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Abstract

We consider repeated play of so-called potential games. Numerous modes of play
are shown to yield Nash equilibrium in the long run. We point to procedures that
can account for society-wide constraints concerning efficiency.

Key words: Potential games, repeated play, Nash equilibrium, learning, ficti-
tious play, distributed computation.
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Learning in Potential Games

Yuri M. Ermoliev (ermoliev@iiasa.ac.at)
Sjur Didrik Fl̊am (sjur.flaam@econ.uib.no)

1 Introduction

Game theory currently undergoes some re-orientation - away from strategic form,
one-shot interaction between hyper-rational, omniscient players. Specifically, many
recent studies allow repeated play of the same stage game, and accommodate agents
enjoying merely bounded rationality, competence, or knowledge [12], [16]. A most
natural question then becomes: will the concerned parties learn Nash equilibrium
over time?

This question also motivates the present note. Our focus is on a special class
consisting of so-called potential games, recently introduced and studied by Monderer
and Shapley [13]. That class is admittedly narrow, but more important for economics
- and more frequent in practice - than might first be believed [20]. So, part of our
motivation is to show that manifold modes of play - associated with known methods
of optimization - will all lead to equilibrium in games of this sort. To wit, we
demonstrate below that quite flexible adjustments of strategies suffice to approach
equilibrium over time. We believe that our convergence results, taken together, lend
considerable relevance and justification to the Nash solution concept in potential
games.

Additional motivation stems from the fact play must often be constrained so
as to ensure long-term viability of the social interaction at hand. For example, in
few-strategy games, say, prisoner’s dilemma situations, there is often a free rider
drift to low levels of efficiency. Then, concerns with equity, social security, financial
sustainability, or outside competition may generate collective restrictions on how
the game can be played [21], [23]. The approach used here can incorporate such
concerns.

There is significant overlap between our modelling of repeated play and recent
methods of distributed computation [2]. In fact, within the setting of potential
games, this note can be read either as formalized fiction about iterated play, or
as suggestions of algorithmic procedures. The reader will also see that quite often
repeated play fits frames that make for a unified convergence analysis.

The note is organized as follows. Section 1 introduces the class of games under
consideration. Since a potential, in the jargon of dynamic system theory, furnishes a
Lyapunov function, it is convenient to collect, in Section 1, some immediate proposi-
tions about monotone convergence of potential values, and about existence of Nash
equilibrium. Most adjustments of strategies advocated below share some important
common features, - singled out in Section 3. The stage is then set for Section 4
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to explore repeated play under the hypothesis that all agents come forth from time
to time. That hypothesis is relaxed in Section 5, requiring merely an almost cyclic
nature of active interventions. Section 6 gathers observations concerning what we
naturally call gradient play. Section 7 indicates possibilities to offer agents almost
unbounded freedom in the protocol governing the schedule of play. Section 8 con-
cludes.

2 The Stage Game

A fixed non-cooperative stage game is played repeatedly at discrete time epochs
(or stages). At each repetition players act sequentially, possibly in random order.
Whenever a player comes forth he knows the most recent choices made by his rivals.
In many scenarios described below he may, however, abstain from taking new actions
over extended lapses of time.

There is finite, fixed set I of agents. Individual i ∈ I always selects his strategy
xi within a prescribed compact set Xi. Let x−i := (xj)j 6=i denote the profile chosen
by his rivals. In situation x = (xi, x−i) he obtains a payoff πi(x) = πi(xi, x−i) which
is upper semicontinuous in x, and separately continuous in x−i.

The game is said to have a generalized ordinal potential P : Πi∈IXi → R if for
every two strategy profiles (x+1

i , x−i), (xi, x−i) ∈ X := Πi∈IXi we have

πi(x
+1
i , x−i) > πi(xi, x−i) =⇒ P (x+1

i , x−i) > P (xi, x−i). (1)

(The superscript +1 used here and below might first appear a somewhat strange
notation. The reader will, however, soon find it natural.) A generalized potential is
declared squeezing if

P (x+1
i , x−i)− P (xi, x−i) ↓ 0⇒ max

{
0, πi(x

+1
i , x−i) − πi(xi, x−i)

}
→ 0. (2)

Squeezing obtains if

πi(x
+1
i , x−i) > πi(xi, x−i)⇔ P (x+1

i , x−i) > P (xi, x−i),

P then being called an ordinal potential. More generally, (2) holds when P has the
following sandwich property: For all i ∈ I there exists a positive number wi such
that

πi(x
+1
i , x−i) ≥ πi(xi, x−i)⇒ wi

{
P (x+1

i , x−i)− P (xi, x−i)
}
≥ πi(x+1

i , x−i)−πi(xi, x−i).
(3)

In particular, (3), whence (2), is satisfied if

πi(x
+1
i , x−i)− πi(xi, x−i) = wi

{
P (x+1

i , x−i)− P (xi, x−i)
}
,

the ordinal potential P then being named weighted, and exact if all wi = 1.
Potentials of all sorts are henceforth assumed to be continuous upwards in the

sense that limt−→∞ P (xt) = P (x) whenever limt→∞ x
t = x and {P (xt)} is non-

decreasing, bounded above. (Note that such functions P need be neither upper nor
lower semicontinuous.) We shall time and again use the following straightforward
result:
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Proposition 1 (Convergence upwards) Let P be a generalized ordinal potential.
Whenever repeated play gives a non-decreasing bounded sequence {P (xt)} it holds for
every cluster point x = limt∈T x

t of {xt} that P (x) = limt∈T P (xt) = limt→∞ P (xt).
�

Here and in the sequel we simply write limt∈T x
t for the more complete and

correct expression limt∈T,t→∞ x
t.

