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Preface 

Large-scale optimization models arise in many areas of application at IIASA. For 
example, such models are useful for estimating the potential economic value of solar and 
wind energy and for determining equilibrium prices for agricultural commodities in inter- 
national trade as a function of national policies. Certain methods of decomposition for 
solving such optimization problems require the solution of a relatively small problem whose 
objective function is not everywhere differentiable. This paper defines nonsmooth functions 
that can arise from such decomposition approaches and that can be effectively optimized 
by recently proposed methods for nondifferentiable optimization. 





ABSTRACT 

We introduce semismooth and semiconvex functions and discuss their properties 
with respect to  nonsmooth nonconvex constrained optimization problems. These 
functions are locally Lipschitz. and hence have generalized gradients. The author has 
given an optimization algorithm that uses generalized gradients of the problem func- 
tions and converges to  stationary points if the functions are semismooth. If the func- 
tions are semiconvex and a constraint qualification is satisfied. then we show that a sta- 
tionary point is an optimal point. 

We ahow that the pointwise maximum or minimum over a compact family of con- 
tinuously differentiable functions is a semismooth function and that the pointwise 
maximum over a compact family of semiconvex functions is a semiconvex function. 
Furthennore. we show that a semismooth composition of semismooth functions is 
semismooth and gives a type of chain rule for generalized gradients. 





Semismooth and Semiconvex Functions 

In Constrained Optimization 

1. INTRODUCTION 

In this paper we are interested in an inequality constrained 

optimization problem where the functions need not be differenti- 

able or convex. More precisely, consider the problem of finding 

an x ER" to 

minimize f (x) 

subject to h.(x) 5 0 for i = 1,2 ,..., m 
1 

where hl , h2,. . . , hm and f are real-valued functions defined on Rn. 
We utilize the "generalized gradient" introduced by Clarke 

[1,2] for "locally Lipschitz" functions. A necessary condition [2) 

(of the Karush [5] -John [ 4 ]  type) for optimality of a point is 

that the zero vector is a certain convex combination of generalized 

gradients of hl ,h2,. . . ,h, and f at x. In section 5 of this paper, 

this "stationarity" condition is concisely stated in terms of a map 

as given by Merrill [lo] depending on the problem function general- 

ized gradients. Our implementable algorithm for nonsnooth nonconvex 

optimization given in [Ill uses this map and converges to such sta- 

tionary points if the problem fnnctions are "semismooth" as defined 

here in section 2. This algorithm can be viewed as a modification 

and extension of the "conjugate subgradient" type algorithms for 

nondifferentiable unconstrained optimization given by Lemarechal [a] 

and Wolfe [ 161 for convex functions and by Feuer [3] for min-max 

objectives . 
Semismooth functions possess a semicontinuous relationship be- 

tween their generalized gradients and directional derivatives. They 

are related to, but different from, the "almost differentiable" 



functions of Shor I131. Notable examples of such functions are con- 

vex, concave and continuously differentiable functions. 

In section 2 we also define "semiconvex" functions. These 

functions are "quasidifferentiable" (Pshenichnyi [12]) and essenti- 

ally "semiconvexe" in the sense of Tuy [15] and, if also differen- 

tiable, are "pseudoconvex" (Mangasarian 191). In section 5 we show 

that the above stationarity condition is sufficient for optimality 

if the problem functions are semiconvex and a constraint qualifi- 

cation is satisfied. This is a nondifferentiable analogue of a 

sufficient optimality result in [9, Theorem 10.1.11. 

In sections 3 and 4, we give some important properties of 

semismooth and semiconvex functions. Starting from the work in [I] 

and [3] on min-max objectives, we show that the pointwise maximum 

or minimum over a compact family of continuously differentiable 

functions is a semismooth function. We also give an example of a 

semismooth function that is an extremal combination not of contin- 

uously differentiable functions, but of semismooth functions. This 

leads us to show that a semismooth composition of semismooth func- 

tions is semismooth and to give a type of "chain rule" for general- 

ized gradients. Special cases of this chain rule may be found in 

[21. 

In section 3 we also show that the pointwise maximum over a 

compact family of semiconvex functions is a semiconvex function. 

Thus, semiconvex functions behave as do convex functions with re- 

spear to the maximization operation, while pseudoconvex functions 

do not because of the loss of differentiability due to this non- 

smooth operation. 

