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Preface

Large-scale optimization models arise in many areas of application at IIASA. For
example, such models are useful for estimating the potential economic value of solar and
wind energy and for determining equilibrium prices for agricultural commodities in inter-
national trade as a function of national policies. Certain methods of decomposition for
solving such optimization problems require the solution of a relatively small problem whose
objective function is not everywhere differentiable. This paper defines nonsmooth functions
that can arise from such decomposition approaches and that can be effectively optimized
by recently proposed methods for nondifferentiable optimization.
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ABSTRACT

We introduce semismooth and semiconvex functions and discuse their properties
with respect to nonsmooth nonconvex constrained optimization problems. These
functions are locally Lipschitz. and hence have generalized gradients. The author has
given an optimization algorithm that uses generalized gradients of the problem func-
tions and converges to stationary points if the functions are semismooth. If the func-
tions are semiconvex and a constraint qualification is satisfied. then we show that a sta-
tionary point is an optimal point.

We show that the pointwise maximum or minimum over a compact family of con-
tinuously differentiable functions is a semismooth function and that the pointwise
maximum over a compact family of semiconvex functions is a semiconvex function.
Furthermore, we show that a semismooth composition of semismooth functions is
semismooth and gives a type of chain rule for generalized gradients.
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Semismooth and Semiconvex Functions
In Constrained Optimization

1. INTRODUCTION

In this paper we are interested in an inequality constrained
optimization problem where the functions need not be differenti-
able or convex. More precisely, consider the problem of finding

n
an xR to

minimize f(x)

subject to hi(x) 20 for i =1,2,...,m

where h1,h2,...,hm and f are real-valued functions defined on R".

We utilize the "generalized gradient" introduced by Clarke
[1,2] for "locally Lipschitz" functions. A necessary condition [2)
{of the Karush [5] - John [4] typa) for optimality of a point X is
that the zero vector is a certain convex combination of generalized
gradients of hy,h,,...,h and f at %¥. In section 5 of this paper,
this "stationarity" condition is concisely stated in terms of a map
as given by Merrill [10] depending on the problem function general-
ized gradients. Our implementable algorithm for nonsmooth nonconvex
optimization given in [11] uses this map and converges to such sta-
tionary points if the problem functions are "semismooth" as defined
here in section 2. This algorithm can be viewed as a modification
and extension of the “conjugate subgradient” type algorithms for
nondifferentiable unconstrained optimization given by Lemarechal [8]
and Wolfe [16] for convex functions and by Feuer [3] for min-max
objectives.

Semismooth functions possess a semicontinuous relationship be-
tween their generalized gradients and directional derivatives. They
are related to, but different from, the "almost differentiable"



functions of Shor [13]. Notable examples of such functions are con-
vex, concave and continuously differentiable functions.

In section 2 we also define "semiconvex" functions. These
functions are "quasidifferentiable" (Pshenichnyi [12]) and essenti-
ally "semiconvexe" in the sense of Tuy [15] and, if also differen-
tiable, are "pseudoconvex" (Mangasarian [9]). 1In section 5 we show
that the above stationarity condition is sufficient for optimality
if the problem functions are semiconvex and a constraint gualifi-
cation is satisfied. This is a nondifferentiable analogue of a
sufficient optimality result in [9, Theorem 10.1.1].

In sections 3 and 4, we give some important properties of
semismooth and semiconvex functions. Starting from the work in [1]
and [3] on min-max objectives, we show that the pointwise maximum
or minimum over a compact family of continuously differentiable
functions is a semismooth function. We also give an example of a
semismooth function that is an extremal combination not of contin-
uously differentiable functions, but of semismooth functions. This
leads us to show that a semismooth composition of semismooth func-
tions is semismooth and to give a type of "chain rule" for general-
ized gradients. Special cases of this chain rule may be found in
[2].

In section 3 we also show that the pointwise maximum over a
compact family of semiconvex functions is a semiconvex function.
Thus, semiconvex functions behave as do convex functions with re-
spect to the maximization operation, while pseudoconvex functions
do not because of the loss of differentiability due to this non-
smooth operation.

2. DEFINITIONS AND EXAMPLES OF SEMISMOOTH AND SEMICONVEX
FUNCTIONS

Let B be an open subset of R™ and F : R®+ R be Lipschitz on B,

i.e. there exists a positive number K such that
|F(y) - F(2)| < K|y-z| for all y,z € B .

