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Abstract

Recently [9] we analyzed important classes of nonsmooth and nonconvex risk control
problems which can not be solved by standard optimization techniques. The aim of this
article is to develop computational procedures enabling us to bypass some of the obstacles
identified in this paper. We illustrate this by using insurance risk processes with insolvency
(stopping time).

Key words: Discrete event system, stochastic gradient method, generalized differen-
tiable function, risk processes, insurance.
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Stochastic generalized gradient method with

application to insurance risk management1

Yuri M. Ermoliev (ermoliev@iiasa.ac.at)
Vladimir I. Norkin (norkin@umc.kiev.ua)

1 Introduction

In a rather general form the problems analyzed in [9] can be formulated in the following
way:

minimize[F (x) = Ef(x, θ)] (1)

subject to
x ∈ X ⊂ Rn, (2)

where x is a vector of decision (variable), θ is a random parameter, defined on a prob-
ability space (Θ,Σ,P), f(x, θ) is a random performance function, F (x) is the expected
performance function, X is a feasible set. The essential feature of the problems is the
lack of the analytical structure of f(·, θ), in particular its highly discontinuous character,
which makes the deterministic approximation meaningless:

minimize[FN (x) =
1

N

N∑
i=1

f(x, θi)] (3)

subject to
x ∈ X ⊂ Rn, (4)

where θi, i = 1, . . . , N, are i.i.d. observations of θ, since FN (x) lacks analytical struc-
ture. Nonconvex and nonsmooth character of random function f , leads to a highly multi-
extremal nonsmooth and even discontinuous function FN (x) with local minimums having
nothing in common with local minimums of F (x), which can be a continuously differen-
tiable and even convex function. In such a case random search procedures based on direct
estimation of F (x) and its derivatives are required. The case of continuously differentiable
expectation functions F (x) was considered by Glynn [14], Ho and Cao [17], Suri [26],
Gaivoronski [13], Rubinstein and Shapiro [24].

In the case of nonsmooth stochastic systems an important factor is the concept of
Lipschitz expectation functions (see Gupal [15], Ermoliev and Gaivoronski [8], Gaivoron-
ski [13]). Moreover, as it was shown in [9] we often deal not with a general class of
Lipschitz functions but with a subclass generated from some basic (continuously differen-
tiable) functions by means of maximum, minimum or smooth transformation operations.
These functions belong to the class of so-called generalized differentiable functions. In
Section 2 we briefly discuss important insurance risk control problems with such func-
tions. Section 3 introduces formally the class of generalized differentiable functions. In
Sections 4, 5 we prove convergence of the deterministic and stochastic generalized gradient
methods with orthogonal projection on nonconvex feasible sets. Section 6 concludes.

1We would like to thank Gordon MacDonald and Joanne Linnerooth-Bayer for their helpful comments.
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2 Insurance risk control processes

Even a simple situation illustrates the complexity of insurance risk control problems.
Assume that an insurer has the initial capital x1. Claims arrive at random time moments
τ1, τ2, . . . with random sizes L1, L2, . . .. The risk reserve R(t) at time t is the difference
between accumulated premium P (t), initial capital x1 and aggregated claim C(t):

R(x, t) = x1 + P (x2, t)− C(x3, t), 0 ≤ t ≤ T ,

where the premium income is P (x2, t) = x2t. The aggregated claim

C(x3, t) =

N(t)∑
k=1

min{Lk, x3} ,

where N (t) is the random number of claims in [0, t), x3 is the variable defined by excess-
of-loss reinsurance. The ruin occurs at the random stopping time τ(x) = min{0 < t ≤
T : R(x, t) < 0}; if R(x, t) ≥ 0 for all t ∈ [0, T ] then by convention τ(x) = T + 1.
The ruin can be mitigated by the choice of policy variables x = (x1, x2, x3) from a
feasible set. Assume that τ1, τ2, . . . and L1, L2, . . . are defined on some probability space
(Θ,Σ,P). An important performance indicator of this process is the following risk function
F (x) = Ef(x, θ), where θ denotes all random variables involved in the problem and

f(x, θ) = R(x, τ).

The function f(x, θ) is defined by means of min and -min operations. It becomes more
evident from further simplification of the problem. Consider the case of two time epochs:
current time moment and the future. For a fixed current policy variable x = (x1, x2, x3)
the future risk reserve

R(x) = x1 + x2 −min{L, x3},

where L is a random claim. The risk function

F (x) = Ef(x, θ), f(x, θ) = min{0, x1 + x2 −min[L, x3]}

is nonconvex and nonsmooth. The random function f(x, θ) is generated by min and -min
operations from linear functions.