2. DEFINITIONS AND EXAMPLES OF SEMISMOOTH AND SEMICONVEX 
FUIJCTIONS 

Let B be an open subset of Rn and F : Rn- R be L i p s c h i t z  on B, 

i.e. there exists a positive number K such that 

IF(y) -F(z) 1 2 ~ / y - z /  for all y,z E B . 

If F is Lipschitz on each bounded subset of Rn then F is called 

ZocaZ Zy L i p s c h i t z .  



Le t  x  E B and d  E Rn.  As i n  C la rke  [ 21 , l e t  

F" (x ;d )  = l i m  sup  [F  (x+h+td)  - F (x+h) I / t  
h- 0  
t + O  

and l e t  aF (x )  denote  t h e  generaliaed gradient of F  a t  x  de f ined  

by 

aF ( x )  = {g E Rn : cg ,d> 2 F' ( x ;d )  f o r  a l l  d  E Rni . 

The fo l lowing  two p r o p o s i t i o n s  c o l l e c t  t o g e t h e r  u s e f u l  p r o p e r t i e s  

o f  F' and aF from Cla rke  [1,21 and Lebourg [71,  r e s p e c t i v e l y .  

Proposition I. 

( a )  aF ( x )  is a  nonempty convex compact s u b s e t  of  Rn. 

( b )  F" ( x ; d )  = max [<g ,d>  : g  E aF ( x )  1 

(c)  F  is d i f f e r e n t i a b l e  a lmost  everywhere i n  B and a F ( x )  

is t h e  convex h u l l  o f  a l l  t h e  p o i n t s  g  of t h e  form 

g  = l i m  VF (xk) 
k-0 

where {x.,)-x and F  has  a  g r a d i e n t  VF a t  each  xk E B .  

(dl  I f  i x k }  c B converges t o ' x  and gk E aF (xk )  f o r  each k  

t hen  Igkl $ K  and each accumulat ion p o i n t  g  of  {gk} 

s a t i s f i e s  g  E a F ( x ) ,  i . e .  3F i s  bounded on bounded 

s u b s e t s  o f  B and aF i s  uppersemicontinuous on 9. 

Proposition 2. 

Le t  y  and z be  i n  a  convex s u b s e t  of  B. Then t h e r e  e x i s t s  

X E ( 0 , 1 )  and g  E aF (y+h (z-y)  ) such t h a t  

i . e .  a  mean va lue  r e s u l t  ho lds .  

By combining p a r t  (d l  o f  P r o p o s i t i o n  1  w i th  P r o p o s i t i o n  2 

one may e a s i l y  e s t a b l i s h  t h e  fo l lowing  u s e f u l  r e s u l t :  



. L e m m a  I .  Let { tk} 0, {hk} -+ 0 E Rn and F* be any accumulation 

point of 

Then there exists g E aF(x) such that 

If lim [F (x+td) - F (x) ] /t exists it is denoted by F' (x;d) and 
t+ 0 

called the directional derivative of F at x in the direction d. If 

F 1  (x;d) exists and equals Fa (x;d) for each d E Rn the F is said to 

be quasidifferentiable at x (Pshenichnyi [12] ) .  Note that if 

F' (x;d) exists then, by Lemma 1, there exists g E aF (x) such that 

and, if, in addition, F is quasidifferentiable at x, then, by parts 

(a) and (b) of Proposition 1, g is a maximizer of <. ,d> over aF(x). 

Definition I. F : Rn -+ R is semismooth at x E Rn if 

(a) F is Lipschitz on a ball about x 

and 

(b) for each d E Rn and for any sequences { tk} c R + ,  Bkl c R" 
and {gk} C Rn such that 

{tk} + 0, {Bk/tk} -+ 0 E Rn and gk E aF(x+tkd+Bk) , 

the sequence {Cgk,d>} has exactly one accumulation point. 

L,emma 2. If F is semismooth at x then for each d E Rn, F' (x;d) 

exists and equals lim <gk,d> where [gk} is any sequence as in De- 
k+w 

finition 1. 