If F is Lipschitz on each bounded subset of R" then F is called

loecally Lipschrtz.
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Let xcB and d ¢ R®. As in Clarke [2], let

F'(x;d) = lim sup [F(x+h+td) - F(x+h)]/t
h+0
t+0

and let JF(x) denote the generalized gradient of F at x defined
by

3F(x) = {geR":<g,d> ¢F°(x;d) for all deR"} .

The following two propositions collect together useful properties
of F* and 3F from Clarke [1,2] and Lebourg [7], respectively.
Proposttion 1.

(a) 3F(x) is a nonempty convex compact subset of R™.

(b) F°%(x;d) =max [<g,d> :gedF(x)]

(c) F is differentiable almost everywhere in B and 3F (x)
is the convex hull of all the points g of the form

g = )J(._l:: VF(xk)

where {xk}-+x and F has a gradient 9F at each X e B.

(d) 1f {xk}C:B converges to x and 9y € 3F (%, ) for each k
then |ng <K and each accumulation point g of {gk}
satisfies g€ 3F(x), i.e. 3F is bounded on bounded

subsets of B and 3F is uppersemicontinuous on B.
Proposition 2.

Let y and z be in a convex subset of B. Then there exists
Ae (0,1) and g e 3F(y+A (z-y)) such that

F(z) - F(y) = <gsz-y>

i.e. a mean value result holds.

By combining part (d) of Proposition 1 with Proposition 2
one may easily establish the following useful result:



Lemma 1. Let {tk} v 0, {hk}-*O e R" and F* be any accumulation
point of

{ [F(x+hk+tkd) - F(x+hk) ] /tk}
Then there exists g e 3F(x) such that
F* = <g,d> .

If lim [F(x+td) - F(x)]/t exists it is denoted by F'(x;d) and
t+v0
called the directional derivative of F at x in the direction 4. 1If

F'(x;d) exists and equals F°(x;d) for each d e R" the F is said to
be quasidifferentiable at x (Pshenichnyi [12]). Note that if
F'(x;d) exists then, by Lemma 1, there exists g e 3F(x) such that

F'(x;d) = <qg,d>

and, if, in addition, F is quasidifferentiable at x, then, by parts
(a) and (b) of Proposition 1, g is a maximizer of <-,d> over 3F(x).
Definition 1. F :R® >R is semismooth at x e R" if
(a) F is Lipschitz on a ball about x
and

(b) for each d ¢ R™ and for any sequences {tk}C:R+, {ek}c;Rn
and {g, }<R" such that
k

n
{tk} v 0, {ek/tk} + 0 e R and g ¢ IF (x+t d+6k) ,

k

the sequence {<gk,d>} has exactly one accumulation point.

Lemma 2. 1If F is semismooth at x then for each d sRn,F'(x;d)
exists and equals lim <gk,d> where {gk} is any sequence as in De-
k>
finition 1.
Proof: Suppose {Tk} + 0. By Proposition 2, there exist
tk E(O,Tk) and 9y eBF(x+tkd) such that

F(x+de) - F(x) = Tk<gk,d>



Then, by Definition 1 with 8, =0c¢ R®, since {tk} +0,

iiz [F(x+tkd)--F(x)]/Tk = iiz <qk,d> .

Since {rk} is an arbitrary positive seguence converging to zero,
F'(x;d) exists and equals the desired limit.o

Definition 2. Let X be a subset of R®. F:R"+R is semicon-
vex at x ¢ X (with respect to X) if

(a) F is Lipschitz on a ball about x

(b) F is quasidifferentiable at x

and

(¢} x+deX and F'(x;d) 20 imply F(x+d) 2 F(x).

Tuy's (15] earlier concept of semiconvexity does not include
quasidifferentiability, but we include it in order to obtain
Theorems 8 and 9 given below. A semiconvex function that is also
differentiable is called "pseudoconvex" (Mangasarian [9, Chapter 9]).

We say that F is semismooth {(quasidifferentiable, semiconvex)
on XCR" if F is semismooth (quasidifferentiable, semiconvex) at
each x ¢ X. We denote the convex hull of a set S by conv S.

From convex analysis (13, Sections 23 and 24] and [2, Pro-
position 3] we have the following:

Proposition 3.

If F:RP+R is convex (concave) then F(F) is locally Lipschitz,
F (x) = {geRn:F(y) >(2) F(x) +<g,y-¥ for all ysRn} for each xeR® ,

i.e. 3F is the subdifferential of F, F(~F) is semiconvex on R"
and F(F) is semismooth on R™.