Assume now that Prob{R(x, t) = 0} = 0 for all x and t (we can always achieve
this by adding some independent small random noise with density to R(x, t)). Then
with probability 1 function f(x, θ) is generalized differentiable (see next section) with
generalized gradients:

g(x, θ) =


 1

τ(x)
−n(x3)

 , τ(x) ≤ T,

0 ∈ R3, τ(x) > T,

where n(x3) is the number of cases when Lt > x3, 0 < t ≤ τ(x).
Stochastic jumping process R(x, t) has a rather complicated structure and purely ana-

lytical analysis of its characteristics and appropriate policy variables x is only possible in
special cases. In realistic situations parameters of these processes may be time dependent
and there may be a variety of policy variables interconnecting different lines of insurance
industry. Extreme and catastrophic events such as fires, floods, windstorms, human-made



– 3 –

accidents and disasters produce highly correlated claims, which should be properly diver-
sified in time and space. All these require the analysis of multidimensional interdependent
insurance risk processes that is formally often equivalent to the analysis of large num-
ber integro-differential equations with “trajectories” depending on policy variables. These
equations are analytically tractable only in very special cases. Of course, it is possible to
use Monte-Carlo simulation techniques in a straightforward manner for any given collection
of policy variables, but unfortunately the number of possible combinations exponentially
approaches infinity. For example for 10 policy alternatives (say, levels of contracts with
reinsurance) and 10 scenarios the number of combinations is 1010. Procedure (35)-(37)
confronts this complexity. It allows us to simulate stochastic processes directly without
solving differential equations and generate feedbacks to policy variables after each random
simulation forcing these variables to converge towards better values, for example such that
decrease insolvencies of companies, increase their profits and satisfactions of individuals.
We analyze these aspects in [12].

Let us discuss a simple example. Consider process R(x, t) and assume for the sake of
simplicity that variables x1, x2 are fixed say x1 = R0, x2 = a. Hence the policy variable is
the level of contract with reinsurance x3 = x and let c(x) be related cost. A decrease in x
reduces the chance of insolvency but at the same time it increases the cost c(x). Consider
the following risk function

F (x) = c(x) + rER(x, τ(x)),

where the expectation is taken with respect to the randomness involved in τ and r is a risk
parameter. The function F (x) reflects in a sense a trade-off between the risk of insolvency
and costs on the risk reduction measure x. It is possible to show that for a given r > 0 the
minimization of F (x) can be viewed as the minimization of c(x) subject to constraint: the
probability of insolvency does not exceed a given level. The minimization of F (x) is not
in general possible by using standard techniques. Thus deterministic approximation (3) is
impossible because τ(x) is an implicit random function of x. Procedure (35)-(37) starts
with a given initial values of reinsurance contract x0 and sequentially updates this value
after each simulation run. Assume xk is the value of x0 after k simulations. New value
xk+1 is calculated as the following. For given xk the random process R(xk, t), 0 ≤ t ≤ T ,
is simulated and τ(xk) is observed. The value xk is adjusted according to the feedback:

xk+1 =

{
min{0, xk − c

k+1 [c′(xk)− n(xk]}, τ(xx) ≤ T,
min{0, xk − c

k+1c
′(xk)}, τ(xk) > T,

}

where c is a positive constant. Since the situation τ(xk) < T may be rather rare for some
levels xk, special measures are required to increase the frequency of cases τ(xk) ≤ T . We
discuss it with more details in [12]. After a finite number of adjustments k the value xk

is stabilized around the desirable value. It is important that the number of simulations
required for such type adaptive adjustments usually has the same order of magnitude as
the estimation of F (x) at a given initial value x0.

3 Generalized differentiable functions

Let us introduce a class of functions that is closed under operations min and max ( -min)
and smooth transformations. Continuous differentiable functions belong to this class. As
we can see in section 4, 5 there is simple gradient type procedure for the optimization of
such functions.
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Definition 3.1 (Norkin [21]) Function f : Rn −→ R is called generalized differentiable
(GD) at x ∈ Rn if in a vicinity of x there exists upper semicontinuous multivalued mapping
∂f with closed convex compact values ∂f(x) such that

f(y) = f(x)+ < g, y− x > +o(x, y, g), (5)

where < ·, · > denotes the inner product of two vectors in Rn, g ∈ ∂f(y) and

lim
k

|o(x, yk, gk)|
‖yk − x‖ = 0 (6)

for any sequences yk −→ x, gk −→ g, gk ∈ ∂f(yk). The function f is called generalized
differentiable if it is generalized differentiable at each point x ∈ Rn; ∂f(x) is called a
subdifferential of f at x.

Example 3.1 Function |x|, x ∈ R, is generalized differentiable with

∂|x| =


+1, x > 0,
[−1,+1] x = 0,
−1, x < 0

Its expansion (5) at x = 0 has the form

|y| = |0|+ sign(y) · (y − 0) + 0.