Proof: Suppose { T ~ }  4 0. By Proposition 2, there exist 

tk E ( 0 , ~ ~ )  and gk E aF (x+tkd) such that 



Then, by Definition 1 with Bk = 0 E Rn, since Itk} + 0, 

lim [F (x+rkd) - F (x) ] /rk = lim <gk,d> . 
k-- k+- 

Since { T ~ }  is an arbitrary positive sequence converging to zero, 

F' (x;d) exists and equals the desired 1imit.o 

D e f i n i t i o n  2 .  Let X be a subset of Rn. F : Rn +R is .?emicon- 

v e t  at x E X  (with respect to X) if 

(a) F is Lipschitz on a ball about x 

(b) F is quasidifferentiable at x 

and 

(c) x +d E X  and F' (x;d) 2 0 imply ~(x+d) 2 F(x). - - 
Tuy's [IS] earlier concept of semiconvexity does not include 

quasidifferentiability, but we include it in order to obtain 

Theorems 8 and 9 given below. A semiconvex function that is also 

differentiable is called "pseudoconvex" (Mangasarian [g, Chapter 91 ) .  

We say that F is semismooth (quasidifferentiable, semiconvex) 

on X c Rn if F is semismooth (quasidifferentiable, semiconvex) at 
each x E X. We denote the convex hull of a set S by conv S. 

From convex analysis [13, Sections 23 and 241 and [2, Pro- 

position 31 we have the following: 

Propose t < o n  3 .  

If F : Rn + R is convex (concave) then F (F) is locally ~ipschitz, 

aF(x) = {g~Rn:~(y) >_(~)~(x)+<g,y-x> for all  Y E R ~ I  for e a c h x ~ ~ "  , - - 

i.e. 2F is the s u b d i f f e r e n t i a 2  of F, F (-F) is semiconvex on R" 

and F(F) is semismooth on R". 

From [2, Proposition 41 and the properties of continuously 

differentiable functions we have the following: 



P r o p o s i t i o n  4 .  

~f F : Rn -t R is continuously differentiable then F is locally 

Lipschitz, aF (x) = IVF (x) 1 for each x E Rn, and F is quasidifferen- 

tiable and semismooth on Rn. 

An example of a locally Lipschitz function on R that is not 

semismooth (nor quasidifferentiable) is the following differenti- 

able function that is not continuously differentiable: 

I;* sin (l/x) for x + 0 
F(x) = 

for x = 0 

N O K ~  that F1(O;l) = O  and aF(0) =conv t-1,11 is tile set of possi- 

ble accumulation points of Fr(x;l) as x 4 0. 

An example of a function that is semiconvex and semismooth 

on R, but not convex nor differentiable, is 

where 

for x > 0 

for x = 0 

for x < 0 . 

Note that in a ceighborhood of x =  0 

~ ( x )  = max [log(l+x) ,log(l-x)] I 

i.e. F is a pointwise maximum of smooth functions. General func- 

tions of this type are the subject of the next section. 

3. SEMISMOOTH AND SEMICONVEX EXTREMAL-VALUED FUNCTIONS 

In this section we supplement developments in Feuer [3] and 

Clarke [I] to show that certain extremal-valued functions E are 

semismooth and/or semiconvex. 



Suppose E : Rn -c R is d e f i n e d  on B ,  an  open s u b s e t  of Rn,  a s  

fo l l ows  i n  te rms  of  f  : Rn x T  -c R where T  i s  a  t o p o l o g i c a l  space:  

Suppose t h e r e  e x i s t s  a  s e q u e n t i a l l y  compact subspace  U of  T  

such  t h a t  

( a )  f  ( x , u )  is cont inuous  f o r  ( x , u )  E B x U 

( b )  f  ( x , u )  is L i p s c h i t z  f o r  x  E B uni formly  f o r  u  E U 

(c)  axf ( x , u )  i s  uppersemicontinuous f o r  ( x ,  u)  E B x U 

and f o r  each x  E B 

e i t h e r  

( d )  E ( x )  = max [ f  (x ,u )  : u E U] 

and 

( e l  f;(x,u;d) = f a  (x ,u ;d )  f o r  a l l  ( u , d )  E U x Rn 
X 

o r  

( d l )  E ( x )  = min [ f  ( x , u )  : u E Ul 

and 
n 

( e l )  f '  (x ,u ;d)  = - f a  (x,u;-d)  f o r  a l l  ( u , d )  E U x R 
X X 

