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Abstract

We present theoretical foundations and computational procedures of a theory for analysing
decisions under risk, when the available information is vague and imprecise. The impre-
ciseness is expressed by a set of global distributions T over a space S, where the latter
represents the classes of all probability and utility measures over a set of discrete out-
comes. We show how local distributions, i.e. distributions over projections of S on various
subspaces of S, can be derived from T and introduce consistency measures expressing the
extent into which user-asserted local distributions can be used for defining T . The evalu-
ation model used is based on the expected utility, but this is not a necessary restriction.
The approach allows a decision maker to be as deliberately imprecise as she feels natural,
as well as provides her with the means for expressing varying degrees of imprecision in the
input sentences.
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Modeling Indeterminacy In Decision Situations

Love Ekenberg (lovek@dsv.su.se)*

Johan Thorbiörnson (qwerty@fmi.mh.se)**

1 Background

The requirement of providing numerically precise data when analysing decision problems
has often been considered unrealistic in real-life situations, and a number of models with
representations allowing imprecise statements have been suggested. Some of them use
standard probability theory while others contain some specialised formalism. Already
in [Choquet, 1953/54] the concept of capacities was introduced, and later these ideas
were studied in connection with probability theory [Huber, 1973, Huber and Strassen,
1973]. Logical approaches have also been used for providing methods for how to deal
with sentences with upper and lower probabilities [Nilsson, 1986]. Belief states have been
defined by interval-valued probability functions by means of classes of probability mea-
sures, and integrated in classical probability theory [Good, 1962, Smith, 1961]. [Dempster,
1967] investigated the properties of multi-valued mappings and defined upper and lower
probabilities in terms of these. The results of Dempster were further developed into a
non-Bayesian approach for quantifying subjective judgements [Shafer, 1976].1 Fuzzy set
theory is a widespread approach to relaxing the requirement of numerically precise data
and providing a more realistic model of the vagueness in subjective estimates of values and
probabilities, see, e.g., [Chen and Hwang, 1994, Lai and Hwang, 1994]. These approaches
allow, among other features, the decision maker to model and evaluate a decision situation
in vague linguistic terms and introduce various (often complicated) rules for aggregating
this information. The measures defined are local and it is often hard to get an intuitive
understanding of the global meaning of the various combinations of these. An important
difference between fuzzy approaches and the approach presented in this paper is that the
latter introduces global belief distributions with weak restrictions. We also show how to
derive admissible classes of local distributions from sets of global distributions. This makes
it possible to investigate the restrictions that have to be imposed on user-asserted local
distributions depending on which information a decision maker has access to and provides.
Furthermore, fuzzy approaches are restricted in the sense that they do not handle all qual-
itative aspects such as, e.g., comparisons between different components involved in many
decision situations.

Quite general approaches for how to evaluate imprecise decision situations are inves-
tigated in [Gärdenfors and Sahlin, 1982, 1983, Levi, 1974, 1980]. The authors consider

*Love Ekenberg is from the Department of Computer and Systems Sciences, Stockholm University,
Electrum 230, S-164 40 Kista, Sweden. He was a Guest Research Scholar at IIASA from October 1996
until June 1997. He is presently affiliated with the Department of Information Technology, Mid Sweden
University, S-851 70 Sundsvall.

**Department of Physics and Mathematics, Mid Sweden University, S–851 70 Sundsvall, Sweden
1As has been pointed out, the Dempster-Shafer representation seems to be unnecessarily strong with

respect to interval representation [Weichselberger and Pöhlman, 1990].
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global distributions of beliefs, but restrict themselves to the probability case and, like the
fuzzy models, interval representations. Another limitation is that they neither investigate
the relation between global and local distributions nor introduce methods for determining
the consistency of user-asserted sentences. The latter may in real-life decision situations
be crucial, since the only information at hand in a decision situation may be local because
most agents are not able to perceive their global beliefs over, for instance, a 53-dimensional
probability base (which is actually a quite tricky task). The same criticism applies to
[Hodges and Lehmann, 1952, Hurwicz, 1951, Wald, 1950]. The work by [Danielson and
Ekenberg, 1997ab, Ekenberg, et al., 1996, 1997, Malmnäs, 1994] is restricted in the sense
that no distributions over the intervals are taken into account.

The main contribution of this work is that it provides theoretical foundations as well
as computational procedures of a theory for analysing decisions under risk, when the
available information is vague and imprecise. This impreciseness is expressed by a set
of global distributions T over a space S, where the latter represents the classes of all
probability and utility measures over a set of discrete outcomes. We show how local
distributions, i.e. distributions over projections of S on various subspaces of S, can be
derived from T and introduce consistency measures expressing into which extent explicit
local distributions can be used for defining T . One further important aspect of the theory
is that it provides an increased geometrical understanding of which beliefs distributions
express and how they are related to each other.

The next two sections describe how impreciseness can be modelled and discuss some
general properties of global belief distributions. In particular, it is described how global
belief distributions can be defined over a space and in what sense such distributions can
define solution sets to a set of constraints, and how classes of admissible local belief
distributions can be derived from projections of global distributions. Or conversely, what
restrictions to be imposed on a subset K of local distributions given a set L of distributions
so that K ∪L defines a global belief distribution. Section 4 treats evaluation with respect
to the representation in sections 2 and 3. The expected utility is generalised, and it is
proved how the computational complexity can be considerably reduced given that the
local distributions fulfills certain consistency requirements. General forms of sensitivity
analyses are also discussed.