We remark in passing that existence of Nash equilibrium is ensured under weak
conditions:

Proposition 2 (Existence of solutions) Let P be an upper semicontinuous general-
ized ordinal potential. Then there exists at least one Nash equilibrium.

Proof. P being upper semicontinuous on the compact set X, guarantees that
arg maxP is non-empty.. Evidently, every point in this set must be a Nash equilib-
rium. 2

One might be tempted to think that potential games enjoy distinguished welfare
properties. This is, however, far from so. Indeed, the prisoners’ dilemma and some
Cournot oligopolies are potential games that yield inefficient equilibrium outcomes
[13]. In those and many other cases, including congestion games [20], the hidden
potential should not be seen as a welfare indicator. Rather, in terms of optimization
theory, it constitutes a most natural merit function, monitoring the drift towards
Nash equilibrium. This will be abundantly illustrated in the sequel.

3 Adjustments of Strategies

It is desirable and expedient to focus briefly on common features of many modes of
repeated play.

Definition 1 By an adjustment rule of individual i we understand a closed corre-
spondence Ai : X ; Xi.

The interpretation is that if given the chance to reconsider his choice, individual
i would in situation x select a new strategy xi ∈ Ai(x). Frequently it is convenient
to identify an adjustment rule Ai with the closed self-correspondence

Ai(x) := (Ai(x), x−i)

on X, - and we shall not hesitate to do so. As said, players will act sequentially at
every stage, - in constrained or quite free order. To codify such freedom succinctly
we write, whenever O = (i1, ...., ik) is an ordered subset of individuals from I,

AO := Aik ◦ . . . ◦Ai1

for the resulting composite correspondence. Note that AO so defined is closed.
Nothing precludes, in principle, that adjustment rules and orders change in the
course of play. Thus interaction at time t generally involves an order Ot in which
the active players then enter the scene, each among them applying a personal, time-
specific adjustment rule.
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Definition 2 (Monotonicity) A self-correspondence A on X is declared non-decreasing
in potential values if

x+1 ∈ A(x) =⇒ P (x+1) ≥ P (x), (4)

and improving if, in addition, the inequality in (4) is strict whenever x /∈ A(x).
Correspondingly, a set of individual adjustment rules Ai, i ∈ I, is said to be potential
non-decreasing (improving) if for every order O of applying Ai(x) := (Ai(x), x−i),
the composite correspondence AO is of the same sort.

In (4) and elsewhere the notation x+1 is intended to emphasize dynamics, i.e., the
”state” x+1 comes up +1 time step after x. As an example, suppose all adjustment
rules increase own payoff, this meaning that for all i we have

x+1
i ∈ Ai(x) =⇒ πi(x

+1
i , x−i) ≥ πi(xi, x−i),

with strict inequality whenever xi /∈ arg maxπi(·, x−i). Then evidently, employing
such rules will improve the value of a generalized ordinal potential.

Whatever rules are used, they should, at least ideally, not cause a premature
halt at disequilibrium. It is convenient to express this property compactly:

Definition 3 (Nash fixed points) A self-correspondence A on X is declared accept-
able if all its fixed points are Nash equilibria. Similarly, a set of individual ad-
justment rules Ai, i ∈ I, is named acceptable if for every order O of applying all
Ai(x) := (Ai(x), x−i), i ∈ I, the composite correspondence AO is of the same sort.

Definition 4 (Maximizing fixed points) A self-correspondence A on X is said to be
adapted to the potential P if all its fixed points belong to arg maxP . Correspondingly,
a set of individual adjustment rules Ai, i ∈ I, is said to be adapted to P if for every
order O of applying all Ai(x) := (Ai(x), x−i), i ∈ I, the composite correspondence
AO is of the said sort.

4 Repetitive Play

We begin by considering particular modes of repeated play, called repetitive, requir-
ing all agents to actively use fixed adjustment rules at every stage.

Theorem 1 (Convergence under a stationary mode of play) Suppose the game has
a generalized ordinal potential. Also suppose that all agents always actively use fixed,
improving, acceptable adjustment rules. Then repeated play, proceeding in prescribed
or free order at any stage, will cluster to Nash equilibrium.