For  each  x  E B  l e t  

Note t h a t  E and A a r e  w e l l  d e f i n e d  by t h e  c o n t i n u i t y  and compact- 

n e s s  assumptions.  Furthermore,  f o r  each  x  E B ,  A ( x )  i s  compact 

and axf ( x ,  ' is upper semicontinuous and bounded on U ,  and a  d i r e c t  

consequence of [ I ,  Theorem 2 . 1 1  is  t h e  fo l lowing:  

Theorem I .  L e t  t h e  a b o v e  a s s u m p t i o n s  o n  E and f  h o l d .  T h e n  

E i s  L i p s c h i t z  o n  B and f o r  e a c h  x E B 

aE(x )  = conv Caxf  ( x , u )  : u 5 ~ ( x )  1 

and  f o r  e a c h  d E R" 

2 '  ( x ; d )  = E' ( x ; d )  = max [<g,&> : g E aXf ( x , u )  , U  E A ( x )  1 



i f  (d) and (e) h o l d ,  o r  

9' (x;d) = -EO (x;-d) = min [<g,cl> : g E axf (x,u) ,U E A(x) I 

i f  (d' and (el) h o l d .  

Remark:  Feuer [3] shows the results of Theorem 1 under the 

stronger assumptions of our next theorem and proves a result [3, 

p. 571 close to semismoothness from which our next proof is 

adapted. 

Theorem  2 .  S u p p o s e  t h a t  (a) and (dl o r  (d') h o l d  and 

t h a t  f ( 0 , ~ )  i s  d i f f e r e n t i a b l e  o n  B f o r  e a c h  u E U  and Vxf 

i s  c o n t i n u o u s  and bounded  on  B x U .  T h e n  E i s  s e m i s m o o t h  

o n  B. 

P r o o f :  Note that the additional assumption implies (b), 

(c), (e), and (el) and that 3 f = V  f on B x U .  Suppose E has the 
X X 

max form (d) . (The proof of semismoothness for the min form (dl) 

is similar. ) Let x E B ,  d E Rn, xk = x + tkd + Bk and gk E aE (x ) where k 
Itk) i. 0 and {eK/tk) -+ 0 E Rn. From Theorem 1 and Proposition 1 we 

have that 

~'(x;d) = E' (x;d) = max [<g,d> : g E aE(x)l 

and aE is bounded and uppersemicontinuous on a ball about x, so 

lim sup <gk,d> E' (x;d) . 
k+- 

Suppose 

lim inf <gk,d> < ~'(x;d) , 
k+- 

i.e. there is an E > 0 and a subsequence of {gk) such that on this 

subsequence 

For each k corresponding to this subsequence choose gk z aE(xk) 

and uk E A (xk) such that 



and 

S ince  Vxf is  cont inuous  on B x  U ,  {xk}  + X  and { \ I  is  i n  t h e  corn- 

p a c t  set U ,  and {uk) have accumulat ion p o i n t s  ; and ;, re- 

s p e c t i v e l y ,  such t h a t  

Thus, by (3.1)  and (3.21,  

L e t  u* E A (x )  be such t h a t  

Then 

and , s ince  < V x f ( - , - I , - >  is  c o n t i n u o u s , t h e r e  e x i s t  neighborhoods 

B (x )  , v (;) and D (d )  such t h a t  

Choose k  s o  l a r g e  t h a t  uk c V (;I , tk 1 d  1 + / Bk ( is  l e s s  than  t h e  

r a d i u s  of a  b a l l  about  x  con ta ined  i n  B(x)  and 21Bk/tkl is  l e s s  

t han  t h e  r a d i u s  o f  a  b a l l  about  d  conta ined  i n  D ( d ) .  Then f o r  

a l l  t E [ O f  tk] , 



and 

Then 

<Vxf (~(t) ,%) ,XI (t)> 2 <VXf (~(t) ,u*) r ~ '  (t)-> - ~ / 2  for all t E [O,tkl . 

Integrating from t =  0 to t = t  gives 
k 

f (x(tk) 1Uk) - f ( ~ ( 0 )  ,uk) 2 f (x(tk) ,'-I*) - f(x(0) tu*) - tk~/2. . 