Generalized differentiable (GD) functions possess the following properties (see Norkin [21],
Mikhalevich, Gupal and Norkin [19]):

They are locally Lipschitzian, but generally not directionally differentiable; continu-
ously differentiable, convex and concave functions are generalized differentiable, gradients
and subgradients of these functions can be taken as generalized gradients; class GD-
functions is closed with respect to finite max, min operations and superpositions;

∂max(f1(x), f2(x)) = co{∂fi(x)| fi(x) = max(f1(x), f2(x))}, (7)

and subdifferential ∂f0(f1, . . . , fm) of a composite function f0(f1, . . . , fm) is calculated
by the chain rule; class of GD-functions is closed with respect to taking expectation:
∂F (x) = E∂f(x, ω) for F (x) = Ef(x, ω), where f(·, ω) is a generalized differentiable
function. Thus the expectation functions discussed in Section 2 are indeed generalized
differentiable; the subdifferential ∂f(x) is defined not uniquely, but Clarke subdifferential
∂f(x) always satisfy Definition 3.1, and ∂f(x) ⊆ ∂f(x) for any ∂f(x) and ∂f(x) is a single-
ton almost everywhere in Rn; some elements of ∂f(x) for a composite function f(x) such as
f(x) = max(f1(x), f2(x)), f(x) = min(f1(x), f2(x)), and f(x) = f0(f1(x), . . . , fm(x)) can
be calculated by the lexicographic method (Nesterov [20]); there is the following analog of
Newton-Leibnitz formula

f(y)− f(x) =

∫ 1

0
< g((1− t)x+ ty), y − x > dt,

where g((1− t)x+ ty) ∈ ∂f((1− t)x + ty).
These properties of generalized differentiable functions make them suitable for model-

ing various nonsmooth stochastic systems.
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4 Deterministic generalized gradient method with projec-
tion on a nonconvex feasible set

Let us first analyze the deterministic procedure to demonstrate the convergence analysis
technique. Consider a problem:

f(x) −→ min
x∈X

, (8)

where
X = {x ∈ Rn| ψ(x) ≤ 0}, (9)

f(x) and ψ(x) are generalized differentiable functions. Let ∂f(x) and ∂ψ(x) be subdif-
ferentials of f(x) and ψ(x), in particular they may coincide with Clarke’s subdifferentials
∂f(x) and ∂ψ(x). Assume that

ρ(0, ∂ψ(x)) = inf
g∈∂ψ(x))

‖g‖ > 0 (10)

for all x such that ψ(x) = 0.
The necessary optimality condition for this problem has the form [19]:

0 ∈ ∂f(x) +NX(x),

where

NX(x) =

{
{λ∂ψ(x)| λ ≥ 0}, ψ(x) = 0,
0, ψ(x) < 0.

Let X∗ = {x ∈ X | 0 ∈ ∂f(x) + NX(x)} and f∗ = {f(x)| x ∈ X∗}. Consider the
following conceptual iterative search procedure:

x0 ∈ X, (11)

xk+1 ∈ ΠX(xk − ρkgk), (12)

gk ∈ ∂f(xk) k = 0, 1, . . . , (13)

where ΠX is a (multivalued) projection operator on the set X , i.e. z ∈ ΠX(y) iff y − z ∈
NX(z); nonnegative numbers ρk satisfy conditions

lim
k→∞

ρk = 0,
∞∑
k=0

ρk =∞. (14)

Remark 4.1 Method (11)-(13) is an extension of the projection subgradient method by
Shor, Ermoliev, Polyak (see further references in [1], pp.143-144) for nonconvex problems.
Dorofeev [4], [5] studied a similar method for the class of subdifferentially regular (quasid-
ifferentiable) functions, which do not cover important applications (for instance, this class
includes convex, weakly convex [22] and max- functions, but does not include concave and
min- functions).

Theorem 4.1 Sequence {xk} generated by method (11)-(13) converges to the solution of
problem (8): minimal in function f cluster points of {xk} belong to X∗ and all cluster
points of {f(xk} constitute an interval in f∗. If the set f∗ does not contain intervals (for
instance, f∗ is finite or countable), then all cluster points of {xk} belong to a connected
subset of X∗ and {f(xk)} has a limit in f∗.
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The proof of convergence is based on using nonsmooth nonconvex Lyapunov functions
and techniques developed by Nurminski [22], Ermoliev [7], Dorofeev [5], Mikhalevich,
Gupal and Norkin [19].