2 Representation

The motivation behind the present work is to extend the expressibility when representing
and evaluating vague and numerically imprecise information in decisions situations. To
achieve a basic intuition of what will be presented below, consider a decision situation
consisting of a set of n alternatives

{{cij}j=1,...,mi}i=1,...,n

where each alternative is represented by a set of mi consequences. We will refer to the
latter as a consequence set. In such a decision situation, numerically imprecise sentences
like ”the probability of consequence c11 is greater than 40%” or comparative sentences
like ”consequence c11 is preferred to consequence c12” occur. These sentences can be
represented in a numerical format [Danielson and Ekenberg, 1997a]. Examples of vague
sentences in that model are: ”The consequence cij is probable” or ”The event cij or cik is
possible”. Such sentences are represented by suitable intervals. Another kind of sentences
are interval sentences of the form: ”The probability of cij lies between the numbers ak
and bk”, which are translated to pij ∈ [ak, bk]. Finally, comparative sentences are of the
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form: ”The probability of cij is greater than the probability of ckl ”. Such a sentence is
translated into an inequality pij ≥ pkl. Each statement is thus represented by one or more
constraints. The conjunction of constraints of the types above, together with

∑mi
j=1 pij = 1

for each consequence set {cij}j=1,...,mi involved, is a probability base (P). A value base
(V) consists of similar translations of vague and numerically imprecise value estimates. In
a sense, a probability base can be interpreted as constraints defining the set of all possible
probability measures. In the terms of [Gärdenfors and Sahlin, 1982], it defines a set of all
epistemologically possible probability distributions.

Example 1: The solution set to the probability base {p11 + p12 + p13 = 1, p11 ≥
0, p11 ≤ 0.6, p12 ≥ 0.3, p12 ≤ 0.5, p13 ≥ 0.1, p13 ≤ 0.5} is a polytope. Each vector in the
polytope corresponds to a probability distribution over the consequence set {c11, c12, c13}.
Thus, the polytope is a subspace of the space of all possible probability distributions over
{c11, c12, c13} with respect to the probability base.2

However, a decision maker does not necessarily believe with the same intensity in all
the epistemologically possible probability distributions E. To enable a refinement of the
model to allow for a differentiation of distributions in this respect, a global distribution
expressing various beliefs can be defined over the set E.

Example 2: We can use a function g representing3 beliefs of the possible probability
distributions with respect to the decision situation in example 1. Note that g(x) > 0 when
x is an epistemologically possible probability distribution, i.e. is a vector in the polytope
in Example 1.

Similar belief distributions can be defined over a set of value distributions, expressing
epistemologically possible value distributions, where the latter is defined over consequence
sets, for instance in terms of polytopes in the sense of [Danielson and Ekenberg, 1997a].

In the following subsections, we define and investigate some features of global distri-
butions and how these are related to sets of linear constraints.

2.1 Consequence Sets and Bases

The basic entities in the kinds of decision situations we will consider are the sets of
consequences involved. Over these sets, different functions can be defined, expressing for
instance, classes of probability measures, belief functions in the Dempster–Shafer sense,
fuzzy measures, or utility functions.

Definition 1 Let Θ be a set of outcomes. A consequence set Ci = {cij}j=1,...,mi , is a set
of events such that cij ∩ cik = ∅, for all j 6= k, and ∪mij=1cij = Θ. A decision situation is a
set, {{cij}j=1,...,mi}i=1,...,n, where each {cij}j=1,...,mi is a consequence set.

2Note that in general a set of probability distributions does not necessarily have to be con-
vex. For instance, given the consequence set {c11, c12, c13}, (p11, p12, p13) ∈ ([0, 0.2]× [0.8, 1]× [0, 0]) ∪
([0.3, 0.6]× [0.1, 0.2]× [0.2, 0.6]) does define a set of probability distributions in the same way as above.
The approaches in, for instance, [Danielson and Ekenberg, 1997, Ekenberg, et al., 1996, 1997, Levi, 1974,
Malmnäs, 1994] assume convex sets and are for this reason of restricted use in cases where this is an
adequate representation.

3To simplify the geometrical intuition, the function g can be defined over the natural projection of plane
p11 + p12 + p13 = 1 on the p11–p12 plane.
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Definition 2 Let a consequence set C be given. By a c–function over C, we mean a
function f : 2C → [0, 1]. By a generating mapping over C, we mean a set of c–functions
over C, where each c–function f has the property f(∅) = 0.

Example 3: Let the consequence set C = {c11, c12, c13} be given. One c–function over
C is {(∅, 0.0), ({c11}, 0.3), ({c12}, 0.2), ({c13}, 0.5), ({c11, c12}, 0.5),
({c11, c13}, 0.8), ({c12, c13}, 0.7), ({c12, c13, c13}, 1.0)}. The images of all c–functions over
C constitutes a 7–dimensional unity cube. The set of all c– functions over C is an example
of a generating mapping over C.

Definition 3 Let a consequence set Ci = {cij}j=1,...,mi be given. By the cell generating
mapping over Ci, we mean the unity cube [0, 1]mi. This space will be called a cell for Ci.
Below, such a cell will be denoted by B = (bi1, . . . , bimi) or, for notational convenience,
B = (b1, . . . , bk). By a cell for cij, we mean the interval [0, 1]. Such a cell will be denoted
B = (bij) or B = (bi).