But x(tk) = xk, x(0) = x, uk E A(xk) and u* E A(x) , 

s o E(xk) - f(xruk) - 5 f (X klU*) - E(x) - tk~/2 I 

or 

But this leads to a contradiction, because f(xk,u*) 2 E(xk), 
f (x,uk) 5 E (x) , tk > 0 and E > 0. Thus, lim <gk,d> = E' (x;d) , 

k-m 
so E is semismooth at x.c 

Theorem 3 .  Let  X  be  a  s u b s e t  o f  B. Suppose t h a t  (a), (b), 

(c), (d), and (el h o i d ,  i . e .  E i s  a  rnax f u n c t i o n ,  and suppose  t h a t  

f ( a  ,u) i s  semiconvez  a t  x E X ( w i t h  r e s p e c t  t o  X I  f o r  each  u E U. 

Then E ?:s semiconvex  a t  X E X  ( w i t h  r e s p e c t  t o  X I .  

P r o o f :  By Theorem 1 ,  E is Lipschitz on a ball about x, 

quasidifferentiable at x, and for d E R" there exist u E A(x) and 
g E axf(x,i) such that 

Er(x;d) = <g,d> = max [<g,d> : ~ E ~ ~ ~ ( X , U ) , U E A ( X ) ]  . 

Suppose x + d  5 X and E' (x;d) - 2 0. Then, by the quasidifferentiability 

of £(a,:) at x, we have 



f; (x,;;d) = fi(x,;;d) = max [<g,d> : g E axf (x,;) 1 2 - <g,d> 2 - o . 
- 

Thus, by the semiconvexity of f(-,u) at x, 

f(x+d,;) 2 f(x,u) . 

~ u t  x + d E X C  B and assumption (d) imply 

E (x+d) , f (x+d,u) - 

and ; E A(x) implies 

E(x) = f (x,;) , 

and the semiconvexity of E at x is estab1ished.a 

The following function F is an exam~le of a semismooth func- 
2 tion on R which is not an extremal-valued function in the sense of 

Theorem 2, because in any ball about (0,O) there is a point at 

which the value of F is neither the maximum nor the minimum of the 

three underlying linear functions that define F: 

Jote that F (xl ,x2) = max [0 ,min (xl , x2) 1 . This raises the ques- 

tion of whether or not a finite extremal composition of extremal- 

valued functions is a semismooth function. This is indeed the case, 

as is shown in more generality in the next section. 

I 

F(X~ ,x2) = 

x , for x2 2 0 and x2 2 xl 2 0 

x2 for xl 1 0 and xl 2 x2 2 0 

0 for x, 2 0 or x2 2 0 . 



4. SEMISMOOTH COMPOSITION 

In this section we show that a semismooth composition of 

semismooth functions results in a semismooth function. In order 

to prove this useful result we first establish a type of "chain 
2 m n 

rule" for generalized gradient sets. For v1 ,v ,.. . ,v E R let 
[v1v2.. .vm ] denote the n x m matrix whose ith column is vi for 

i =  1r2r...,m. 

Theorem 4. Let fi:Rn+Rfor i=1,2 ,..., mand E:Rrn+R be 
n 

ZocaZZy Lipschitz. For x E R define 

and 

G(x) = rnv igER":g= [g1g2...g~wl giEafi(x), i=112r...1m, WE~E(Y(X))] . 

Then F is ZocaZZy Lipschitz and 

aF (x) c G(x) for each x E Rn . (4.1) 

Remarks: Clarke [2] establishes (4.1) for the three cases 

where (1) E is continuously differentiable and m = 1 , (2) E (yl, y2) = 

y1 +y2 and ( 3 )  E(y) =max [yi : i E {1,2,...,m~l for Y = ( Y ~ ~ Y ~ ~ . . . ~ Y ~ ) .  

Note that the containment in (4.1) may be strict, because, as 

suggested to us by M.J.D. Powell, for E(y1,y2) =yl-y2, X E R  and 

fl (x) = f2(x) = 1x1 , we have aF(0) = {Ol and G(0) =conv {-2,2). 

Proof: It is not difficult to show that F is locally Lipschitz 

and to show that G is uppersemicontinuous. Hence, by part (c) of 

Proposition 1, F is differentiable almost everywhere, and if we 

show 

where x is any point of differentiability of F, then (4.1) follows 
from the convexity and uppersemicontinuity of G. 



In  o rde r  t o  show (4.2) , l e t  VF ( 2 )  e x i s t ,  d E R" and { t k }  + 0. 