Lemma 4.1 Assume that lims→∞ x
ks = y∈X∗. Then for any ε > 0 there must exist

indices ls > ks such that ‖xk − y‖ ≤ ε for all k ∈ [ks, ls) and

lim sup
s

f(xls) > f(y) = lim
s
f(xks). (15)

Proof. Denote xk+1 = xk − ρkgk and represent

xk+1 = ΠX(xk − ρkgk) = xk − ρk(gk + hk) = xk − ρkQk,

where
Qk = gk + hk,

hk = hk(xk+1) =
1

ρk
(xk+1 − ΠX(xk+1)) ∈ NX(xk+1), (16)

Then:

‖hk‖ =
1

ρk
‖xk+1 − ΠX(xk+1)‖ ≤ 1

ρk
‖xk+1 − xk‖ = ‖gk‖,

‖Qk‖ =
1

ρk
‖xk+1 − xk‖ ≤ 1

ρk
‖xk+1 − xk‖ = ‖gk‖.

We have to consider two cases: ψ(y) < 0 and ψ(y) = 0. In the first case for k ≥ ks
method (12) operates in a sufficiently small vicinity of y as an unconstrained subgradient
method and the statement of the lemma is known (see [21],[19]). In what follows we
consider a new case ψ(y) = 0 ( the case ψ(x) < 0 may be considered as a simplification of
the case ψ(y) = 0 ). For y = lims x

ks define

µ = ρ(0, ∂ψ(y)) = inf
g
{‖g‖| g ∈ ∂ψ(y)}, (17)

ν = ρ(0, ∂f(y) +NX(y)) = inf
g
{‖g‖| g ∈ (∂f(y) +NX(y))}; (18)

γ = sup
g
{‖g‖| g ∈ ∂f(y)}. (19)

Due to upper semicontinuity of ∂f , ∂ψ(x) there exists ε1-vicinity of y such that

sup
g,z
{‖g‖| g ∈ ∂f(z), ‖z − y‖ ≤ ε1} ≤ 2γ = Γ; (20)

sup
g,z
{‖g‖| g ∈ ∂ψ(z), ‖z − y‖ ≤ ε1} ≤ 2γ = Γ; (21)

Define
N(z) = {g ∈ NX(z)| ‖g‖ ≤ Γ},
G(z) = ∂f(z) +N (z).

Obviously,
ρ(0, G(y)) = inf

g
{‖g‖| g ∈ G(y)} ≥ ν.

Due to upper semicontinuity of ∂ψ and G(y) there exists ε2-vicinity (ε2 ≤ ε1) of y such
that for all z, ‖z − y‖ ≤ ε2,

ρ(∂ψ(z), ∂ψ(y)) ≤ µ/2, (22)
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where ρ(·, ·) is the Hausdorff distance between sets.

Due to generalized differentiability of f and ψ for c = ν2

64Γ(1+2Γ/µ) there exists ε3 ≤ ε2

such that for ‖z − y‖ ≤ ε3 :

f(z) ≤ f(y)+ < g, z − y > +c‖z − y‖, (23)

ψ(z) ≤ ψ(y)+< d, z − y > +c‖z − y‖
= < d, z − y > +c‖z − y‖, (24)

for all g ∈ ∂f(z), d ∈ ∂ψ(z). Now set ε = ε3 and fix some ε ≤ ε. Set ρ1 = ε/(3Γ). Let
‖ys − y‖ ≤ ε/3, and ρs ≤ ρ1 for s ≥ S. Denote

ms = sup{m| ‖xk − y‖ ≤ 2ε/3 ∀ k ∈ [ks, m)}.

We now show that ms <∞ for s ≥ S. Indeed, if for all k ‖xk− y‖ ≤ 2ε/3 then we obtain
the contradiction:

2ε/3 ≥ ‖xk − y‖ ≥ ‖xk − xks‖ − ‖xks − y‖ ≥ ν/2
k−1∑
r=ks

ρr − ε/3 −→∞

as k −→∞. Furthermore

‖xms − y‖ ≤ ‖xms−1 − y‖+ ρms−1‖Qms−1
s ‖ ≤ ε.

Since

ε/3 ≤ ‖
ms−1∑
k=ks

ρkQ
k‖ ≤ Γ

ms−1∑
k=ks

ρk,

then
ms−1∑
k=ks

ρk ≥
ε

3Γ
.