Example 4: Let the consequence set C = {c11, c12, c13} be given. A cell for C is the
space [0, 1]× [0, 1]× [0, 1].

Definition 4 Let a decision situation D = {{cij}j=1,...,mi}i=1,...,n and a cell Bi for {cij}j=1,...,mi

be given. By a cell for D, we mean the space defined by B1 × . . .×Bn. Such a cell will be
denoted B = (B1, . . . , Bn).

Example 5: Let a decision situation D = {{c11, c12}, {c21, c22, c23}} be given. A cell for
D is the space [0, 1]5.

2.2 Global Belief Distributions

As was mentioned above, an agent does not necessarily believe with the same faith in all
possible functions that the vectors in a cell define. For instance, when the agent considers
a class of probability distributions, a reasonable requirement seems to be that the belief
should be 0 in a vector where the mapping does not add up to one. To enable for a
differentiation of functions in this respect, a global distribution expressing various beliefs
can be defined over a cell.

Definition 5 Let a cell B = (b1, . . . , bk) be given. By a global belief distribution over B,
we mean a positive distribution4 g defined on the cell B such that∫

B
g(x) dVB(x) = 1,

where VB is the k–dimensional Lebesque measure on B. The set of all global belief distri-
butions over B is denoted by GBD (B).

4A distribution on a set Ω is a linear functional defined on C∞0 (Ω) which is continuous with respect to
a certain topology.
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Example 6: Consider a uniform global belief distribution over a cell B = (b1, b2). One
interpretation of this is that we have no information about the consequence sets.

Example 7: The functions

f(x1) = max(0,min(−100x1 + 20, 100x1))

and

h(x2) = max(0,min(−100

3
x2 +

80

3
,
200

3
x2 −

100

3
))

have graphs consisting of triangles with bases on the axes and area = 1. Then we get a
global belief distribution g(x1, x2) = f(x1) · h(x2) over a cell B = (b1, b2).

Example 8: Let the functions f and h be as in the former example. Then we get a
global belief distribution g(x1, x2) over the cell B = (b1, b2) by defining g(x1, x2) = 0,
when x1 > x2, and g(x1, x2) = 2 · f(x1) · h(x2) otherwise.

In the examples above we saw how to use global belief distributions to represent subsets of
a cell. If we want to represent a subset which is of lower dimension than the cell itself we
cannot use distributions that are upper bounded since a mass under such a distribution will
be 0 while integrating with respect to the Lebesgue measure defined on the cell. Instead,
we have to use, for example, the Dirac function δp(x) which has the property5

∫
B
δp(x)f(x) dx= f(p),

and especially, if f(x) ≡ 1 then ∫
B
δp(x) dx = 1

so δp(x) is a global belief distribution according to the definition above. Here f(x) is
a measurable function. The distribution δp(x) is called the Dirac distribution, or Delta
function, with pole at the point p.

Thus, we can use Dirac functions to represent pointwise global belief distributions.

Example 9: Let a cell B = (b1) be given. Assume that a decision maker has a positive
relative belief only in the three points p1 = 0.3, p2 = 0.6, p3 = 0.7. Further assume that
she has a relative belief in these points as 0.1, 0.4, 0.5. To represent this, let f be defined
by

f(x) =


0.1 if x = 0.3
0.4 if x = 0.6
0.5 if x = 0.7
0 otherwise

The global belief function g can be defined by

g(x) = f(x)(δp1(x) + δp2(x) + δp3(x))

Now, ∫
B
g(x) dx = 1

5For a detailed treatment, cf. for example [Friedlander, 1982].
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and, consequently, g is a global belief distribution.6

In general, for every measurable subset E in a k–dimensional space B there is a distribution
gE with mass equal to 1 on E and 0 otherwise (cf. [Friedlander, 1982]).

Definition 6 Let A be a subset of a cell B, and let f ∈ GBD (A). The natural extension
f̃A(x) of f with respect to A is defined by

f̃A(x) =

{
f(x) if x ∈ A
0 otherwise

Definition 7 Let A be a subset of B. A distribution gA ∈ GBD (B), is called a charac-
teristic distribution for A in B, if

f(p) =
∫
B
δp(x)f̃A(x)gA(x) dVB(x),

for every f ∈ GBD (A), and for every point p in A.

From distribution theory follows that for every measurable subset A in a cell B, there
exists a characteristic distribution for A in B. It also trivially follows that f̃A(x) · gA(x) ∈
GBD (B) and equals 0 outside A.

Example 10: Let a cell B = (b1, b2, b3) be given. Let A denote the subset of B, where
x1 + x2 + x3 = 1, and let f(x1, x2) = x1 · x2 be defined on A. Then f ∈ GBD (A) with
respect to the 2–dimensional Lebesgue measure on A, but f̃A(x) /∈ GBD (B), because∫
B
f̃A(x) dVB(x) = 0. However,

∫
B
f̃A(x)gA(x) dVB(x) = 1, so f̃A(x)gA(x) ∈ GBD (B),

and f̃A(x1, x2, x3)gA(x1, x2, x3) = 0, except when x1 +x2 +x3 = 1. To put this informally;
f̃A · gA represents the same proportional belief over B as f does over A.