Then 

Choose a subsequence of { t k }  such t h a t  f o r  each i =  1 , 2 ,  ..., m 

{ [f i(Z+tkd) - f i ( 3  l / t k }  ' f I  

on t h e  subsequence. By Lemma 1 ,  

i f! = <g .d> t o r  some gi E ati(:) , 

S 0 

i 
{ [ f i  (z+tkd)  - f i  ( X )  - \<g , d > ]  / t k )  + 0 

on t h e  subsequence. Let 

l > , < d , g 2 > .  m v = f f ; , f z , .  . . , f * )  = ( < d , g  
m .. . .<d.g > I .  (4 .5)  

Then 

{ [Y ( i + t k d ) .  - Y - t kv l  / t k )  - 0 E R~ 

and, by t h e  L ipsch i t z  c o n t i n u i t y  of E l  

on t h e  subsequence. Now choose a sub-subsequence of { t k )  such t h a t  

on t h i s  sub-subsequence. Then, by combining (4 .6)  and (4 .7) ,  



on the sub-subsequence and, by (4.3) , 

From (4.7) and Lemma 1 , 

E* = cv,w> for some w E ~ E ( Y  ( X I  . 

Let 

g = [ g 1 g 2 ~ ~ ~ g m ] w  , 

so that combining (4.8) , (4.9) , (4.5) and (4.4) and recalling the 
definition of G yields 

where g E G (x) . Since this result holds for each d E R", and G (x) is 

convex, we have that the desired result (4.2) holds, for, if not, 

then a strict separation theorem [9, Theorem 3.2.61 gives a contra- 

diction .o 

Theorem 5 .  S u p p o s e ,  i n  a d d i t i o n  t o  zhe a s s u m p t i o n s  o f  Theorem 
n 4, t h a t  f. f o r  e a c h  i=1,2, ..., m is s e m i s m o o t h  a t  X E R  and E S s  

1 

s e m i s m o o t h  a t  Y (x) E R ~ .  Then F i s  s e m i s m o o t h  a t  x. 

n P r o o f :  Suppose x and gk E aF (xk) where d c R , 
{tki + 0 and {Bk/tki +o:=R'.+ t~qn:: aF(x k ) is contained in the com- 

pact convex set G(xk), by minimizing and maximizing the linear 

function <. ,d> over G (xk) we may find gk,Gk E G(xk) such that 

and 

where 

-1 
gkrgk E a £ .  (x ) for each i = 1,2 ,..., m 1 k  



and 

By the uppersemicontinuity and local boundedness of the various 

maps, {g ) and {G ) are bounded and there are accumulation points k k 
g of {g ) and G of {G ) and corresponding accumulation points gi k .k 
of {g:) and ei of (6;) for each i = l,2.. . . .n and ; of {; ) and ir 

k 
of {Gk) such that 

and 

- 
<g,d> 2 lim inf <gk,d> lim sup <gk,d> - <Gld> . 

k+- k+- 

By the semismoothness of each fi, we have 

so, by defining 

we have 

and, thus, 

- 
<z,w> 2 lim inf <gk,d> 5 lim sup <gkld> 5 - <z,b . 

k+- k+- 

So, if we show that 

then {<gk,d>) has only one accumulation point and we are done. 



To show (4.10) we will show that 

where 

- A 

and then, since w k, wk c aE (Y (xk) ) , we have, by the semismoothness 
of E l  that {<wklz>} and {<Gk,z>) have the same limit,which implies 

(4.10) , because ; and 6 are accumulation points of {w } and {6 } ,  k k 
respectively. 

For each i =  1,2, ..., m let 

i 
@, = fi Exk) - fi (x) - t f' (x;d) , k i 

1 2  m so that (4.11) is satisfied with q k =  ($k,@k,...,@k) and 

Note that, by using the definition of xk and adding and subtracting 

f (x+tkd) , we have 

As k+a, the first term of the right-hand side of (4.14) converges 

to zero, because each fi is Lipschitz and {Bk/tk} + 0 c R". The 

second term converges to fj(x;d), so we have that 

which, by (4.131, implies (4.12) and completes the pr0of.o 



5. STATIONARITY AND OPTIMALITY 

Consider the following problem that is equivalent to the op- 

timization problem of section 1: 

minimize f (x) 

subject to h(x) 5 0 

where 

h(x) = max hi (x) for x E R" 
1 zi=a 

i 
We say that x E Rn is feasible if h(x) 0 and strictly feasi- - 

ble if h (x) < 0. We say that ;; E R" is optimal if ;; is feasible and 
f (z)  5 - f (x) for all feasible x. 

