective function (0).

The DM can continue pressing various number keys, until he/she would like to see a
new search direction. Then he/she will press “Space Bar”. How many times the DM will
press a specific number key, indicates how strongly he/she would like to improve the
objective in question. Before ∆g and ∆λ are updated, the current values of the aspiration
levels are updated g := g + tc∆g and λ := λ + tc∆λ, where tc corresponds to the current
value of t. Based on the information received from the DM, the system will respecify
the parameter ∆λ and the components of the reference direction ∆g. A new range for
parameter t is needed, and the search will continue.

Let ni be the integer number indicating how many times the DM pressed the ordinal
number j corresponding to the objective i. The reference direction ∆g will be updated as
follows:

∆gi :=



 0 , i ∉G-{0}

niω∆gi + ∆g
0
i

 ∑
j∈G-{0}

 (njω∆g j + ∆g
0
j) + Λn0ω∆λ + ∆λ0

 , i∈G-{0} .

Parameter ∆λ is updated as:

∆λ :=





- n0ω∆λ + ∆λ0

 ∑
j∈G-{0}

 (njω∆gj + ∆g
0
j) + - n0ω∆λ + ∆λ0

 , if s < 0

n0ω∆λ + ∆λ0

 ∑
j∈G-{0}

 (njω∆gj + ∆g
0
j) + n0ω∆λ + ∆λ0

 , if s > 0

where s: = (

∑
i∈G

 ni

 G – n0), G refers to the number of elements in set G and Λ is defined

as Λ= –1 when s < 0 or Λ=1 when s > 0.

The changes in the reference direction are made in proportion to the current value of

each linear objective function. The term ∆g
0
i is required to prevent the corresponding

13

component of ∆g becoming zero. The scale is estimated on the basis of the range given
in the beginning, and updated later on as far as new information is received.

Parameter ∆λ is updated – as ∆g – in proportion to its current value, and it is scaled in
such a way that it is in relation to the sum of the new parameters.

Parameter λ is used to control the “relative meaning” of a quadratic objective function
in proportion to linear objective functions. We have to vary a magnitude of this
meaning, but we also need a mechanism which makes it possible to the DM to increase
or decrease this relative meaning. Parameter s tells how much n0 deviates from the
average key presses when a new direction is specified. If s > 0, then the relative
meaning of the quadratic function starts to decrease in a new search direction, and when
s < 0, it starts to increase. The magnitude s of the deviation from the average key
presses specifies how strongly the DM would like to change the effect of the quadratic
term.

Using the above mentioned function keys the DM can fully control the motion on the
efficient frontier. When he/she reaches a “corner point” on the frontier, from which
he/she cannot continue with the current reference direction, the system will inform the
DM about the situation by blinking the “num”-key. This is a sign that the DM has to
respecify a reference direction until a new direction to proceed is found.

Step 5. The Values of Decision Variables and Goals

Display the current values of decision variables and goals to the DM for evaluation.
Provide him/her with a possibility to save the results. If the DM is satisfied with the
results, stop; otherwise he/she can go back to

• Update the aspiration levels of the inflexible goals (Step 0),

• Reclassify the goals (Step 1)

• Respecify the ranges (Step 2) or

• Continue the Race (Step 4).

In Quadratic Pareto Race, the quadratic objective function plays an essential role. It is
not controlled by means of a reference direction, but using a weighted-sum. The Race
will start from its optimum or the neighborhood of the optimum. Initially, the direction
which improves all linear objective functions simultaneously at the cost of the quadratic
function is chosen. The DM may traverse across the efficient frontier in this direction
until a boundary is reached. To reach the boundary – in this context – means that it is
not possible anymore to improve all linear objective functions simultaneously. He/she
can continue the search beyond this point using the current values of direction
parameters ∆g and ∆λ or to specify new values for them. However, he/she has to be
willing to accept the fact that he cannot improve all linear functions beyond this point,
simultaneously. The value of the quadratic function may improve or get worse.

14

5. A Numerical Example

Consider the following simple multiple objective quadratic-linear programming
problem:

Min V(x) =
1
2 x’









 6.26 -0.76 3.72 -1.91 1.27

 -0.76 8.30 1.36 -1.17 -1.75
 3.72 1.36 2.78 -1.17 0.88

 -1.91 -1.17 -1.17 2.72 -1.12
 1.27 -1.75 0.88 -1.12 3.84

 x

"Max" l(x) =






 -1 19 -2 -3 17
 0 5 4 -1 19
 5 20 3 16 -1

 x

Subject to: (5.1)









 5 0 2 1 0

 19 7 0 10 20
 18 9 20 14 18
 15 0 20 3 18
 0 1 0 0 0

 x ≤









 76

 72
 93
 89
 31

 and x ≥









 0.10

 0.10
 0.10
 0.10
 0.10

 .

This problem is randomly generated by using the ADBASE package (see Steuer
[1992]) on microcomputers to generate an MOLP-model, and then the quadratic term
was randomly built using Microsoft EXCEL. The same idea to generate random
multiple objective quadratic-linear programming problems is used in Korhonen and Yu
[1997], in which the detailed description of the method is given.