Proof. The demonstration parallels that of Zangwill’s first convergence theorem
[24]. Let x = limt∈T x

t be a cluster point (accumulation point) of the sequence {xt}
generated by repeated play. Assume, without loss of generality, that

lim
t∈T

xt+1 =: x+1,

and that the same order O of play is used for all t ∈ T. Then

x+1 ∈ AO(x).
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If x is not a fixed point of the improving correspondence AO, then P (x+1) > P (x).
However, by Proposition 1 it holds that P (x+1) = P (x). So, to avoid this con-
tradiction, x must indeed be a fixed point of the acceptable AO, whence a Nash
equilibrium. �

Note, by the way, that this result generalizes and simplifies Proposition 2.7.1 in
Bertsekas [3]. Next we provide two immediate applications:

Corollary 1 (Convergence of best reply) Suppose the game has a generalized ordinal
potential. Suppose also that all agents invariably use best reply

Ai(x) := arg maxπi(·, x−i) (5)

as their adjustment rules. Then iterative best reply, proceeding in prescribed or free
order at any stage, will cluster to Nash equilibrium. �

Corollary 2 (Convergence of averaged best reply) Suppose the game has a gener-
alized ordinal potential and that all decision sets Xi are convex. Suppose also that
every agent i has concave payoff πi(xi, x−i) in own decision xi, and that, for fixed
λi ∈ ]0, 1] , he invariably uses averaged best reply

Ai(x) := (1− λi)xi + λi arg maxπi(·, x−i) (6)

as his adjustment rule. Then repeated play, in prescribed or free order at any stage,
will cluster to Nash equilibrium. �

We proceed next to relax the double assumption above that players use fixed
adjustment rules and intervene at every stage.

Theorem 2 (Convergence under spacer steps) Assume the game has a generalized
ordinal potential. Assume also that agents always cause the potential to be non-
decreasing, and that infinitely often all players implement time-invariant, improving,
adapted adjustment rules. Then repeated play, in prescribed or free order at any
stage, will cluster to Nash equilibrium belonging to arg maxP.

Proof. Consider the sequence T ⊆ {0, 1, ....} of times t at which the same ac-
ceptable adjustment rules come into application. Without loss of generality assume
that

lim
t∈T

xt =: x, lim
t∈T

xt+1 =: x+1,

and that the same order O of play is used at all times t ∈ T. Consequently,

x+1 ∈ AO(x) and P (x+1) = P (x).

If x is not a fixed point of the improving AO, then P (x+1) > P (x), - a contradiction.
So, x is indeed a fixed point of the adapted AO, whence a Nash equilibrium belonging
to arg maxP. Since for every cluster point x of the generated sequence {xt} it holds
that P (x) = P (x) = maxP, all these points must belong to arg maxP. �
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Remark. (Inhomogeneous adjustments) For any sequence {At} of self-correspondences
on X define a ”cluster” correspondence, denoted lim supt→∞A

t, by

x+1 ∈ lim sup
t→∞

At(x)

iff there exists a subsequence T and associated points xt+1 ∈ At(xt), ∀t ∈ T, such
that

lim
t∈T

xt+1 = x+1 and lim
t∈T

xt = x.

Evidently, Theorem 1 continues to hold with time-variant, nondecreasing adjustment
rules provided that along every subsequence T

lim sup
t∈T

At ⊆ A (7)

for some improving, acceptable correspondence A. Likewise, Theorem 2 remains
valid with changing, nondecreasing adjustment rules granted that along some sub-
sequence T condition (7) holds with an adapted A. �

Example 1 (Almost best reply) In (5) one might rather use

A
t
i(x) := εit- arg maxπi(·, x−i)

with εit → 0, ∀i. The assertion in Corollary 1 would still hold. �

Example 2 (Moving averages) Instead of (6) we could very well apply

A
t
i(x) := (1− λit)xi + λit arg maxπi(·, x−i)

with 0 < λi ≤ λit ≤ 1, ∀i, t. This would not alter the conclusion of Corollary 2. 2

In the same vein one may introduce variational (or so-called gamma-) conver-
gence of payoff functions [6]. Doing so would allow players - in the ”interim” -
to use surrogate or approximate objectives. The latter must converge though, in
appropriate sense, to the true payoff functions [4], [5].

5 Almost Cyclic Play

It is natural to relax the preceding hypothesis that all players act at infinitely many
stages. So, here we shall allow each of them to be inactive for substantial lapses of
time, even in non-coordinated manners, provided, of course, they intervene every so
often.

Definition 5 (Almost cyclic interventions) Let It ⊆ I denote the set of players who
indeed take actions at time (stage) t. Play is said to be almost cyclic if there exists
some finite integer period p ≥ 1 such that

It
⋃
...
⋃
It+p−1 = I for all t. (8)
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Typically, convergence of play amounts to have xt+1
t xt for all large t. To codify

this phenomenon we introduce the concept of asymptotic regularity :

Definition 6 A mode of repeated play is called asymptotically regular if for every
generated sequence {xt} we have ∥∥xt+1 − xt

∥∥→ 0. (9)

It is from now on tacitly understood that all decision sets Xi are contained in
real Hilbert spaces, and that the norm ‖·‖ on the product set X is of the L2-type,
i.e., ∥∥x+1 − x

∥∥2
=
∑
i

∥∥x+1
i − xi

∥∥2

i
. (10)

For convenience we shall henceforth not discriminate notationally between norms
(and between inner products) in different spaces.

Theorem 3 (Convergence of almost cyclic play) Suppose the game has a generalized
ordinal potential. Also suppose that play is almost cyclic, asymptotically regular, and
involves potential improving, fixed adjustment rules. Then repeated play, in fixed or
random order at any stage, will cluster to Nash equilibrium.