From [2, Proposition 4] and the properties of continuously
differentiable functions we have the following:




Proposition 4.

If F : RP >R is continuously differentiable then F is locally
Lipschitz, 3F(x) = {VF(x)} for each x eRn, and F is quasidifferen-
tiable and semismooth on R".

An example of a locally Lipschitz function on R that is not
semismooth (nor quasidifferentiable) is the following differenti-

able function that is not continuously differentiable:

%% sin (1/x) for x 0
F(x) =
0 for x =0
Note that F'(0:;1) =0 and 9F(0) =conv {-1,1} is the set of possi-

ble accumulation points of F'(x:;1) as x + 0.
An example of a function that is semiconvex and semismooth

on R, but not convex nor differentiable, is

F(x) = log(1+]|x]|)
where
1/ (1+x) for x >
3F (x) = {conv {-1,1: for x =
-1/01-x) for x <

Note that in a neighborhood of x=0

F(x) = max [log(1+x),log(1-x)] ,

i.e. F is a pointwise maximum of smooth functions. General func-

tions of this type are the subject of the next section.

3. SEMISMOOTH AND SEMICONVEX EXTREMAL-VALUED FUNCTIONS

In this section we supplement developments in Feuer (3] and
Clarke [1] to show that certain extremal-valued functions E are

semismooth and/or semiconvex.
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Suppose E : R®+ R is defined on B, an open subset of R®, as
follows in terms of £ : R"xT+R where T is a topological space:

Suppose there exists a sequentially compact subspace U of T
such that

(a) f(x,u) is continuous for (x,u) eBx U
(b) f(x,u) is Lipschitz for xe¢ B uniformly for ueU
(c) Bxf(x,u) is uppersemicontinuous for (x,u) eB xU

and for each xe¢B
either

(d) E(x) = max [f(x,u) :uEU.]
and

(e) f;‘(x,u;d) = f;(x,u;d) for all (u,d) e U x R®

Qr

(2') E(x) = min [f(x,u) :ueU]

and

() f!(x,u;d) = -f;(x,u;-—d) for all (u,d)e U xR"

For each x¢B let

A(x) = {ueU :E(x) =f(x,u)} .
Note that E and A are well defined by the continuity and compact-
ness assumptions. Furthermore, for each x€B, A(x) is compact

and Bxf(x, *) is uppersemicontinuous and bounded on U, and a direct
consequence of [1, Theorem 2.1] is the following:

Theorem 1. Let the above assumptions on E and £ hold. Then

E 78 Lipschitz on B and for each x e B
dE(x) = conv {axf(x,u) susA(x)} ,
and for each 4 ¢ R

' (x;d) = E®(x;d}) = max [<g,8>:g¢ 3, f(x,u),uecA(x)]



if (d) and (e) hold, or

2'(x;d4) = -E%°(x;-d) = min [<g,d> : g eaxf(x,u),u eA(x)]

2f (d') and (e') hold.

Remark: Feuer [3] shows the results of Theorem 1 under the
stronger assumptions of our next theorem and proves a result [3,

p. 57] close to semismoothness from which our next proof is

adapted.

Theorem 2. Suppose that (a) and (d) or (d') hold and
that £(+,u) 78 differentiable on B for each ueU and fo(',')
18 continuous and bounded on BxU. Then E ©s semismooth

on B.

Proof: Note that the additional assumption implies (b),
(c¢), (e), and (e') and that axf==vxf on BxU. Suppose E has the
max form {(d). (The proof of semismoothness for the min form (d'")
is similar.) Let xeB, d sRn, xk'=x+tkd+6k and Iy eaE(xk) where
{tk} + 0 and %K/tk}-+0 ¢ R". From Theorem 1 and Proposition 1 we
have that

E'(x;d) = E*(x;d) = max [<g,d> :ge3E(x)]
and JE is bounded and uppersemicontinuous on a ball about x, so

lim sup <gk,d> E'(x;d)

ko

[

Suppose

lim inf <g,,d> < E'(x;d) ,
k+w
i.e. there is an ¢ >0 and a subsequence of {qk} such that on this

subsequence
f<gp,d>} » E'(x:d) - e . (3.1)