2.3 Constraints

It should be noted that one property of a global belief distribution is that it in some sense
defines the solution set to a set of constraints.

Definition 8 Let a cell B = (b1, . . . , bk) be given. We will use the term constraints for
the union of the following:7

• I–constraints are constraints on the form a ≥ xi or a ≤ xi, where a is a real number
in [0, 1], and xi is a variable.

• L–constraints are constraints on the form
∑
xi = a, where a is a real number in

[0, 1].

6As can be seen from the example, it is sufficient that a decision maker expresses her relative belief by
the function f when the global belief distribution represents a subset with dimension zero. A similar result
is true for any subset of a lower dimension than the cell. Cf. Example 10 below.

7Naturally, the set of constraints can be more generally defined, but these three are sufficient for the
purposes of this work.



– 7 –

• C–constraints are constraints on the form xi ≤ xj + a, where a is a real number in
[0, 1].

Example 11: An example of a solution set to a set of constraints is the polytope
{(x1, x2, x3) : 1 ≥ x1 > x2 ≥ 0, x1 + x2 + x3 = 1, 0.7 ≥ x3 ≥ 0.1}.

Definition 9 Let a cell B = (b1, . . . , bk) and a distribution g over B be given. The support
of g (supp g) is the closure of the set {(x1, . . . , xk) : g(x1, . . . , xk) > 0}.

Example 12: Let a cell B = (b1, b2) be given. Define a global belief distribution g, such
that g(x1, x2) = 0, when x1 > x2, and g(x1, x2) = 2 · f(x1) · h(x2) otherwise. supp g is the
2-dimensional polytope {(x1, x2) : 1 ≥ x1 > x2 ≥ 0}.

Definition 10 Let a cell B = (b1, . . . , bk) and a set C of constraints in x1, . . . , xk be
given. The set of solution vectors to C constitutes the solution set for C, and will be
denoted by s(C). If there is a non- empty solution set for C, it is consistent. Otherwise C
is inconsistent. Sup ({ni : (n1, . . . , ni, . . . , nk) ∈ s(C)}) will be denoted Sup i(C). Inf i(C)
is defined analogously.

As explained in the introduction to section 2, linear constraints can be used to model
vague and numerically imprecise probability- and value statements. The introduction of
global belief distributions over cells generalises the concept of probability- and value bases.

Example 13: A value base V can be defined through a global belief distribution. Given
a cell V = (v1, v2) and a distribution gV over V defined by gV (v1, v2) = 6 ·max(v1−v2, 0).
Then gV ∈ GBD (V ), and supp gV = {(v1, v2) : 0 ≤ vi ≤ 1 & v1 < v2}. Sup 1(V ) =
Sup 2(V ) = 1. Inf 1(V ) = Inf 2(V ) = 0.

3 Local Belief Distributions

This section investigates relationships between global and local distributions and intro-
duces measures for determining the consistency of user-asserted sentences. Such relation-
ships are important, since the only information at hand in a decision situation may be
local. We show how classes of admissible local belief distributions can be derived from
projections of global distributions, and what restrictions to be imposed on a subset K
of local distributions given a set L of distributions so that K ∪ L defines a global belief
distribution.

Definition 11 Let a cell B = (b1, . . . , bk) be given. By a local belief distribution over B,
we mean a positive distribution f defined on the cell bi such that∫

bi

f(xi) dVbi(xi) = 1,

where Vbi is the Lebesque measure on bi. The set of all local belief distributions over bi is
denoted by LBD (bi).
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3.1 Centroids

Local belief distributions over the axes of a cell B can be derived from a global belief
distribution over B.

Definition 12 Let a cell B = (b1, . . . , bk) and F ∈ GBD (B) be given. Let

fi(xi) =
∫
B−i

F (x) dVB−i
(x)

where B−i = (b1, . . . , bi−1, bi+1, . . . , bk). We say that fi(xi) is derived from F .

Example 14: Let a cell B = (b1, b2) be given, and let F (x1, x2) = x1 + x2. The derived
local belief distributions from F are

f1(x1) =
∫ 1

0
(x1 + x2) dx2 =

[
x1x2 +

1

2
x2

2

]1

0
= x1 +

1

2

f2(x2) =
∫ 1

0
(x1 + x2) dx1 = x2 +

1

2
.

In section 4, we will show how the use of centroids logarithmically reduces the com-
putational complexity in the evaluations of a generalised expected utility. Intuitively, the
centroid of a distribution is a point in space where some of the geometrical properties of
the distribution can be regarded as concentrated.

Definition 13 Let a cell B = (b1, . . . , bk) and gB ∈ GBD (B) be given. The centroid of
gB is the point xgB = (β1, . . . , βk) in B whose i:th component is

βi =

∫
B
xi · gB(x) dVB(x).

Definition 14 Let a cell B = (b1, . . . , bk) and fbi ∈ LBD (bi) be given. The centroid of
fbi is the point in bi defined by

xfbi =
∫
bi

xi · fbi(xi) dVbi(xi).

Centroids are invariant under projections on the local cells in the sense that the pro-
jection of the centroid on the local cell has the same coordinates as the centroid of the
corresponding derived local belief distribution. Lemma 1 shows that a product of local
belief distributions has the same centroid as the distribution of a product. Moreover, given
a global belief function G, Lemma 2 shows that the only possible product is the product
of the derived distributions from G.