Proof. Suppose some cluster point x = limt∈T x
t is not a Nash equilibrium.

Then there is at least one individual i, henceforth singled out, who would regret the
choice xi when confronted with the profile x−i of his rivals. For each t ∈ T, find a
time τ (t) ∈ {t, ..., t+ p− 1} at which the considered player i does indeed seize the
opportunity to act. By asymptotic regularity

lim
t∈T

xτ (t)+1 = lim
t∈T

xτ (t) = lim
t∈T

xt = x.

Assume, without loss of generality, that the same ordered set O of players comes
forth at all times τ (t). (If not, pass to a subsequence.) Now xτ (t)+1 ∈ AO(xτ (t)), ∀
t ∈ T, implies x ∈ AO(x). However, individual i belongs to O. Thus he, or some
other dissatisfied agent, will improve strictly the potential at x, that is,

x+1 ∈ AO(x) =⇒ P (x+1) > P (x),

contradicting the fact that x ∈ AO(x). 2
Games with adjustment cost. To illustrate the preceding theorem, suppose

agent i incurs additional cost
ai(x

+1
i , xi) ≥ 0 (11)

if and when he opts to change his last decision xi to x+1
i next time he acts. The

idea here is that such adjustment cost cause players to move with some inertia.
Intuitively, they will avoid making large deviations because such undertakings are
too expensive. In any case, we naturally posit that

ai(xi, xi) = 0 for all xi ∈ Xi; (12)

ai(x
t+1
i , xti)→ 0 =⇒

∥∥xt+1
i − xti

∥∥→ 0; (13)

xi ∈ arg max {πi(·, x−i)− ai(·, xi)} ⇒ xi ∈ arg max πi(·, x−i). (14)
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Example 3 (Quadratic adjustment cost) A natural candidate is

ai(x
+1
i , xi) = αi

∥∥x+1
i − xi

∥∥2

for some positive number αi. Then (11), (12), and (13) are immediate, whereas
(14) holds provided πi(·, x−i) is concave and differentiable (in the generalized sense
of convex analysis [19]) on Xi. Indeed,

xi ∈ arg max {πi(·, x−i) − ai(·, xi)} ⇒ 0 ∈ ∂ {πi(·, x−i)− ai(·, xi)} (xi)⇒
0 ∈ ∂ {πi(·, x−i)} (xi)⇒ xi ∈ arg max πi(·, x−i). �

Example 4 (Bregman adjustment cost) More generally, let the real-valued function
ψi be strictly convex and continuously differentiable in a neighborhood of the convex
set Xi, and define

ai(x
+1
i , xi) := ψi(x

+1
i )− ψi(xi)−

〈
Oψi(xi), x

+1
i − xi

〉
(15)

to be a so-called Bregman distance (see [22] and references therein). Again, (11) and
(12) follow immediately, and (13) results from the strict convexity of ψi. Finally,
if πi(·, x−i) is concave and generalized differentiable on Xi, then (14) is derived as
above. �

Theorem 4 (Convergence of best reply with adjustment cost) Suppose the game has
a bounded squeezing potential (2), and is played almost cyclically with adjustment
rules

Ai(x) := arg max {πi(·, x−i)− ai(·, xi)} . (16)

Then repeated play, in any order, clusters to Nash equilibrium.

Proof. Consider a fixed agent i. Let xi,t denote the profile which prevails just
before he acts at time t. Then, via (12),

πi(x
t+1
i , xi,t−i)− ai(xt+1

i , xti) ≥ πi(xti, x
i,t
−i)− ai(xti, xti) = πi(x

t
i, x

i,t
−i),

i.e.,
πi(x

t+1
i , xi,t−i)− πi(xi,t) ≥ ai(x

t+1
i , xti) ≥ 0, (17)

so that, by (1), potential values must be non-decreasing, and {P (xt)} converges. As
a result, play is asymptotically regular (9). In fact,

0 ← P (xt+1)− P (xt) ≥ P (xt+1
i , xi,t−i)− P (xi,t) ≥ 0

⇒ πi(x
t+1
i , xi,t−i)− πi(xi,t)→ 0 by squeezing (2)

⇒ ai(x
t+1
i , xti)→ 0 via (17)

⇒
∥∥xt+1

i − xti
∥∥→ 0 by (13).

Thus (10) ensures ‖xt+1 − xt‖ → 0. Finally, appealing to Theorem 3, the conclusion
obtains. 2
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6 Gradient Play

In this section we shall suppose that each payoff function πi(·, x−i) is continuously
differentiable on Xi, this set being convex compact and contained a real Hilbert
space with inner product 〈·, ·〉 and associated norm ‖·‖. We begin with

6.1 Gradient Projection Play

As is well known, the gradient (marginal payoff )

Oiπi(x) :=
∂πi(xi, x−i)

∂xi

offers the direction of steepest payoff ascent. An adjustment along this direction may,
however, lead out of the feasible set Xi. Therefore, letting [·]+i denote the orthogonal
projection onto Xi, it is natural to consider adjustment rules

Ai(x) := [xi + ρiOiπi(x)]
+
i , (18)

called gradient projection. Here, of course, the stepsize ρi is positive. A strategy
profile x ∈ X is called a stationary point of player i iff 〈Oiπi(x), x̃i − xi〉 ≤ 0 for all
x̃i ∈ Xi.