For each k corresponding to this subsequence choose §k»zaE(xk)

and Uy sA(xk) such that



9 = Tif (% ) € conv {7 £(x.,u) sucalx)} = 3E(x)
and

<§k,d> = min [<g,d> : g saE(xk)] < <ged> . (3.2)
Since fo is continuocus on Bx U, {xk}<*x and {uk} is in the com-
pact set U, {ak} and {u,} have accumulation points g and u, re-
spectively, such that

g = v f(x,u)
Thus, by (3.1) and (3.2),

<vxf(x,a),d> = <g,d> < E'(x;d) - ¢
Let u* £ A(x) be such that

E' (x;d) = E° (x;d) = max (<9 E(x,0),d8> :ucA(x)] = <V £lx,u%),d
Then

<fo(x,ﬁ),d> < <V flx,u*),d> - ¢

and, since <fo(-,-),-> is continuous, there exist neighborhoods
B(x), V(u) and D(d) such that

<V f(z,0),8 g <V £(z,u%),8> - </2 for all (z,u,8) & B(x) x v(a) x p(d)
Choose k so large that u, ¢ v(a), tk|d| +|ek|is less than the
radius of a ball about x contained in B(x) and 2|ek/tk| is less
than the radius of a ball about d contained in D(d). Then for
all t E[O,tk],
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2

= x + td + (t/tk) 8, € B{(x) ,

»
I
"

k

and

]
I
]

d + 2(t/tk)(9k/tk) € D(d)
Then
<fo(x(t) ,uk) X' (E)> < <fo(x(t) SU¥) ,x' (t)> - /2 for all te [O,tkl

Integrating from t=0 to t= tk gives

k k k' = k
But x(tk) =X x(0) =x, ukeA(xk) and u* € A(x),
SO E(Xk) - f(x,uk) < f(xk,u*) - E(x) - tke/z ,
or
E(xk) + E(x) £ f(xk,u*) + f(x,uk) - tkE/Z
But this leads to a contradiction, because f(xk,u*) < E(xk) ,
1

f(x,uk) SE(x), tk> 0 and €>0. Thus, lim <gk,d> = E'(x;d),
so E is semismooth at x.O kv

Theorem 3. Let X be a subset of B. Suppose that (a), (b),
(¢), (d), and (e) hoid, Z.e. E is a maz funetion, and suppose that
f(+,u) s semiconvexr at x e X (with respeet to X) for each uceU.
Then E 1s semiconvex at x € X (with respect to X).

Proof: By Theorem 1, E is Lipschitz on a ball about x,
quasidifferentiable at x, and for d ¢ R there exist G ¢ a(x) and

ge 3xf(x,l_l) such that
E'(x;d) = <g,d> = max [<g,d> :qgc¢ 3, E(x,u) ,ucA(x)]

" Suppose x +d ¢ X and E'(x:d) >20. Then, by the quasidifferentiability

of £(+,u) at x, we have
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£ (x,0;d) = £5(x,2:;d) = max [<g,d>:g¢ axf(x,ﬁ)] > <g,d> 2 0
Thus, by the semiconvexity of f(-,u) at x,

£(x+d,u) > £(x,u) .

But x+d ¢ XCc B and assumption (d) imply
E(x+d) > f(x+d,u)

and ueA(x) implies
E(x) = f(x,u) |,

S0
E(x+d) > £(x+d, 1) > £(x,u) = E(x)

and the semiconvexity of E at x is established.g

The following function F is an example of a semismooth func-

tion on R2

which is not an extremal-valued function in the sense of
Theorem 2, because in any ball about (0,0) there is a point at
which the value of F is neither the maximum nor the minimum of the

three underlying linear functions that define F:

x1 for x2 > 0 and X, 2 X, >0
F(x1,x2) = 1%, for Xy 2 0 and X2 Xy 2 0
0 for X, £ 0 or X, < 0
Jote that F(x1,x2) = max [O,min(x1,x2)]. This raises the ques-

tion of whether or not a finite extremal composition of extremal-
valued functions is a semismooth function. This is indeed the case,
as is shown in more generality in the next saction.
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4. SEMISMOOTH COMPOSITION

In this section we show that a semismooth composition of
semismooth functions results in a semismooth function. In order
to prove this useful result we first establish a type of "chain

rule" for generalized gradient sets. For V1,V2,“,,Vmg R let

1.2 th i

m . . .
[v v“+++v"] denote the nxm matrix whose i column is v— for

i=1,2,...,m.