Let X be a subset of Rn and for each x E Rn let 

Then, from Theorems 4,5,1 and 3, we have the following: 

Theorem 6. Suppose hl , h2,. . . , h are locally Lipschitz. Then 
m 

la! h is locally Lipschitz and for each x E R" 

ah(x) c conv {ahi(x) :i~A(x)l . 

Ib! If hl ,h2,. . . ,h are semismootk on X then h is semi- 
rn 

smooth on X. 

Ic! If hl,h2, ..., hm are semiconvex (quasidifferentiable! 

on X then h is semiconvex (quasidifferentiable! on X 

and for each x E R" 

ah (x) = conv ahi (x) : 1 E A(X) 1 . 



A key idea for dealing with the above optimization problem is 

to define the point-to-set map M : Rn + 2Rn by 

af(x) if h(x) < 0 

conv {a£ (x) u ah(x)j if h(x) = 0 for x E R" . 
ah (x) if h(x) > 0 

This map was introduced and used by Merrill [lo, Chapter 121 for prob- 

lems with differentiable and/or convex functions, i.e. problems 

with functions having gradients and/or subgradients. It is used by 

our algorithm in [I11 for problems with functions having generalized 

gradients. 

We say that ; E Rn is s t a t i o n a r y  for the optimization problem 

if h (x) ' 0 and 0 E M(;). Our algorithm in [I 1 ] is shown to converge - 
to stationary points for problems with semisnooth functions. The 

next result shows that stationarity is necessary for optimality. 

It follows from a very general theorem in Clarke [21. Here we give 

an independent proof using a strict separation theorem for convex 

sets. 

- 
T h e o r e m  7 .  S u p p o s e  f ,2i1d h a r e  l o c a l l y  L i p s c l : i z z .  If x is 

o p t i m a l  t h e n  x i s  s t a t i o n a r y .  

P r o o f :  Consider the case where h(x) = 0. Suppose, for contra- 

diction purposes, that ; is not stationary. Then o#M(;). Since 

af(;) and ah(;) are compact, M(2) is closed and convex and, thus, 

from a strict separation theorem [ g ,  Cor. 3.2.41, there exists a 

d E Rn such that 

<g,d> < o for all g E M(:) . (5.1) 

Since ; is optimal, it must be the case that either f0 (;;dl 2 - 0 or 

h0 (:;dl 2 0, for if not, we can find a t > 0 such that f (x+td) c f (?r)  
and h(;+td) < h (x) = 0, which contradicts the optimality of ;. Thus, 

by Proposition 1, there is a g E (af (;) iJ ;h(x)) C M(:) such that - 
<g,d> 2 0. But this contradicts (5.1). So 0 E M(x). We omit the 

proof of the case where h(;) < 0 which is similar, but simp1er.o 



Remark: This theorem, when specialized, gives two well-known 

necessary optimality theorems. If hl,h2r...rh, and f are differ- 

entiable then the above result combined with part (a) of Theorem 6 

shows that an optimal x solves the Karush [5]-John [4] stationary 
point problem 19, p. 931. Alternatively, if hl ,h2,.. . ,hm and f 
are convex then Theorems 6 and 7 and Proposition 3 show that an 

optimal 2 solves the corresponding saddle-point problem [9, p. 7 1 I . 
As asual, in order to have stationarity be sufficient for op- 

timality, we need stronger assumptions on the problem functions. 

We now proceed to show that if the problem functions are semiconvex 

and there is a strictly feasible point then stationarity implies 

optimality. In order to demonstrate this we require the following 

preliminary result for semiconvex functions on convex sets: 

n 
Theorem 8 .  I f  F i s  semiconvex  on a  c o n v e x  s e t  X C R  , x E X  

and x + d E X t h e n  

F (x+d) 5 F(x) implies F' (x:d) 2 0 - 

Proof :  Suppose, for contradiction purposes, F (x+d) 2 F (x) and 
F' (x;d) > 0. Then there exists t > 0 such that t < 1 and F(x+td) > F(x) 

Let ? E (0,l) maximize the continuous function a (t) = F (x+td) over 

t E [O , 1 1  . Clearly, by the maximality of T I  

~'(x+cd:d) 5 0 and F0(x+fd;-d) 2 0 . - 

Now by the quasidifferentiability of F there exist g+ E 2F (x+Ed) 

and g- E a~ (x+cd) such that 

and 



- 
and, by the positive homogeneity of F' (x+td; .) , since 1 - t > 0, we 

have 

Then the semiconvexity of F implies 

which contradicts ( 5.2) .o 

Remark: The above proof follows one in Mangasarian [9, pp. 