Theorem 5 (Convergence of gradient projection play) Suppose the game
* has a bounded squeezing potential, and
* is played almost cyclically with gradient projection rules, using stepsizes ρit ∈[

εi,
2
Ki
− εi

]
where 0 < εi <

2
Ki
, and Ki > 0 is a Lipschitz constant of marginal

payoff, i.e.,
‖Oiπi(xi, x−i)−Oiπi(x̃i, x−i)‖ ≤ Ki ‖xi − x̃i‖ . (19)

Then repeated play, in any order, clusters to stationary points. If all payoff functions
πi are concave in own decision xi, such points must be Nash equilibria. Given an
exact potential P , any limit point x will satisfy

P ′(x; x̃− x) ≤ 0 for all x̃ ∈ X. (20)

If, moreover, P is concave, then play accumulates to arg maxP.

Proof. For notational convenience write

x+1
i := Ai(x) = [xi + ρiOiπi(x)]

+
i ,

where the stepsize ρi > 0 temporarily is regarded as fixed. This last relation implies
that 〈

xi − x+1
i , xi + ρiOiπi(x)i − x+1

i

〉
≤ 0,

from which we derive ∥∥x+1
i − xi

∥∥2 ≤ ρi
〈
Oiπi( x), x

+1
i − xi

〉
. (21)
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Consider now a player i who faces a strategy profile x. Letting

f(s) := πi(xi + s(x+1
i − xi), x−i), s ∈ [0, 1] ,

we get

πi(x
+1
i , x−i)− πi(xi, x−i) = f(1) − f(0) =

∫ 1

0

f ′(s)ds

= f ′(0) +

∫ 1

0

[f ′(s)− f ′(0)] ds

≥ f ′(0)−
∫ 1

0

|f ′(s)− f ′(0)| ds

≥ f ′(0)− Ki

2

∥∥x+1
i − xi

∥∥2
by (19)

=
〈
Oiπi(x), x

+1
i − xi

〉
− Ki

2

∥∥x+1
i − xi

∥∥2

≥ (
1

ρi
− Ki

2
)
∥∥x+1

i − xi
∥∥2 ≥ 0 by (21).

As before, denote by xi,t the situation confronting individual i when he acts at time t.
The above string of inequalities implies first, via (1), that {P (xt)} is non-decreasing,
hence convergent. Second, this same string yields for all i,

0 ← P (xt+1)− P (xt) ≥ P (xt+1
i , xi,t−i)− P (xi,t) ≥ 0

⇒ πi(x
t+1
i , xi,t−i)− πi(xti, x

i,t
−i)→ 0 by squeezing (2)

⇒
∥∥xt+1

i − xti
∥∥→ 0 by the above string,

whence ‖xt+1 − xt‖ → 0. That is, the process {xt} is asymptotically regular (9). Let
x = limt∈T x

t be any cluster point. Since by asymptotic regularity x = limt∈T x
t+1,

and since play is almost cyclic (8), the continuity of marginal payoff Oiπi(·) tells
that

xi = [xi + ρiOiπi(x)]
+
i ,

for some subsequence such that ρit → ρi > 0. Hence

〈Oiπi(x), x̃i − xi〉 ≤ 0 for all x̃i ∈ X, and all i. (22)

When individual payoffs are concave in own decision, this suffices for x to be a Nash
equilibrium. With an exact potential P we have

Oiπi(x) =
∂P (x)

∂xi
for all i,

and then the variational inequalities (22) yield (20). 2
It may very well happen that some player i, during a transient phase, make

steps that exceed the bound 2
Ki
. To ensure convergence all the same it is natural to

play with decreasing stepsizes ρit → 0. Section 7 returns to this issue in a slightly
different setting.
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6.2 Conditional Gradient Play

We continue to focus on gradient modes of play. Our objective right here is to get
around the projection operator in (18) which may be hard to execute. Towards that
objective we assume now that each active agent first looks for a direction in which
he can better himself and thereafter proceeds along that line.

By a feasible direction of player i at x ∈ X we understand a vector di 6= 0 such
that (xi + ρidi, x−i) ∈ X for all ρi > 0 sufficiently small. We posit here that agents
always move in feasible directions. Recall that x is called a stationary point of player
i iff 〈Oiπi(x), di〉 ≤ 0 for all feasible directions di at x. It is taken for granted that
unless x is stationary for individual i, then

〈Oiπi(x), di〉 > 0, (23)

for the chosen direction di, and

πi(xi + ρidi, x−i) > πi(xi, x−i) (24)

for the implemented stepsize ρi.