Theorem 4. Let fi :R? >R for i=1,2,...,m and E : RM >R be
locally Lipschitz. For xc¢ R" define

Y (x)

(f1(x),f2(x),...,fm(x)) ’

F(x) E(Y(x))

and
G(x) = conv {g ERn:g=[g1g2°~-gm]w, gieafi(x), i=1,2,...,m, WweIEXX (X))}
Then F 7s locally Lipsehitz and
d3F (x) < G(x) for each x ¢ rR" . (4.1)

Remarks: Clarke [2] establishes (4.1) for the three cases
where (1) E is continuously differentiable and m=1, (2) E(y1,y2)=
Y1 +Yo and (3) E(y) =max [yi :ie{1,2,...,m}] for y =(y1,y2,...,ym).

Note that the containment in (4.1) may be strict, because, as
suggested to us by M.J.D. Powell, for E(y1,y2) =Yq-Yys XE R and
£,(x) = £,(x) = |x|, we have 3F(0) = {0} and G(0) =conv {-2,2}.

Proof: It is not difficult to show that F is locally Lipschitz

and to show that G is uppersemicontinuous. Hence, by part (c) of
Proposition 1, F is differentiable almost everywhere, and if we
show

VF(X) € G(x) (4.2)

where X is any point of differentiability of F, then (4.1) follows

from the convexity and uppersemicontinuity of G.
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in order to show (4.2), let VF(x) exist, d ¢ R" and {tk}+ 0.

Then
<VF (%) ,d> = F' (x;d)
= iiﬁ [F(x+tkd)--F(x)]/tk
= ]]('_Jﬂ [E(Y(x+tkd)) -F.:(Y(x))]/tk . (4.3)

Choose a subsequence of {tk} such that for each i=1,2,...,m
X - X - *
{[fi(x+tkd) fi(x)]/tk} fi
on the subsequence. By Lemma 1,

£t = <g*,d> for some gt ¢ afi(i) , (4.4)

sO

= = i
{[fi(x+tkd) - £ (x) - t, <9 ,d>]/tk} + 0
on the subsequence. Let

Vo= {£3,£5,...,£5) = (<d,g >,<d,g%>,...,<d,g">) . (4.5)
Then

(1Y (k+t,d) - Y(R) - £, v/t ) ~ 0 ¢ RV

and, by the Lipschitz continuity of E,
{IE(Y (x+t, d)) ~E(¥(x)+t, V) ]1/8, )} ~ 0 (4.6)

on the subsequence. Now choose a sub-subsequence of {tk} such that
{IE(Y (X)+£,v) =E(Y(x)) ]/} ~ E* (4.7)

on this sub-subsegquence. Then, by combining (4.6) and (4.7),

{[E(Y (x+t, d)) —s(y(i))]/tk} ~ E*
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on the sub-subsequence and, by (4.3),

<VF(x),d> = E* . (4.8)
From (4.7) and Lemma 1,

E*¥ = <v,w> for some w ¢ JE(Y (X)) . (4.9)

Let
1.2 m
g=1[ggreglw ,

so that combining (4.8), (4.9), (4.5) and (4.4) and recalling the
definition of G yields

<VF(§),d> = E¥ = <y,w> = <(<d,g1>,<d,g2>,...,<d,gm>),w> = «d,g>

where g € G(Xx). Since this result holds for each d eRn, and G(x) is
convex, we have that the desired result (4.2) holds, for, if not,
then a strict separation theorem [9, Theorem 3.2.6] gives a contra-

diction.o

Theorem S. Suppose, in addition to the assumptions of Theorem
4, that fi for each i=1,2,...,m 15 semismooth at X ¢ R™ and E s

semismooth at Y(x) € R°. Then F is semismooth at X.

Proof: Suppose Xy =x-+tkd-+ek

{tk} + 0 and {Gk/tk}-*o e R?. Since BF(xk) is contained in the com=-

and 9y eBF(xk) where d aRn,

pact convex set G(x,), by minimizing and maximizing the linear

function <-,d> over G(x,), we may find ék,ék €G(x,) such that
<§k,d> < <gp.d> < <§k,d>
and
AR NS A N MY R AL
where

99 € 3€,(x,) for each i = 1,2,...,m
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and

Wy oW € BE(Y(x,))

By the uppersemicontinuity and local boundedness of the various
maps, {gk} and {gk} are bounded and there are accumulation p01nts
g of {g } and g of {gk} and corresponding accumulation points gt
of {gk} and g of {gk} for each 1=1,2,...,m and w of {w } and w
of {wk} such that