Lemma 1 Let a cell B = (b1, . . . , bk) and F ∈ GBD (B) be given. Let fi(xi) be derived
from F . Furthermore, let

G(x1, . . . , xk) = f1(x1) · . . . · fk(xk).

Then
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(i) fi(xi) ∈ LBD (bi), i = 1, . . . , k.

(ii) G ∈ GBD (B)

(iii) xG = xF

(iv) If xG = (α1, . . . , αk) then αi = xfbi .

Proof:

(i): All we need to show is that
∫
bi

fi(xi) dxi = 1. According to the definition of fi, we

get ∫
bi

fi(xi) dxi =

∫
bi

∫
B−i

F (x) dVB−i
(x) dxi =

∫
B
F (x) dVB(x) = 1.

(ii):
∫
B
G(x) dVB(x) =

∫
B
f1(x1)·. . .·f(xk) dx1 . . .dxk =

(∫
b1

f1(x1) dx1

)
·. . .·

(∫
bk

fk(xk) dxk

)
=

1 · . . . · 1.

(iii) and (iv): Let xG = (α1, . . . , αk), and xF = (β1, . . . , βk). We show that α1 = xfb1 = β1. That
αi = xfbi = βi for i = 2, . . . , k, follows by analogous calculations.

α1 = xfb1 , since

α1 =
∫
B
x1 ·G(x) dVB(x)

=
∫
b1

(
x1 · f1(x1)

(∫
b2

f2(x2) dx2

)
· . . . ·

(∫
bk

fk(xk) dxk

))
dx1

=
∫
b1

(x1 · f1(x1) · 1 · . . . · 1) dx1 = xfb1

and xfb1 = β1 since∫
b1

x1 · f1(x1) dx1 =
∫
b1

x1

∫
B−1

F (x) dVB−1
(x) dx1 =

∫
B
x1 · F (x) dV (x) = β1,

because fi(xi) =
∫
B−i

F (x) dVB−i
(x).

Example 15: Let a cell B = (b1, b2) be given, and let F (x1, x2) = x1 + x2. Then
F ∈ GBD (B) since∫ 1

0

∫ 1

0
(x1 + x2) dx1dx2 =

∫ 1

0

[
1

2
x2

1 + x1x2

]1

0
dx2 =

∫ 1

0

1

2
+ x2 dx2

=

[
1

2
x2 +

1

2
x2

2

]1

0
=

1

2
+

1

2
= 1.

The corresponding derived local belief distributions are as in the example above.

f1(x1) =

∫ 1

0
(x1 + x2) dx2 = x1 +

1

2

f2(x2) =
∫ 1

0
(x1 + x2) dx1 = x2 +

1

2
.
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We can now check that the function

G(x1, x2) = f1(x1) · f2(x2) =

(
x1 +

1

2

)
·
(
x2 +

1

2

)
is a global belief distribution on G:∫ 1

0

∫ 1

0

(
x1 +

1

2

)
·
(
x2 +

1

2

)
dx1dx2 =

∫ 1

0

(
x1 +

1

2

)
dx1 ·

∫ 1

0

(
x2 +

1

2

)
dx2

=

[
1

2
x2

1 +
1

2
x1

]1

0
·
[

1

2
x2

2 +
1

2
x2

]1

0

=

(
1

2
+

1

2

)
·
(

1

2
+

1

2

)
= 1.

Denote the centroid xG = (α1, α2). Then

α1 =

∫ 1

0

∫ 1

0
x1

(
x1 +

1

2

)
·
(
x2 +

1

2

)
dx1dx2

=
∫ 1

0
x1

(
x1 +

1

2

)
dx1 ·

∫ 1

0

(
x2 +

1

2

)
dx2

=

[
1

3
x3

1 +
1

4
x2

1

]1

0
·
[

1

2
x2

2 +
1

2
x2

]1

0

=

(
1

3
+

1

4

)
· 1 =

7

12
.

In the same way we get α2 = 7
12 . We can now verify that xG = xF . If xF = (β1, β2) then

β1 =
∫ 1

0

∫ 1

0
x1 · (x1 + x2) dx1dx2 =

∫ 1

0

[
1

3
x3

1 +
1

2
x2

1x2

]1

0
dx2 =

∫ 1

0

1

3
+

1

2
x2 dx2

=

[
1

3
x2 +

1

4
x2

2

]1

0
=

1

3
+

1

4
=

7

12
.

By the same calculations β2 =
7

12
. We can also check that the coordinates (7/12, 7/12)

are the same as the corresponding values of xf1 and xf2 respektively:

xf1 =

∫ 1

0
x1 · f1(x1) dx1 =

∫ 1

0
x1 · (x1 + 1/2) dx1 =

[
1

3
x3

1 +
1

4
x2

1

]1

0
=

1

3
+

1

4
=

7

12
,

and similarily xf2 =
7

12
.

Lemma 2 Let a cell B = (b1, b2, . . . , bk) be given, and consider an arbitrary set of local
belief distributions fi, gi ∈ LBD (bi). Local belief distributions generating a particular global
belief distribution are then unique in the sense that

f1(x1) · . . . · fk(xk) = g1(x1) · . . . · gk(xk) iff fi = gi for all i = 1, . . . , k.