Definition 7 A direction sequence {dti} of player i is declared gradient related to
{xt} if for any subsequence {xt}t∈T converging to a point which is non-stationary
for this player, the corresponding sequence {dti}t∈T is bounded and satisfies

lim inf
t∈T

〈
Oiπi(x

t), dti
〉
> 0. (25)

Definition 8 (Armijo stepsizes [1]) Player i ∈ I is said to apply an Armijo rule at
x ∈ X if his stepsize ρi along any feasible direction di, for given scalars βi, σi ∈ ]0, 1[ ,
si > 0, equals the smallest number βki si, k = 0, 1, ... which satisfies

πi(xi + ρidi, x−i)− πi(xi, x−i) ≥ σiρi 〈Oiπi(x), di〉 . (26)

Theorem 6 (Convergence of feasible direction play) Suppose
* the game has a bounded squeezing potential,
* each ∇iπi(x) exists and is continuous on an Euclidean space, and

πi(x
t+1
i , xi,t−i)− πi(xti, x

i,t
−i) ↓ 0⇒

∥∥xt+1
i − xti

∥∥→ 0; (27)

* directions are gradient related, and players either use Armijo rules, or optimize
their steplengths over full or limited range.

Then repeated play, in any order, clusters to stationary points. If moreover, the
potential P is exact and jointly concave, then play will accumulate to maximizing
points.

Proof. Suppose first that all agents invariably apply Armijo stepsizes. Let xi,t

denote the situation seen by agent i when he enters the scene at time t. By (23) and
(26)

πi(x
t+1
i , xi,t−i)− πi(xi,t) ≥ σiρit

〈
Oiπi(x

i,t), dti
〉
≥ 0.
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Note that play stops at stationary points. Until then the potential increases steadily
by (24), and converges by Proposition 1. It follows from the convergence of {P (xt)}
and the squeezing (2) that πi(x

t+1
i , xi,t−i)− πi(xi,t)→ 0. Hence,

ρit
〈
Oiπi(x

i,t), dti
〉
→ 0,

and, via (27), ‖xi,t − xt‖ → 0.
Assume, for the sake of the argument, that some subsequential limit x = limt∈T x

t

is not a stationary point of some players. Since directions are gradient related and
‖xi,t − xt‖ → 0, we get via (25) that

lim inf
t∈T

〈
Oiπi(x

i,t), dti
〉
> 0,

whence
lim
t∈T

ρit = 0 (28)

for all those agents who do not face stationarity in the cluster point x. Consider
henceforth only those agents. (28) implies, by the very definition of the Armijo rule,
that no initially proposed stepsize si were implemented from remote enough time
t ∈ T onwards. In other words, each si will eventually be reduced at least once by
the factor βi. Thus,

πi(x
t
i +

ρit

βi
dti, x

i,t
−i)− πi(xi,t) < σi

ρit

βi

〈
Oiπi(x

i,t), dti
〉
.

Introduce

d
t

i :=
dti
‖dti‖

, ρit :=
ρit ‖dti‖
βi

,

and use the mean value theorem to rewrite the preceding inequality as

〈
Oiπi(x

t
i + ρ̃itd

t

i, x
i,t
−i), d

t

i

〉
=
πi(xti + ρitd

t

i, x
i,t
−i)− πi(xi,t)

ρit
< σi

〈
Oiπi(x

i,t), d
t

i

〉
for some number ρ̃it ∈ [0, ρit] . The boundedness of {dti}t∈T and (28) allow us to
assert that limt∈T ρit = 0, whence limt∈T ρ̃it = 0. Assume, without loss of generality,

that limt∈T d
t

i = di. Then, passing to the limit along t ∈ T in the last string we get〈
Oiπi(x), di

〉
≤ σi

〈
Oiπi(x), di

〉
,

saying, since σi ∈ ]0, 1[ , that 〈
Oiπi(x), di

〉
≤ 0.

On the other hand, via (25), 〈
Oiπi(x), di

〉
> 0.

This contradiction entails that x must be stationary under the Armijo rule. The
other rules generate as much value added to payoffs at any stage as does the Armijo
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regime. Repeating the above argument as if an Armijo step would have been taken
at any stage we get the same result as before. 2

Remarks. The hypothesis (27) is fulfilled when

πi(x
+1
i , x−i) > πi(xi, x−i)⇒ πi(x

+1
i , x−i)− πi(xi, x−i) ≥ fi(

∥∥x+1
i − xi

∥∥)
for some ”forcing function” fi : [0,+∞[→ [0,+∞[ satisfying fi(∆)→ 0⇒ ∆→ 0.

Applied game theory often offers some agent i to choose merely from a finite set
containing, say, ni (pure) strategies. If so, the mixed extension constrains him to
play within the probability simplex

Xi = {xi ∈ Rni
+ : 〈xi,1〉 = 1} ,

thereby getting a payoff πi(xi, x−i) which is linear in own mixed strategy xi. A most
natural direction di = x+1

i − xi for him then comes with x+1
i ∈ arg maxπi(·, x−i).

Except for particular x−i the maximizing choice x+1
i will be pure (i.e., equal an

extreme point of the simplex Xi). If moreover, at time t he uses stepsize ρit = 1
t+1
,

then we enter the classical realm of so-called fictitious play [14], [15], [18]. In that
setting xt is interpreted not as realized play, but rather as a society-wide held belief
about strategic intentions at time t. Given this interpretation the iterative steps (24)
take on the nature of learning rational expectations. We shall briefly return to this
issue in Section 7.

We find the hypothesis (27) somewhat inconvenient. Therefore we now seek to
circumvent it.