3= 13'3%.-™% ,

[T
]
Q>

and

<g,d> < lim inf <gk,d> < lim sup <gk'd> < <g,d> .
k> k-+oo

By the semismoothness of each fi' we have

<d,§i> = «d,g" > fi(x:d) R
so, by defining

zZ = (f (x d)r (x;d)ro--rfr;‘(x7d)) ’

we have

<d,3> = <d, [§ g% -3 w>

<d, [61 5° "am]a> = <ZIQ> '

<z,wWw>

<d,g>
and, thus,
<z,w> < lim inf <gysd> g lim sup <g,,d> < <z,Ww> .

k+o k+o

So, if we show that

<Z,W> = <z,W> (4.10)

then {<gk,d>} has only one accumulation point and we are done.
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To show (4.10) we will show that

Y(xk) = Y(x) + tkz oo (4.11)
where
m
{¢k/tk} + 0 e¢R ’ (4.12)
and then, since Gk’ Gk eBE(Y(xk)), we have, by the semismoothness

of E, that {<§k,z>} and {<Qk,z>} have the same limit, which implies
(4.10), because w and w are accumulation points of {Gk} and {Gk},
respectively.

For each i=1,2,...,m let

b = fi(xk) - fi(X) - tkfi(X;d) '
. . . . 1 2
so that (4.11) is satisfied with ¢k==(¢k,¢k,...,¢$) and
i _ v
¢:k/tk = [fi(xk)- fi(X)]/tk - fi(x,d) . (4.13)

Note that, by using the definition of Xy and adding and subtracting
fi(x+tkd), we have

[%@J-%&Hﬁk=EJH%&%%fﬁHEMV&+[%mﬂfbfﬂMV% NCA Y]
As k+o, the first term of the right-hand side of (4.14) converges

to zero, because each fi is Lipschitz and {ek/tk}-»o eR". The
second term converges to fi(x;d), so we have that

{[fi(xk)- fi(x)]/tk} > fi(x;d) ,

which, by (4.13), implies (4.12) and completes the proof.c
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5. STATIONARITY AND OPTIMALITY

Consider the following problem that is equivalent to the op-

timization problem of section 1:

minimize f£(x)

subject to h(x) ¢ 0
where

h(x) = max h, (x) for x ¢ R"
1éi§m

i
We say that x eR® is feasible if h(x) g0 and strictly feasi-
ble if h(x) <0. We say that x ¢ RT is optimal if x is feasible and

£(x) < f(x) for all feasible x.
Let X be a subset of R™ and for each x an let

A(x) = {ief{1,2,...,m} : h(x) =hl(X)}

Then, from Theorems 4,5,1 and 3, we have the following:

Theorem 6. Suppose h1,h2,...,hm are locally Lipschitz. Then

(a) h ©s locally Lipschitz and for each x ¢ R
3h(x) < conv {ahi(x) tieAa(x)} .

(d) If h1,h2,...,hm are gsemismooth on X then h is gemi-

smooth on X.

(e) If h1,h2,...,hm are semticonvex (quasidifferentiable)
on X then h 1s gemiconvex (quasidifferentiable) on X

and for each X ¢ R"

3h(x) = conv {ahi(x) ticA(x)}
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A key idea for dealing with the above optimization problem is

to define the point-to-set map M : R" » 2R" by

IEF(X) if h(x) < 0
M(x) = {conv {3f(x) Ush(x)} if h(x) = 0) for xeR"
3h (x) if h(x) > 0

This map was introduced and used by Merrill {10, Chapter 12] for prob-
lems with differentiable and/or convex functions, i.e. problems
with functions having gradients and/or subgradients. It is used by
our algorithm in [11] for problems with functions having generalized
gradients.

We say that x eR” is stationary for the optimization problem
if h(x) 0 and 0 € M(xX). Our algorithm in [11] is shown to converge
to stationary points for problems with semismooth functions. The
next result shows that stationarity is necessary for optimality.
It follows from a very general theorem in Clarke [2]. Here we give
an independent proof using a strict separation theorem for convex

sets.

Theorem 7. Suppose f and h are locally Lipschitaz. If X is

optimal then X 1s stationary.