To solve problem (5.1), we first name the rows and columns and then input numerical
data on the screen entitled “Editing Matrix Coefficients” as shown in Figure 1 (Step
0). Next we input right-side values for all goals of the model (see, Figure 2). Note that
so far, we have not specified which goals are flexible (= objectives) and which
inflexible (= constraints). Next, we will define the goals f1, f2, and f3 flexible. In
addition, the quadratic function called “Risk” is the fourth objective function. (The
corresponding screen – similar to Pareto Race – is not shown here.) (Step 1) The goal
values 100, 10, and 70 specified for the goals f1, f2, and f3 in Figure 2, are now taken as
the aspiration levels for linear objective functions.

Before starting Quadratic Pareto Race, we have to define the initial ranges for flexible
goals. These ranges are used for the initialization of the race and for specification of
reference directions for linear objectives (see, Step 2). The ranges are automatically
updated during the race if necessary. The system will propose initial ranges as
explained in Step 2. (The race is started with the ranges the system will propose for the
linear functions. For the quadratic function, the bounds [0, 376.76] are used.)

15

Figure 1. Data of the Model

Figure 2. The Aspiration Levels and Types of Goals

The search is started from the minimum of the quadratic function or close to the
minimum. In this example, the minimum is not interesting, because the values of all
objective functions are (approximately) zeroes. Therefore the corresponding screen is
not displayed here. Starting from an initial solution, we may proceed in the direction
specified by an initial reference direction (see, Step 2). The values of all linear
objective functions are improved until the “boundary” solution shown in Figure 3 is
reached. Passing through this “boundary” solution means that it is impossible to find a
feasible direction to improve all linear objectives simultaneously. However, the DM
may continue the search using the current values of ∆λ and ∆g. The objective function
f2 still increases, whereas f1 and f3 start to decrease. Continuing the search further, we
will reach a solution after that the objective functions f1 and f3 turn to increase, whereas
f2 start to decrease. Finally, we reach the solution where objective functions f1 and f3
have maximal values. At this point, the objective function f4 has the worst value we
have found. Now we are at the corner point (Figure 4). It means that we cannot

Editing Matrix Coefficients
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

x1 x2 x3 x4 x5
x1 6.2700000
x2 –0.7640000 8.3000000
x3 3.7200000 1.3500000 2.7800000
x4 –1.9100000 –1.1700000 –1.1700000 2.7300000
x5 1.2700000 –1.7500000 0.8760000 –1.1200000 3.8400000
f1 –1.0000000 19.0000000 –2.0000000 –3.0000000 17.0000000
f2 0.0000000 5.0000000 4.0000000 –1.0000000 19.0000000
f3 5.0000000 20.0000000 3.0000000 16.0000000 –1.0000000
c1 5.0000000 0.0000000 2.0000000 1.0000000 0.0000000
c2 19.0000000 7.0000000 0.0000000 10.0000000 20.0000000
c3 18.0000000 9.0000000 20.0000000 14.0000000 18.0000000
c4 15.0000000 0.0000000 20.0000000 3.0000000 18.0000000
c5 0.0000000 2.0000000 0.0000000 0.0000000 0.0000000
x1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000
x2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000
x3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000
x4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000
x5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000

F10:Exit to Menu

Editing the Types and Aspiration Levels of Goal
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

Given Current
Names Types Values Values
f1 >= 100.00000 0.0000000
f2 >= 10.000000 0.0000000
f3 >= 70.000000 0.0000000
c1 <= 76.000000 0.0000000
c2 <= 72.000000 0.0000000
c3 <= 93.000000 0.0000000
c4 <= 89.000000 0.0000000
c5 <= 62.000000 0.0000000
x1 >= 0.1000000 0.0000000
x2 >= 0.1000000 0.0000000
x3 >= 0.1000000 0.0000000
x4 >= 0.1000000 0.0000000
x5 >= 0.1000000 0.0000000

F10:Exit to Menu

16

continue the search with current values of parameters ∆λ and ∆g. The system ask the
DM to make a “turn” by blinking “num” – indicator at the bottom of the display.

Assume that the DM is not satisfied with this solution, and is willing to improve at
least the objective function f2. He/she can indicate this desire by pressing number “2”
several times. The system will generate a new search direction. To move in this
direction objective functions f1, f3, and f4 go down and f2 is going up until the optimal
solution of objective function f2 is reached (Figure 5). If the DM is not satisfied with
the solution, he/she is welcome to respecify a new search direction. The DM can
control the direction and speed of motion until he/she finds a solution for which no
direction of improvement can be found.