Proof: Assume that fi, gi ∈ LBD (bi) so that∫ 1

0
fi(xi) dxi =

∫ 1

0
gi(xi) dxi = 1

and assume that f1(x1) · . . . · fk(xk) = g1(x1) · . . . · gk(xk). Then∫
B−i

f1(x1) · . . . · fi−1(xi−1) · fi(xi) · fi+1(xi+1) · . . . · fk(xk) dx1 . . .dxi−1dxi+1 . . . dxk

=
∫
B−i

g1(x1) · . . . · gi−1(xi−1) · gi(xi) · gi+1(xi+1) · . . . · gk(xk) dx1 . . . dxi−1dxi+1 . . . dxk
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so that

fi(xi)
∫
B−i

f1(x1) · . . . · fi−1(xi−1) · fi+1(xi+1) · . . . · fk(xk) dx1 . . . dxi−1dxi+1 . . . dxk

= gi(xi)
∫
B−i

g1(x1) · . . . · gi−1(xi−1) · gi+1(xi+1) · . . . · gk(xk) dx1 . . .dxi−1dxi+1 . . .dxk

which gives fi(xi) = gi(xi) since
∫ 1

0
fj(xj) dxj =

∫ 1

0
gj(xj) dxj = 1, j = 1, . . .k.

From the proof of Lemma 1 (ii) follows that a product of local distributions is a global
distribution. Lemma 2 implies that this product is unique. Moreover, the following lemma
strengthen this result by saying that if a global belief distribution G is a product of local
belief distributions, then the factors are the derived local distributions from G.

Lemma 3 Let a cell B = (b1, . . . , bk) be given. Let G(x1, . . . , xk) = g1(x1) · . . . · gk(xk),
where gi ∈ LBD (bi). Then gi(bi) is derived from G.

Proof:∫
B−i

g1(x1) · . . . · gk(xk) dVB−i (x) =

∫
B
g1(x1) · . . . · g(xk) dx1 . . . dxi−1dxi+1 . . .dxk

= gi(xi) ·
(∫

b1

g1(x1) dx1

)
·

. . . ·
(∫

bi−1

gb−1(xi−1) dxi−1

)
·
(∫

bi+1

gb+1(xi+1) dxi+1

)
· . . . ·

(∫
bk

gk(xk) dxk

)
= gi(xi) · . . . · 1

3.2 Relations Between Constraints and Belief Distributions

Of particular interest is to what extent local belief distributions can combine to a global
belief distribution, so that the global distribution in some sense represents the local belief
distributions as well as a set of constraints imposed on the decision situation.

Definition 15 Let a cell B = (b1, . . . , bk) and a consistent set C of constraints in B be
given. The global belief distribution F is called C–admissible iff

x is a solution vector to C iff x ∈ suppF .

Furthermore, a set of local belief distributions will be called IC– admissible if the
support of the distributions are congruent with the solution set to a set C of I– constraints.

Definition 16 Let a cell B = (b1, . . . , bk) and a consistent set C of I–constraints in
B be given. A set L = {fi(xi) ∈ LBD (bi)}i=1,...,k of local belief distributions is called
IC–admissible iff

(x1, . . . , xk) is a solution vector to C iff xi ∈ supp fi for all i = 1, . . . , k.
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Usually a decision maker has access only to local information and a set of relations
between different parameters and, consequently, has no explicit idea about the global
distribution. In many cases, it may be that the only accessible relations between the local
distributions are in terms of constraints. When only I–constraints are considered, this set
of distributions can be used to define a global belief which support is positive only on the
polytope defined by the constraints.

Theorem 1 Let a cell B = (b1, . . . , bk) be given. Let C be a consistent set of I–constraints
such that s(C) ⊆ B, and let a set {gi(xi)}i=1,...,k such that gi ∈ LBD (bi) be given. Then
there exists F ∈ GBD (B), such that F is C–admissible iff gi(xi) is IC–admissible for
every i = 1, . . . , k.

Proof: Define F = g1·. . .·gk. Then from Lemma 3 follows that fi = gi, where fi is derived
from F . From Lemma 1 follows that F ∈ GBD (B). Furthermore, F is IC–admissible iff

x ∈ s(C) ⇐⇒ x ∈ suppF.

However, F = 0 iff gi = 0 for some i, i.e. (x1, . . . , xk) /∈ suppF iff xi /∈ supp gi for some
xi ∈ (x1, . . . , xk). This is equivalent to that the set {gi(bi)}i=1,...,k is IC–admissible.

3.3 Congruency

If the decision maker is able to define a set of local belief distributions and a set of
L– and C–constraints describing the decision problem, these must be congruent in a
certain respect. Given a set of constraints, a decision maker is restricted concerning which
combinations of local belief distributions that are possible to impose, if she wants to be
consistent in a reasonable sense.8 This is expressed by the following definition.

Definition 17 Let a cell B = (b1, . . . , bk) and a consistent set C of constraints in B

be given. A set L = {fi(xi) ∈ LBD (bi)}i=1,...,k is called C– admissible iff the vector
(xf1, . . . , xfk) is in the solution set for C, where xfi denotes the centroid of fi.

Theorem 2 Let a cell B = (b1, . . . , bk) and a consistent set C of constraints, such that
s(C) ⊆ B be given. Let G be a C–admissible global distribution and let gi(bi), i = 1, . . .k,
be derived from G. Then {gi(xi)}i=1,...,k is a C–admissible set of local belief distributions.
Furthermore, if F = g1 · . . . · gk, then xF = xG.