Definition 9 (Approximate conditional gradient) We say that individual i uses an
ε-approximate conditional gradient rule at x if he opts to move towards a point

x+1
i ∈ ε- arg max

Xi
〈Oiπi(x), · − xi〉i

with stepsize
ρi ∈ ε- arg max

[0,1]
πi(xi + (·)(x+1

i − xi), x−i).

Theorem 7 (Convergence of approximate conditional gradient play) Suppose
* the game has a bounded squeezing potential P ;
* each payoff function πi is continuously differentiable, strictly concave with re-

spect to own decision xi in some Euclidean space; and that
* each individual i uses an εit-approximate conditional gradient rule at time t.
Then, if εit → 0, ∀i, repeated play, in any order, clusters to Nash equilibrium. If

moreover, the potential P is exact and jointly concave, then play will accumulate to
maximizing points.

Proof. Let x = limt∈T x
t be any cluster point of the generated sequence. We

claim that, possibly after passing to a subsequence, it holds

x = lim
t∈T

xt+1. (29)
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Suppose without loss of generality that along T players always act in fixed order,
henceforth designated 1, 2, ...,#I. Consider now an arbitrary player, say no i. Sup-
pose that for all those preceding him we have already established the desired claim:

lim
t∈T

xt+1
1 = x1, ... , lim

t∈T
xt+1
i−1 = xi−1.

(Evidently, when i = 1, this assumption is void.) To produce a contradiction imagine
that limt∈T x

t+1
i 6= xi. Then, introducing

4t
i :=

xt+1
i − xti∥∥xt+1
i − xti

∥∥ , δit :=
∥∥xt+1

i − xti
∥∥ ,

we may take it that

lim
t∈T
4t
i :=4i 6= 0, and δit ≥ δi > 0 for all i ∈ I, t ∈ T.

Fix any γ ∈ ]0, 1[ . By the convexity of Xi

xti + γδi4t
i ∈ Xi, ∀t ∈ T.

Therefore, letting
xi,t := (xt+1

1 , ..., xt+1
i−1, x

t
i, x

t
i+1, ....)

be the profile seen by player i at time t ∈ T, the concavity of πi in xi implies

εit + πi(x
t+1
i , xi,t−i) ≥ πi(xti + γδi4t

i, x
i,t
−i) ≥ πi(x

i,t).

Since P (xt+1
i , xi,t−i)−P (xi,t)→ 0, use the squeezing (2) and pass to the limit to have

πi(x) ≥ πi(xi + γδi4i, x−i) ≥ πi(x).

Since γ ∈ ]0, 1[ was arbitrary, this contradicts the strict concavity of πi in xi. Hence
along an appropriate subsequence of T we must also have xt+1

i → xi. This proves
the claim (29). To complete the argument consider an arbitrary agent i, and pick
any x+1

i such that (x+1
i , x−i) ∈ X. It suffices now to observe that〈

Oiπi(x), x
+1
i − xi

〉
= lim

t∈T

〈
Oiπi(x

t), x+1
i − xti

〉
≤ lim

t∈T

{〈
Oiπi(x

t), xt+1
i − xti

〉
+ εit

}
= 0. 2

7 Playing Infinitely Often

We aim finally at granting agents great flexibility in terms of when - and how large
- steps are taken. Such flexibility is offered, in one shot, by the so-called rule of
divergent series [7], [8], [10]. A bonus of this approach is a convergence result
concerning fictitious play which generalizes recent findings of Monderer and Shapley
[14]. Suppose now that
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• each marginal payoff function satisfies the Lipschitz condition

‖Oiπi(x)−Oiπi(x̃)‖ ≤ Ki ‖x− x̃‖ ,

stronger than (19), on X, this set being nonempty compact convex and contained
in some Euclidean space;

• each player i makes at time t, when seeing the profile xi,t, a payoff-improving
choice

xt+1
i = xti + ρit(x̃

t
i − xti) (30)

where
x̃ti ∈ ρit- arg max

Xi

〈
Oiπi(x

i,t), · − xti
〉
, (31)

and where the stepsizes ρit ≥ 0 satisfy∑
t

ρit = +∞,
∑
t

ρ2
it < +∞ (32)

We start with two useful lemmata:

Lemma 1 Consider four bounded, nonnegative sequences {αt} , {βt} , {ρt} , {δt} sat-
isfying

αt + βt+1 ≥ βt + ρtδt,∑
αt < +∞, ρt → 0,

∑
ρt = +∞,

and

|δτt − δt| → 0 when
τt−1∑
τ=t

ρτ → 0, τt ≥ t, and t→∞. (33)

Then {βt} converges and δt → 0.

Proof. The convergence of {βt} follows easily from αt + βt+1 ≥ βt and the fact
that

∑
αt < +∞.

If lim inft→∞ δt =: δ > 0, then αt + βt+1 ≥ βt + ρtδ/2 for all large t, and so
the hypotheses

∑
αt < +∞,

∑
ρt = +∞ imply that {βt} must be unbounded, - a

contradiction. Thus lim inf δt = 0.
We go on to suppose that lim supt→∞ δt =: 2∆ > 0. Then there exists a sub-

sequence T such that δt ≥ ∆ for all t ∈ T. Define another subsequence {τt}t∈T as
follows:

τt := min

{
τ > t : δτ ≤

∆

2

}
.