Figure 3. The Solution After it is Impossible to Improve All Linear Objectives

Figure 4. The Optimum of the First Objective Function

Quadratic Pareto Race

 Goal 1 (max): f1 <==
 104.8126

 Goal 2 (max): f2 ==>
 60.0432

 Goal 3 (max): f3 <==
 71.7334

 Goal 4 (min): Risk ==>
 48.6730

Bar:Accelerator F1:Gears (B) num:Turn
 F5:Brakes F2:Gears (F) F10:Exit

Quadratic Pareto Race

 Goal 1 (max): f1 ==>
 182.6556

 Goal 2 (max): f2 <==
 49.9778

 Goal 3 (max): f3 ==>
 193.4111

 Goal 4 (min): Risk ==>
 376.7632

Bar:Accelerator F1:Gears (B) num:Turn
 F5:Brakes F2:Gears (F) F10:Exit

17

Figure 5. The Optimum of the Second Objective Function

6. Conclusion

In this study we have described a dynamic and visual “free-search” type of a decision
support system for solving multiple objective quadratic-linear programming problems.
The system is implemented under the name Quadratic Pareto Race. Its purpose is to
provide a DM with the possibility to freely explore the efficient frontier of a multiple
objective quadratic-linear programming problem by controlling the direction and speed
of motion.

A computer program written in TURBO PASCAL was developed to implement
Quadratic Pareto Race on a microcomputer running under DOS-operating system. We
call the whole program PORFO (Portfolio Selection), because a target user of the
system is obviously the person who would like to solve multiple criteria portfolio
problems, where one of the linear criteria is an expected return and the quadratic
criterion is the variance of the expected return. The other linear criteria are describing
the other features of the problem.

The current version of the program is capable of solving problems with a maximum of
20 variables with 50 goals, from which at most 10 may be flexible. The program
consists of 6000 lines of code. The interface is based on the menus, spreadsheets, and
visual interaction. “Visual interaction” means that the DM communicates with the
system using visual representation in an interactive manner.

Quadratic Pareto Race

 Goal 1 (max): f1 <==
 57.0760

 Goal 2 (max): f2 ==>
 70.5080

 Goal 3 (max): f3 <==
 4.5260
 Goal 4 (min): Risk <==

 28.5511

Bar:Accelerator F1:Gears (B) num:Turn
 F5:Brakes F2:Gears (F) F10:Exit

18

References

Boyan, M. (1995), “Use of Reference Points for Solving MONLP Problems”.
European Journal of Operational Research, 80, pp. 193–203.

Cottle, R., Pang, J.-S., and Stone, R. (1992), The Linear Complementarity Problem,
Academic Press.

Geoffrion, A. (1968), “Proper Efficiency and the Theory of Vector Maximization”,
Journal of Mathematical Analysis and Applications, 22, pp. 618–630.

Ignizio, J.P. (1983), “Generalized Goal Programming”, Computers and Operations
Research, 10, 277–289.

Jaszkiewicz, A., and Slowinski, R. (1994), “The Light Beam Search Interactive
Procedure for Multiple Objective Non-linear Mathematical Programming”, The
Lecture Notes at the Fifth International Summer School on Multicriteria Decision
Aid.

Kananen, I., Korhonen, P., Wallenius, H. and Wallenius, J. (1990), “Multiple
Objective Analysis of Input–Output Models for Emergency Management”,
Operations Research, 38, pp. 193–201.

Korhonen, P. (1987), “VIG – A Visual Interactive Support System for Multiple
Criteria Decision Making”, Belgian Journal of Operations Research, Statistics
and Computer Science, 27, pp. 3–15.

Korhonen, P., and Laakso, J. (1986), “A Visual Interactive Method for Solving the
Multiple Criteria Problem”, European Journal of Operational Research, 24, pp.
277–287.

Korhonen, P., and Soismaa, M. (1988), “A Multiple Criteria Model for Pricing
Alcoholic Beverages”, European Journal of Operational Research, 37, pp. 165–
175.

Korhonen, P., and Yu, G.-Y. (1996), “A Reference Direction Approach to Multiple
Objective Quadratic-linear Programming”, Forthcoming in European Journal of
Operational Research.

Korhonen, P., and Yu, G.-Y. (1997), “On Computing Objective Function Values in
Multiple Objective Quadratic-Linear Programming”, Forthcoming in European
Journal of Operational Research.

Korhonen, P., and Wallenius, J. (1988), “A Pareto Race”, Naval Research Logistics,
35, pp. 615–623.

Lemke, C. (1968), “On Complementary Pivot Theory”, in G. Dantzig and A. Veinott
(Eds.): Mathematics of the Decision Sciences, Part I, Amer. Math. Society, pp.
95–114.

Saber, H. M., and Ravindran, A. (1993), “Nonlinear Goal Programming Theory and
Practice: A Survey”, Computers & Operations Research, 20, pp. 275–291.

Stam, A. and Kuula, M. (1991), “Selecting A Flexible Manufacturing System Using
Multiple Criteria Analysis”, International Journal of Production Research, 29,
pp. 803–820.

19

Steuer, R. E. (1992), “Manual for the ADBASE Multiple Objective Linear Programming
Package”, Department of Management Science, University of Georgia, Athens,
Georgia, USA.

White, D. J. (1990), “A Bibliography on the Applications of Mathematical
Programming Multiple-Objective Methods”, The Journal of the Operational
Research Society, 41, pp. 669–691.