Proof: Consider the case where h(x) =0. Suppose, for contra-
diction purposes, that x is not stationary. Then Ole(i). Since
3f(x) and 3h(x) are compact, M(x) is closed and convex and, thus,
from a strict separation theorem [9, Cor. 3.2.4], there exists a

de Rn such that

<g,d> < 0 for all g € M(x) . (5.1)

Since X is optimal, it must be the case that either £2 (x:d) >0 or
h (x;d) >0, for if not, we can find a t >0 such that f(x+td)< £(X)
and h(i;;d) <h(X) =0, which contradicts the optimality of x. Thus,
by Proposition 1, there is a ge (3f(x)U 3h(x)) < M(x) such that
<g,d> > 0. But this contradicts (5.1). So 0 £ M(X). We omit the
proof-;f the case where h(x) < 0 which is similar, but simpler.o
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Remark: This theorem, when specialized, gives two well-known
necessary optimality theorems. If h1,h2,...,hm and £ are differ-
entiable then the above result combined with part (a) of Theorem 6
shows that an optimal X solves the Karush (5]-John (4] stationary
point problem [9, p. 93]. Alternatively, 1if h1,h2,...,hm and £
are convex then Theorems 6 and 7 and Proposition 3 show that an
optimal X solves the corresponding saddle-point problem [9, p. 71].

As usual, in order to have stationarity be sufficient for op-
timality, we need stronger assumptions on the problem functions.
We now proceed to show that if the problem functions are semiconvex
and there is a strictly feasible point then stationarity implies
optimality. In order to demonstrate this we require the following
preliminary result for semiconvex functions on convex sets:

Theorem 8., If F <8 semiconvexr on a convex 8et XC:Rn, xeX
and x+d eX then

F(x+d) ¢ F(x) implies F'(x;d) £ 0 .
Proof: Suppose, for contradiction purposes, F(x+d) <F(x) and
F'(x;d) > 0. Then there exists t >0 such that t <1 and F(x+td) > F(x)
Let £ € (0,1) maximize the continuous function a(t) =F(x+td) over

te (0,1]. Clearly, by the maximality of &,

a{1) = F(x+d) < F(x) = a(0) < a(k) =F(x+td) , (5.2)

F'(x+td:d) ¢ 0 and F'(x+td;=d) ¢ 0

Now by the quasidifferentiability of F there exist g+ € 3F (x+td)
and g ¢ 3F(x+td) such that

F' (x+Ed;d) = PO (x+Ed;d) = <g',d> 2 <g ,d>

[=]
v

and

> P! (x+Ed;-d) = F° (x+Ed;=d) = <g ,-d> 2 <g",-d>

o
v
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So,

F'(x+td;d) = 0

14

and, by the positive homogeneity of F'(x+td;.), since 1-t >0, we

have

F' (x+td; (1-8)d) = (1-B)F' (x+td;d) = 0
Then the semiconvexity of F implies

F(x+d) > F(x+Ed)

which contradicts (5.2).0

Remark: The above proof follows one in Mangasarian [9, pp.
143~-144] and a slight modification shows that a semiconvex function
on a convex set is "strictly quasiconvex" and, hence, "quasiconvex"
[9, Ch. 9].

, - n
Theorem 9. Suppose £ and h are semiconvex on R" and xR

18 such that 0 eM(i).

(a) If h(x) >0 then h(x) ;h&i) >0 for all x ERD, 1.e. the

optimization problem has no feasible points.
(b) If h(i); 0 then at least one of the following holds:
(i) x s optimal
(ii) h(x) >0 for all xeR", 7i.e. the optimization
probiém has no strietly feastble points.

Proof: 1If h(x) >0 then 0e 3h(x) and it is clear from the
semiconvexity of h that x minimizes h over R™ and the desired re-
sult (a) follows. If h(X) <0 then 0 ¢ 3£(x) and similar reasoning
shows that X minimizes f over R" which implies b(i). Suppose
h(x) =0. Then there exist A e [0,1], ge 3£(X) and §e 3h(x) such
that

Ag + (1-3)g = 0
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If A=0, then §=0, x minimizes h over R" and b(ii) holds. Alter-
natively, if X >0 then '

g+ [(1=0)/Alg =0 ,
and for all x eRn
<g,x=%> + [(1=-A)/A\l<g,x-%> = 0 .

For all x ¢ R” such that h(x) <0 =h(X), we have, by the semicon-
vexity of h, Theorem 8 and the fact that § e 3h(X), that

0 2 h'(X;%=%X) = h'(X,x-X) 2 <§,x-x> .