For k ∈ [ks, ms], s ∈ S, xk and gk ∈ ∂f(xk) from (23) follows that:

f(xk) ≤ f(y)+ < gk, xk − y > +c‖xk − y‖
≤ f(y)+ < gk, xk − xks > +c‖xk − xks‖+ (Γ + c)‖xks − y‖
= f(y)+ < gk + hk, xk − xks > − < hk, xk − xks > +

c‖xk − xks‖+ (Γ + c)‖xks − y‖, (25)

where hk is defined by (16), and let us estimate the term uk = − < hk, xk − xks >. If
ψ(xk) ≤ 0 then hk = 0 and uk = 0. Consider the case ψ(xk) > 0, i.e. hk 6= 0. Since

hk ∈ NX(xk) = {λg| g ∈ ∂ψ(xk), λ ≥ 0},

then
hk = λkd

k, dk ∈ ∂ψ(xk), λk > 0,

and
0 < λk = ‖hk‖/‖dk‖ ≤ Γ/(µ/2) = 2Γ/µ.

Substitute xk = ΠX(xk) and dk into (24):

0 = ψ(xk) ≤< dk, xk − y > +c‖xk − y‖. (26)
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Now multiplying (26) by λk, we obtain:

− < hk, xk − y > ≤ λkc‖xk − y‖ ≤ (2cΓ/µ)‖xk − y‖
≤ (2cΓ/µ)‖xk − xks‖+ (2cΓ/µ)‖xks − y‖. (27)

Using inequality (27) we can rewrite (25) in the following form:

f(xk) ≤ f(y)+ < gk + hk, xk − xks > +

(1 + 2Γ/µ)c‖xk − xks‖+ (Γ + c+ 2cΓ/µ)‖xks − y‖. (28)

Now we have to estimate scalar products

< gk + hk, xk − xks >=< gk + hk,
k−1∑
i=ks

(gi + hi) > .

Lemma 4.2 (see Mikhalevich, Gupal and Norkin [19]). Let P be a convex set in Rn

such that 0 < γ0 ≤ ‖p‖ ≤ Γ0 < +∞ for all p ∈ P . Then for an arbitrary collection of
vectors {pr ∈ P | r = k, . . . , m} and any collection of non-negative numbers {ρr ∈ R1| r =
k, . . . , m− 1} such that

m−1∑
r=k

ρr ≥ σ0 > 0, sup
k≤r≤m

ρr ≤
σ0γ

2
0

6Γ2
0

,

there exists index l ∈ (k,m] such that

< pl,
l−1∑
r=k

ρrp
r/

l−1∑
r=k

ρr >≥
γ2

0

4
,

l−1∑
r=k

ρr ≥
σ0γ0

3Γ0
.

Proof. For completeness we give the proof of the lemma. Let

t−1∑
r=k

ρr <
γσ

3Γ
≤

t∑
r=k

ρr,
m′−1∑
r=k

ρr < σ ≤
m′∑
r=k

ρr. (29)

Suppose the opposite to the statement of the lemma is true, i.e. for all l ∈ (t, m′](
pl,

l−1∑
r=k

ρrp
r

/
l−1∑
r=k

ρr

)
<
γ2

4
. (30)

We have ∥∥∥∥∥
l∑

r=k

ρrp
r

∥∥∥∥∥
2

=

∥∥∥∥∥
l−1∑
r=k

ρrp
r

∥∥∥∥∥
2

+ 2ρl

(
pl,

l−1∑
r=k

ρrp
r

)
+ ρ2

l ‖pl‖2

and ∥∥∥∥∥∥
m′∑
r=k

ρrp
r

∥∥∥∥∥∥
2

=

∥∥∥∥∥
t∑

r=k

ρrp
r

∥∥∥∥∥
2

+ 2
m′∑

l=t+1

ρl

(
pl,

l−1∑
r=k

ρrp
r

)
+

m′∑
l=t+1

ρ2
l ‖pl‖2. (31)

Substituting (29), (30) into (31), we obtain:

γ2σ2 ≤ Γ2
(∑t

r=k ρrp
r
)2

+ γ2

2 2
∑m′
l=t+1 ρl

∑l−1
r=k ρr + Γ2 supk≤r≤m′ ρr

∑m′
l=t+1 ρl

≤ Γ2
(
γ
3Γ + γ2

6Γ2

)
σ2 + γ2

2 σ
2 + Γ2 γ2σ

6Γ2σ ≤ 11
12γ

2σ2.
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This contradiction proves the lemma. 2
Now let us come back to the proof of Lemma 4.1. Set

P = co{G(z)| ‖z − y‖ ≤ ε‖,
pr = gr + hr, k = ks ≤ r ≤ m = ms,

γ0 = ν/2, Γ0 = Γ.

We have
ms∑
k=ks

ρk ≥
ms−1∑
k=ks

ρk ≥
‖xms − xks‖

Γ
≥ ε

3Γ
= σ0 > 0,

lim
s→∞

sup
k≥ks

ρk = 0.

By Lemma 4.2 for all sufficiently large s there exist indices ls, ks < ls ≤ ms, such that〈
gls + hls ,

ls−1∑
k=ks

ρk(g
k + hk)/

ls−1∑
k=ks

ρk

〉
≥ ν2

16
,

ls−1∑
k=ks

ρk ≥
εν

18Γ2
.