143-1441 and a slight modification shows that a semiconvex function 

on a convex set is "strictly quasiconvex" and, hence, "quasiconvex" 

[9, Ch. 91. 

Theorem 3 .  Suppose  f and h a r e  s e m i c o n o e r  o n  .9" and x E Rn 
i s  s u c h  t h a t  0 E M(X). 

( a )  I f  h(2) > O  t h e n  h(x) ,h(:) > O  f o r  a l l  X E R ~ ,  i . e .  t h e  - 
o p t i m i z a t i o n  problem h a s  no f e a s i b l e  p o i n t s .  

( b )  I f  h(x) 5 0 t h e n  a t  l e a s t  o n e  o f  t h e  f o l l o w i n g  h o l d s :  - 
( i )  i s  o p t i m a l  

( i i )  h(x) 2 0 f o r  a l l  x E R", i .  e .  t h e  o p t i m i z a t i o n  

prob lem has  no s t r i c t l y  f e a s i b l e  p o i n t s .  

P r o o f :  If h(x) > 0 then 0 E ah(:) and it is clear from the 

semiconvexity of h that x minimizes h over Rn and the desired re- 
sult (a) follows. If h (:) < 0 then 0 E af(x) and similar reasoning 

shows that x minimizes f over R" which implies b(i). Suppose 

h(z) = O .  Then there exist A E  [0,1], g ~ 3 f ( z )  and G ~ a h ( x )  such 

that 



n  I f  X = 0 ,  then  4 = 0,  minimizes h  over  R and b (ii) holds.  A l t e r -  

n a t i v e l y ,  i f  X > 0  then  

and f o r  a l l  x  E P," 

For a l l  x  E R" such t h a t  h  (x )  0  = h  (:I, w e  have, by t h e  semicon- 

v e x i t y  of h ,  Theorem 8 and t h e  f a c t  t h a t  6 E ah(:) 8 t h a t  

~ h u s ,  s i n c e  [ ( i - X ) / X l  2 0, w e  have t h a t  

<g,x-x> 2 0 f o r  a l l  x such t h a t  h ( x )  - ( 0  . 

So, by t h e  semiconvexity of f  , s i n c e  g E a f  (x)  , w e  have t h a t  

f ' ( Z ; x - x )  = f 0 ( 2 ; x - 2 )  , <g,x-x> , 0  - - 

and,  hence,  

f  ( x )  2 f ( 2 )  f o r  a l l  x  such t h a t  h ( x )  2 - 0  . 
- 

Thus, x  is op t ima l  and w e  have t h a t  X > 0  impl i e s  t h a t  b ( i )  holds.0 

Remark: I f  h(;) = 0  and X > 0  i n  t h e  above proof t hen ,  i n  o r -  

d e r  t o  show o p t i m a l i t y  of :, we need only  assume t h a t  h  i s  quas i -  

d i f f e r e n t i a b l e  and s a t i s f i e s  t h e  conc lus ion  o f  Theorem 8 r a t h e r  

t han  assume h  is semiconvex. This  obsen ra t ion  corresponds  t o  a  

s u f f i c i e n t  o p t i m a l i t y  theorem i n  Mangasarian [ 9 ,  Theorem 10.1.11 

and s a y s  t h a t  i f  s a t i s f i e s  g e n e r a l i z e d  Karush [ 5 ]  - Kuhn-Tucker 

I61 c o n d i t i o n s ,  f  is semiconvex and h  i s  q u a s i d i f f e r e n t i a b l e  and 

"quasiconvex" [ 9 ,  Chapter  91 then  x is  op t ima l .  A c o n s t r a i n t  

q u a l i f i c a t i o n  t h a t  imp l i e s  X > 3 is  t h a t  0  ah(;). 
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