Proof: The second part of the theorem follows immediately from Lemma 1, i.e. xF =
(xf1, . . . , xfk) = (xg1, . . . , xgk) = xG. The first part of the theorem follows from Lemma
1 and the observation, from standard convexity theory, that the solution set to a set of
linear constraints is convex.

Theorem 1 and 2 imply that if a decision maker defines a set of local belief distributions
describing a problem, and if these are admissible w.r.t. the constraints involved, a global
belief distribution can be determined. This distribution has the property of having the

8As will be seen in section 4, for the purpose of evaluating a generalised expected value, a sufficient
condition on the distributions is that the vectors of centroids of the user-asserted local belief distributions
are consistent with the constraints.
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same centroid (and the same support relative to the local belief distributions) as any global
belief distribution from which the user-asserted local belief distributions can be derived.

When there are linear dependencies involved (as an effect of a set of L–constraints),
then the sets of all local belief distributions are, in a sense, determined by a subset of such
a set. We will say that this subset is complete.

Definition 18 Let a cell B = (b1, . . . , bk) be given. Let C be a set of constraints in
B, and let L = {fi(xi)}i=1,...,k where fi(xi) ∈ LBD (bi). A subset {fi(xi)}i=t1,...,ts of L
is B–complete if the dimension of (bt1, . . . , bts) is equal to the dimension of the solution
set to C. A B–complete subset {fi(xi)}i=t1,...,ts ⊆ L is CBCOMP – admissible if the vector
(α1, . . . , αs) ∈ s(C), where αi = xfti is the centroid of fti.

Theorem 2 implies the following corollary, which says that if {fi(xi)}i=t1,...,ts is a
CBCOMP –admissible set, then the admissible local distributions over (b1, . . . , bk) outside
(bt1, . . . , bts) are determined w.r.t. their centroids.

Corollary 1 Let a cell B = (b1, . . . , bk) be given. Let a set C of constraints in B, such
that s(C) ⊆ B, and let a set L = {gi(xi)}i=1,...,k, such that gi ∈ LBD (bi), be given.
Furthermore, let F (x) = g1(x1) · . . . · g(xk). Then xF ∈ s(C) iff all B–complete subsets of
L are CBCOMP–admissible.

When a decision maker asserts local belief distributions, they do not always fulfill the
admissibility described above. One option for the decision maker in such cases is to select
a CBCOMP –admissible subset of local distributions and then calculate the remaining ones.

However, the decision maker may want to know how the set of originally asserted
distributions deviate from the calculated ones. A measure of this deviation could be the
difference with respect to the centroids.

Definition 19 Let a cell B = (b1, . . . , bk) be given. Let F be an admissible global belief
distribution over B. Let A = {fi(xi)}i=1,...,k be the set of derived local belief distributions
from F , and let G = {gi(xi)}i=1,...,k be a set of (user-asserted) local distributions. The
inconsistency of gi(xi) relative to fi(xi) is |xgi − xfi |. The inconsistency of G relative to
A is

∑k
i=1 |xgi − xfi |.

This measure is in some sense a mean. To investigate in what extent the distributions
are separate, a measure corresponding to the variance can be introduced.

Definition 20 Let a cell B = (b1, . . . , bk) be given, and let F be an admissible global
belief distribution over B. Let A = {fi(xi)}i=1,...,k be the set of derived local belief distri-
butions from F , and let G = {gi(xi)}i=1,...,k be a set of local distributions. The variance

of gi(xi) relative to fi(xi) is
∫
bi

|gi(xi)− fi(xi)| dxi. The variance of G relative to A is∑k
i=1

∫
bi

|gi(xi)− fi(xi)| dxi.

4 Evaluation

The evaluation principle treated in this section is based on the principle of maximising the
expected value. Given a decision situationD, let P and V be a probability base and a value
base for D, respectively. The expected value E(Ci) denotes the expression

∑mi
j=1 pijvij,
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where pij and vij are variables in P and V . To evaluate the expected value [Danielson
and Ekenberg, 1997a, Ekenberg and Danielson, 1994, Ekenberg, et al., 1996, Malmnäs,
1994] investigates the set {E(Ci)}i=1,...,n ∪P ∪V in a variety of respects. However, in the
present framework, distributions are included, and we will suggest how these can be taken
into account in the evaluations.

4.1 Generalised Mean Values

We will now describe how belief functions can be imposed on evaluations of a generalised
expected mean value.

First, we a define a decision scenario as containing a number of global belief distribu-
tions. Informally, these express various beliefs in vectors in subsets of the solution sets
to probability- , and utility bases. For a given consequence set, there is one global belief
distribution for the probabilities, and one global belief distribution for the utilities, with
respect to this set.

Definition 21 A decision scenario is a structure (D, P, V, {pi}i=1,...,n, {vi}i=1,...,n), where

• D is a decision situation {{cij}j=1,...,mi}i=1,...,n.

• P = (p11, p12, . . . , pmn) is a cell.

• V = (v11, v12, . . . , vmn) is a cell.

• pi is a global belief distribution over the cell Pi = (pi1, . . . , pimi) such that pi(x) = 0,
when

∑mi
j=1 pij 6= 1.

• vi is a global belief distribution over the cell Vi = (vi1, . . . , vimi).