Substituting these estimates for k = ls into inequality (28), we obtain the final estimate

with c = ν2

64Γ(1+2Γ/µ) :

f(xls) ≤ f(y)− ν2

16

ls−1∑
k=ks

ρk + Γ(1 + 2Γ/µ)c
ls−1∑
k=ks

ρk

+(Γ + c+ 2cΓ/µ)‖xks − y‖

≤ f(y)− ν2

600Γ2
εν + (Γ + c+ 2cΓ/µ)‖xks − y‖. (32)

Thus we have proved that for all sufficiently small ε ≤ ε and sufficiently large s there exist
indices ls such that ‖xk − y‖ ≤ ε for k ∈ [ks, ls) and f(xls) satisfies (32). From here the
statement of the lemma follows.2

Proof of Theorem 4.1. The proof is based on Lemma 4.1.
10. Obviously, the sequence {xk} belongs to a compact set X .
20. By boundedness of subgradients ∂f(x) on a compact set X we obtain

lim
k→∞

‖xk+1(ω)− xk(ω)‖ ≤ sup
g∈∂f(x), x∈X

‖g‖ lim
k→∞

ρk = 0.

From here it follows that cluster points of {xk} constitute a connected set in X .
30. Sequence {xk} from compact set X has a closed set of limit points X ′. The

continuous function f(x) achieves its minimum on X ′, say, at some point x′. The point
x′ = lims→∞ xks belongs to X∗ because otherwise due to Lemma 4.1 it is not minimal in
the above sense. Thus lim infk→∞ f(xk) ∈ f∗.

40. Now prove that limit points of the sequence {f(xk)} constitute an interval in f∗.
If lim supk→∞ f(xk) = lim infk→∞ f(xk) then the statement follows from 30. Suppose

lim sup
k→∞

f(xk) > lim inf
k→∞

f(xk) = f∗0 ∈ f∗.
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Assume the opposite to the statement of the theorem. Then there exists some number
f1∈f∗ such that f1 < lim supk→∞ f(xk(ω)). Let us choose number f2 such that

lim inf
k→∞

f(xk) = f∗ < f1 < f2 < lim sup
k→∞

f(xk).

Sequence {f(xk)} intersects interval (f1, f2) from below infinitely many times, so there
exist subsequences {xks} and {xns} such that

f(xks) ≤ f1 < f(xk) < f2 ≤ f(xns), ks < k < ns. (33)

Without loss of generality we can consider that xks −→ x′. Due to 20 and continuity of f
we have

lim
s→∞

f(xks) = f(x′) = f1∈f∗.

Hence lims→∞ xks = x′∈X∗. Now we can apply Lemma 4.1 to subsequences {xk}∞k=ks .
Choose ε such that

sup
{y:‖y−x′‖≤ε}

f(y) < f2.

Then (15) contradicts to inequalities (33). Hence[
lim inf
k→∞

f(xk), lim sup
k→∞

f(xk)

]
⊆ f∗.

Since X∗ and f∗ are closed sets then[
lim inf
k→∞

f(xk), lim sup
k→∞

f(xk)

]
⊆ f∗.

50. Suppose now that f∗ does not contain intervals, for instance, f∗ is finite or count-
able. From statement 40 we have

lim
k→∞

f(xk) = f∗0 ∈ f∗. (34)

If a cluster point x′ = lims→∞ x
ks does not belong to X∗, then due to Lemma 4.1 we

would have a contradiction {f(xk)} stated in (34). 2

Remark 4.2 The convergence result of Theorem 4.1 remains true for generalized gradient
method (11), (12), where

gk ∈ ∂f(x̃k), ‖x̃k − xk‖ ≤ δk, lim
k
δk = 0.

In this case the basic Lemma 4.1 follows from the stability result of Lemma 5.4. If points x̃k

are taken at random then with probability one ∂f(x̃k) = ∂f(x̃k) and the method converges
to X∗ = {x| 0 ∈ ∂f(x) +NX(x)}. In the last case we can use formula (7) and the chain
rule to calculate gk ∈ ∂f(x̃k). The use of ∂f(x̃k) resembles the concept of mollifier gradient
[9].
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5 Stochastic generalized gradient method

Consider now stochastic optimization problem (1), (2), where the objective function F (x)
is generalized differentiable, the set X = {x| ψ(x) ≤ 0} is given by a generalized dif-
ferentiable function ψ(x), satisfying regularity condition (10). Define X∗ = {x| 0 ∈
∂F (x) +NX(x)} and F ∗ = {F (x)| x ∈ X∗}.