We have
τt−1∑
τ=t

ατ + βτt ≥ βt +
∆

2

τt−1∑
τ=t

ρτ .
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It follows that limt∈T
∑τt−1

τ=t ρτ = 0, whence via (33) that |δτt − δt| < ∆
2

for all large
t ∈ T. Thus for such t it holds that

δτt ≥ δt − |δτt − δt| >
∆

2
,

a contradiction. The upshot is that ∆ = 0, and the proof is complete. 2

Lemma 2 Let
mt
i := max

Xi

〈
Oiπi(x

i,t), · − xti
〉
. (34)

Then for some positive constant C it holds that∣∣mt+1
i −mt

i

∣∣ ≤ C∑
j

{ρjt + ρjt+1} . (35)

Proof. Suppose mt+1
i ≤ mt

i := 〈Oiπi(xi,t), x̂ti − xti〉 . Then,∣∣mt+1
i −mt

i

∣∣ = mt
i −mt+1

i ≤
〈
Oiπi(x

i,t), x̂ti − xti
〉
−
〈
Oiπi(x

i,t+1), x̂ti − xt+1
i

〉
=

〈
Oiπi(x

i,t)− Oiπi(xi,t+1), x̂ti − xti
〉
−
〈
Oiπi(x

i,t+1), xti − xt+1
i

〉
≤ Ki

∥∥xi,t − xi,t+1
∥∥∥∥x̂ti − xti∥∥+

∥∥Oiπi(xi,t+1)
∥∥∥∥xti − xt+1

i

∥∥
≤ Ki

∥∥xi,t − xi,t+1
∥∥∥∥x̂ti − xti∥∥+

∥∥Oiπi(xi,t+1)
∥∥ρit ∥∥x̃ti − xti∥∥

≤
{
Ki

∑
j

{ρjt + ρjt+1}max
j
diamXj +

∥∥Oiπi(xi,t+1)
∥∥ ρit} diamXi

and now (35) follows. The case mt+1
i ≥ mt

i is handled in the same manner. 2

Theorem 8 (Convergence with decreasing, divergent stepsizes) Suppose the game
has a bounded potential satisfying the sandwich property (3). Also suppose directions
are close to best possible in the sense (31). Then, under (32), repeated play of the
payoff improving sort (30), performed in any order, will cluster to stationary points.

Proof. The same argument as after (21) gives

wi
{
P (xt+1)− P (xt)

}
≥ πi(x

t+1
i , xi,t−i)− πi(xi,t)

≥ ρit
〈
Oiπi(x

i,t), x̃ti − xti
〉
− ρ2

it

Ki

2

∥∥x̃ti − xti∥∥2

≥ ρitm
t
i − ρ2

it

Ki

2

∥∥x̃ti − xti∥∥2 − ρ2
it

with
mt
i := max

〈
Oiπi(x

i,t), · − xti
〉

= max
〈
OiP (xi,t), · − xti

〉
.

Now invoke Lemma 1 with

αt = ρ2
it

Ki

2

∥∥x̃ti − xti∥∥2
+ ρ2

it, βt = wiP (xt), ρt = ρit, and δt = mt
i.

Lemma 2 furnishes (35) which in turn implies (33). Thus, mt
i → 0, ∀i, and the proof

is complete. 2



– 17 –

Corollary 3 (Convergence of fictitious play). Suppose a finite game has a potential
satisfying the sandwich property (3). Then fictitious play, in any order, clusters to
Nash equilibrium.

Proof. All assumptions of the preceding theorem are fulfilled: First, individual
payoffs are linear in own variable. Second, direction finding reduces to best response.
Third, the stepsizes ρit = 1

t+1
satisfy (32). 2

It follows from this last result that many games, known to produce divergent
fictitious play, cannot be potential. For more on this topic see [11], [15], [17].

8 Concluding Remarks

We have always let X = Πi∈IXi be a product of individual decision spaces. Of-
ten there are coupling constraints though, affecting admissible strategy profiles x.
Examples include restrictions derived from concerns with efficiency, equity, social
security, financial viability, etc. Then, X will be strictly contained in the hyperbox
Πi∈IXi, but is presumably still closed convex. If so, we may still use the methods
described above as long as each agent i takes care that any adjustment rule Ai of
his satisfies

Ai(x) ⊆
{
x+1
i : (x+1

i , x−i) ∈ X
}
.

For example, one could replace gradient projection (18) by

Ai(x) := [xi + ρiOiπi(x)]
+
x−i

,

where [·]+x−i now denotes orthogonal projection onto the set
{
x+1
i : (x+1

i , x−i) ∈ X
}
.

Likewise, given adjustment costs (11), the rule (16) should come in the form

Ai(x) :=
{
x+1
i : (x+1

i , x−i) ∈ X and πi(x
+1
i , x−i)− ai(x+1

i , xi) is maximal
}
.

It must be emphasized though that, given coupling constraints, other ideas, based
on duality and Lagrange multipliers, naturally enter the field. Also, for any method,
whether intended as a story about repeated play - or preplay, or simply offered as
an algorithm - one would like to know the rate of convergence.

It also deserves mention that uncertainty can be accommodated [9]. However,
to discuss such issues would take us outside reasonable confines of this paper.
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