The next definition suggests a generalised expected value. This is summed over all possible
expected values weighted by the global belief distributions over the solution sets to the
probability-, and utility bases.

Definition 22 Let a decision scenario ({Ci}i=1,...n, P, V, {pi}i=1,...,n, {vi}i=1,...,n) be given.
The expression

∫
Pi×Vi

mi∑
j=1

xijyij

pi(xi1, . . . , ximi) · vi(yi1, . . . , yimi) dV (xi1, . . . , ximi)dV (yi1, . . . , yimi)

is called the generalised expected value for Ci, and is denoted by G(Ci).

The next theorem shows how the generalised expected value of a consequence set can
be calculated by using only the centroids of the global belief distributions.

Theorem 3 Let a decision scenario (D, P, V, {pi}i=1,...,n, {vi}i=1,...,n) be given. Then

G(Ci) = 〈xpi, xvi〉,

where 〈x, y〉 is the standard inner product of x and y.
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Proof: Let xpi = (αi1, . . . , αimi) in Pi and let xvi = (βi1, . . . , βimi) in Vi. Since pi ∈
GBD (Pi), vi ∈ GBD (Vi), then by definition 13∫

Pi

xij · pi dV (xi1) · · ·dV (ximi) = αij .

Analogously we get ∫
Vi

yij · vi dV (yi1) · · ·dV (yimi) = βij.

Thus, by the independence of Pi and Vi we get∫
Pi×Vi

xij·yij·pi(xi1, . . . , ximi)·vi(yi1, . . . , yimi) dV (xi1, . . . , ximi)dV (yi1, . . . , yimi) = αij ·βij.

Thus
G(Ci) = αi1 · βi1 + . . .+ αimi · βimi = 〈xpi , xvi〉.

However, as mentioned above, usually a decision maker does only have access to local
information and a set of relations between different parameters, and has no explicit idea
about the global distributions. If the decision maker is able to define a set of local belief
distributions describing the decision problem, and if these are congruent with the con-
straints involved, global belief distributions over s(P) and s(V) can be determined. These
can be included in the formula expressing the generalised value of Ci, and Theorem 4
shows that this is equal to the generalised expected value of Ci involving any global belief
distribution, which have a positive support on the solutions sets s(P) and s(V) only, and
from which the local belief distributions is derived.

Definition 23 A potential decision scenario is a structure

(D, P, V, {{fpij}j=1,...,mi}i=1,...,n, {{fvij}j=1,...,mi}i=1,...,n, C),

where

• D is a decision situation {{cij}j=1,...,mi}i=1,...,n.

• P = (p11, p12, . . . , pmn) is a cell.

• V = (v11, v12, . . . , vmn) is a cell.

• fpij ∈ LBD (pij).

• fvij ∈ LBD (vij).

• C is the sets {CPi}i=1,...,n and {CVi}i=1,...,n, where CPi is a set of constraints in the
pij variables, and CVi is a set of constraints in the vij variables.

Theorem 4 Let a potential decision scenario

(D, P, V, {{fpij}j=1,...,mi}i=1,...,n, {{fvij}j=1,...,mi}i=1,...,n, C)begiven.
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If pi ∈ GBD (Pi) is CPi–admissible, vi ∈ GBD (Vi) is CVi–admissible, and fpij and fvij are
derived from pi and vi respectively. Then {fpij}j=1,...,mi are CPi–admissible, {fvij}j=1,...,mi

are CVi–admissible, and

〈xpi , xvi〉 =∫
Pi×Vi

(
mi∑
i=1

xijyij

)
fpi1(xi1) · · ·fpimi (ximi)fvi1(yi1) · · ·fvimi (yimi) dV (xi1, . . . , ximi)dV (yi1, . . . , yimi)

= 〈(xfpi1 , . . . , xfpimi ), (yfvi1 , . . . , yfvimi )〉,

where 〈x, y〉 is the standard inner product of x and y.

Proof: The first part is a direct consequence of theorem 2. The second part follows from
Lemma 1.

5 Concluding Remarks

We have presented theoretical foundations and computational procedures of a theory for
analysing decision situations including probability- and value estimates, when the available
information is indeterminate. The approach allows a decision maker to be as deliberately
imprecise as she feels is natural as well as provides her with the means for expressing
varying degrees of imprecision in the input sentences. The main idea is that impreciseness
is expressed by global belief distributions, expressing relative beliefs in different values.
However, in many cases the only accessible information might be in terms of local beliefs
and sets of relations. Therefore, we also investigate how local distributions, i.e. belief
distributions over various subspaces of the solution sets to the probability-, and utility
bases, can combine to global belief distributions that, in some reasonable sense, correspond
to the local information as well as to the relations. Furthermore, we investigate which
properties user-asserted local belief distributions should have to be congruent with the
constraints involved, and how new local distributions can be derived from complete sets of
local belief distributions. Using this, we are also able to measure the degree of inconsistency
of a set of user-asserted local distributions. The evaluation model used herein is based on
the principle of maximising of the expected utility, but this is not a necessary restriction,
and further work will include how other decision rules can be generalised to evaluate
decision situations modelled in the framework. We will also generalise our earlier results
on contractions to take account of various aspects on sensitivity analyses. The model
presented herein is based on finite sets of consequences, and another line of research is to
generalise the model into the infinite case.
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for Uncertainty in Knowledge-Based Systems: Springer- Verlag, 1990.