Consider the following procedure

x0 ∈ X, (35)

xk+1(ω) ∈ ΠX(xk − ρksk(ω)), k = 0, 1, . . . , (36)

sk(ω) =
1

nk

k∑
i=rk

ξi(ω), nk = k − rk + 1 ≥ 0, (37)

where all random quantities xk(ω), ξk(ω), sk(ω), k = 0, 1, . . . , are defined on some prob-
ability space (Ω,Σ,P), ξi(ω), i = 0, 1, . . . , are random vectors (stochastic generalized
gradients) such that

E{ξi(ω)| x0(ω), . . . , xi(ω)} = gi(ω) ∈ ∂f(xi(ω)),

‖ξi(ω)‖ ≤ C < +∞; (38)

ΠX is a (multivalued) projection operator on the set X , i.e. z ∈ ΠX(y) iff y− z ∈ NX(z);
non-negative numbers rk, nk and ρk satisfy conditions

nk = k + 1− rk ≤m < +∞; (39)

∞∑
k=0

ρk = +∞,
∞∑
k=0

ρ2
k < +∞. (40)

Remark 5.1 Method (35)-(37) combines ideas of projection stochastic quasigradient method
by Ermoliev (see details and further references in [11], pp. 142-185) and stochastic gra-
dient averaging method [1], [5], [7], [15], [19], It is easy to generalize the convergence
analysis to biased estimates of generalized gradients – stochastic quasigradients.

Theorem 5.1 Let f(x) and ψ(x) be generalized differentiable functions, sequence xk(ω)
is generated by method (35)-(37), where rk, nk, ρk satisfy (39), (40). Then minimal (in
function F ) cluster points of {xk(ω)} a.s. belong to X∗ and all cluster points of {F (xk(ω)}
a.s. constitute an interval in F ∗. If the set F ∗ does not contain intervals (for instance, F ∗

is finite or countable) then all cluster points of {xk(ω)} a.s. belong to a connected subset
of X∗ and {F (xk(ω))} has a limit in F ∗.

Proof. Denote xk+1 = xk − ρksk and represent

xk+1 = ΠX(xk − ρksk) = xk − ρk(sk + hk) = xk − ρkQk,

where
Qk = sk + hk,

hk = hk(xk+1) =
1

ρk
(xk+1 − ΠX(xk+1)) ∈ NX(xk+1),

‖hk‖ =
1

ρk
‖xk+1 − ΠX(xk+1)‖ ≤ 1

ρk
‖xk+1 − xk‖ = ‖sk‖.
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‖Qk‖ =
1

ρk
‖xk+1 − xk‖ ≤ 1

ρk
‖xk+1 − xk‖ = ‖sk‖.

Now fix a subsequence {xks(ω)}. For k > ks

xk+1(ω) = xks(ω)−
k∑

t=ks

ρtQ
t(ω)

= xks(ω)−
k∑

t=ks

ρtQ
t
(ω)− ζk+1

ks
(ω)

= yk+1
ks

(ω)− ζk+1
ks

(ω), (41)

where

yksks (ω) = xks(ω), (42)

yk+1
ks

(ω) =
k∑

k=ks

ρtQ
t
(ω) = ykks(ω)− ρkQ

k
(ω), k ≥ ks; (43)

Q
k
(ω) =

1

nk

k∑
r=rk

(gr(ω) + hr(ω)), (44)

gr(ω) = E{ξr(ω)| x0(ω), . . . , xr(ω)} ∈ ∂f(xr(ω)), (45)

hr(ω) =
1

ρr
(xr(ω)−ΠX(xr(ω)) ∈ NX(xr+1(ω), (46)

ζmn (ω) =
m−1∑
t=n

ρt
1

nt

t∑
r=rt

(ξr(ω)− gr(ω)). (47)

Instead of {xk(ω)} we shall study the behavior of the close sequence {ykks(ω)}k≥ks , s =
0, 1, . . . , generated by deterministic (under fixed ω) procedure (43)-(47). This procedure
uses subgradients gr(ω) of function F taken not at points yrks(ω) but at close points xr(ω).

Besides, the vector hr(ω) is normal to X not at the point yr+1
ks

(ω), but at a close point
xr+1(ω). We have an estimate:

‖ykks(ω)− xk(ω)‖ = ‖ζkks(ω)‖ ≤ sup
k≥ks
‖ζkks(ω)‖ = δks(ω).

Let us show (Lemma 5.1) that lims→∞ δks(ω) = 0 a.s. Notice that

|f(xk(ω))− f(ykks(ω))| ≤ Lf‖xk(ω)− ykks(ω)‖ = Lfδks (ω), (48)

where Lf is a Lipschitz constraint of function f over set X . Then the difference |f(xk(ω))−
f(ykks (ω))|, k ≥ ks, is arbitrary small for s sufficiently large. The remaining part of the
proof we subdivide into several separate lemmas.