Thus, since [(1-1)/A] 20, we have that

A
o

<g,x-%> 2 0 for all x such that h(x)
So, by the semiconvexity of f, since 5 € 3f(x), we have that
£' (x:x=X) = £°(X;x=X) 2 <g,x=X> > 0
and, hence,
£(x) > £(x) for all x such that h(x) < 0

Thus, X is optimal and we have that A >0 implies that b(i) holds.O

Remark: 1If h(x) =0 and A >0 in the above proof then, in or-
der to show optimality of x, we need only assume that h is quasi-
differentiable and satisfies the conclusion of Theorem 8 rather
than assume h is semiconvex. This observation corresponds to a
sufficient optimality theorem in Mangasarian {9, Theorem 10.1.1]
and says that if X satisfies generalized Karush (5] - Kuhn-Tucker
[6] conditions, f is gsemiconvex and h is quasidifferentiable and
"quasiconvex" [9, Chapter 9] then X is optimal. A constraint
qualification that implies A > 0 is that 0 ¢ 3h(X).




-22-

6. ACKNOWLEDGEMENT

I wish to thank Claude Lemarechal for his many helpful

suggestions.

The research was sponsored, in part, by the Air Force Office
of Scientific Research, Air Force Systems Command, USAF, under
Grant No. AFOSR-74-2695. The United States Government is autho-
rized to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright notation hereon.

REFERENCES

[1] Clarke, F.H., Generalized Gradients and Applications, Trans.
Amer. Math. Soe., 205 (1975), 247-262.

[2] cClarke, F.H., A New Approach to Lagrange Multipliers, Mathe-
matics of Operations Research, 1 (1976), 165-174,

[3] Feuer, A., An Implementable Mathematical Programming Algor-
ithm for Admissible Fundamental Functions, Ph.D. Disser-
tation, Department of Mathematics, Columbia University,
New York, 1974,

[#] John, F., Extremum Problems with Inequalities as Subsidiary
Conditions, in K.0O. Friedrichs, O.E. Neugebauer and

J.J. Stoker, eds., Studies and Essaya: Courant Anniver-
sary Volume, Interscience Publishers, New York, 1948,
187-204.

[5] Karush, W., Minima of Functions of Several Variables with
Inequalities as Side (onditions, M.S. Dissertation, De-
partment of Mathematics, University of Chicago, Chicago,
Ill., 1939.

[6] Xuhn, H.W. and A.W. Tucker, Nonlinear Programming, in
J. Neyman, ed., Proceedings of the Second Berkeley Sym-
posium on Mathematical Statistics and Probability, Uni-
versity of California Press, Berkeley. Calif., 1951.

[7] Lebourg, G., Valeur moyenne pour gradient généralisé, C.R.
Acad. Se. Paris, 281 (1975), 795-797.

[8] Lemarechal, C., An Extension of Davidon Methods to Nondif-
ferentiable Problems, in M.L. Balinski and P. Wolfe,
eds., Nondifferentiable Uptimization, Mathematical Pro-
gramming Study 3, North-Holland, Amsterdam, 1975, 95-
109.

[9] Mangasarian, O.L., WNonlinear Programming, McGraw-Hill,
New York, 1969.



[10]

(111

[12]

(13]

[14]

(151

(161

-23-

Merrill, O.H., Applications and Extensions of an Algorithm
that Computes Fized Points of Certain Upper Semicontin-—
uous Point to Set Mappings, Ph.D. Dissertation, Univer-
sity of Michigan, Ann Arbor, Mich., 1972.

Mifflin, R., An Algorithm for Constrained Optimization with
Semigmooth Functions, International Institute for Applied
Systems Analysis, Laxenburg, Austria, forthcoming.

Pshenichnyi, B.N., Necessary Conditions for an Extremum,
Marcel Dekker, New York, 1971.

Rockafellar, R.T., Convex Analysis, Princeton University
Press, Princeton, N.J., 1970.

Shor, N.Z., A Class of Almost-Differentiable Functions and a
Minimization Method for Functions of this Class, Cyber-
netiecs, July (1974), 599-606; Kibernetika, & (1972),
65-70. -

Tuy, Hodng, Sur les inégalites linéaires, Colloquium Mathe-~
maticum, 13 (1964), 107-123.

Wolfe, P., A Method of Conjugate Subgradients for Minimizing
Nondifferentiable Functions, in M.L. Balinski and
P. Wolfe, eds., Yondifferentiable Optimization, Mathe=
matical Programming Study 3, North-Holland, Amsterdam
1975, 145-173.