Lemma 5.1 Random sequence {ζk0 (ω)}∞k=0,

ζk0 (ω) =
k−1∑
t=0

ρt
1

nt

t∑
r=rt

(ξr(ω)− gr(ω)), nt ≤ m, (49)

a.s. has a limit.



– 13 –

Proof. Denote

λtr =

{
1
nt
, rt ≤ r ≤ t,

0, otherwise.

Then
ζk0 =

∑k−1
t=0 ρt

∑t
r=rt λtr(ξ

r − gr) =
∑k−1
t=0 (

∑k−1
t=r λtrρt)(ξ

r − gr)
=

∑k−1
t=0 (

∑∞
t=r λtrρt)(ξ

r − gr)−∑k−1
t=0 (

∑∞
t=k λtrρt)(ξ

r − gr).
Sequence

ζ
k
0 =

k−1∑
t=0

(
∞∑
t=r

λtrρt)(ξ
r − gr) (50)

is a martingale with respect to σ-field generated by {xk(ω)}∞k=0. Denote

Γ = sup{‖g‖| g ∈ ∂f(x), x ∈ X} < +∞.

Then

E‖ζk0(ω)‖2 ≤ (Γ + C)2
∑∞
r=0(

∑∞
t=r λtrρt)

2 ≤ (Γ + C)2
∑∞
r=0(

∑r+m
t=r ρt)

2

≤ (Γ + C)2m2∑∞
r=0 ρ

2
t < +∞

and
E‖ζk0(ω)‖ ≤ 1 + E‖ζk0(ω)‖2 < +∞.

Hence the martingale (50) a.s. has a finite limit. For the remainder term

αk(ω) =
k−1∑
t=0

(
∞∑
t=k

λtrρt)(ξ
r − gr)

the following estimates hold true:

αk(ω) ≤ ∑k−1
r=0(

∑∞
t=k λtrρt)(‖ξr‖+ ‖gr‖)

≤ (Γ +C)
∑k−1
r=0(

∑∞
t=k λtrρt) = (Γ + C)

∑∞
t=k ρt(

∑k
r=0 λtr)

= (Γ +C)
∑∞
t=k ρt(

∑k
r=rt λtr)

≤ (Γ +C)
∑k+m
t=k ρt −→ 0 as k −→∞.

Hence the sequence {ζk0 (ω) = ζ
k
0(ω) + αk(ω)} a.s. has a limit.2

Corollary 5.1 For any subsequence of indices {ks} −→∞

δks(ω) = sup
k≥ks
‖ζkks(ω)‖ −→ 0 a.s. as s −→∞.

Remark 5.2 Lemma 5.1 and Corollary 5.1 remain true if rk = k in (37) and (38) is
replaced by

E‖ξi(ω)‖2 < +∞.

Lemma 5.2 Let ω be such that {ζk0 (ω)}∞k=0 has a limit. Assume that lims→∞ xks(ω) =
x(ω)∈X∗. Denote

ms(ε, ω) = sup{m| ‖xk(ω)− x(ω)‖ ≤ ε for k ∈ {ks, m}.

Then a.s. there exists ε(ω) such that for any ε ∈ (0, ε] there exist indices ls(ω) ∈
[ks(ω), ms(ε, ω)], and

f(x(ω)) = lim
s→∞

f(xks(ω)) > lim sup
s→∞

f(xls(ω)). (51)
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Lemma 5.2 due to (41), (48) and Corollary 5.1 follow from the similar property of the
sequences {ykks (ω)}k≥ks, generated by (43)-(45). We formulate this property as a separate
lemma.

Lemma 5.3 Let ω be such that {ζk0 (ω)}∞k=0 has a limit. Assume that
lims→∞ xks(ω) = x(ω)∈X∗. Denote

ms(ε, ω) = sup{m| ‖ykks(ω)− x(ω)‖ ≤ ε for k ∈ [ks, m)}.

Then a.s. there exists ε(ω) such that for any ε ∈ (0, ε] there exist indices ls(ω) ∈
[ks(ω), ms(ε, ω)], and

f(x(ω)) = lim
s→∞

f(xks(ω)) > lim sup
s→∞

f(ylsks(ω)). (52)

Lemma 5.3 follows from the following stability property of the deterministic subgradi-
ent method.

Lemma 5.4 Let some sequence of starting points {ys} converge to y = lims→∞ ys. For
each s consider a sequence {ykks}

ns
k=ks

such that

ykss = ys,

yk+1
s = yks − ρk(gks + hks), s ≤ k < ns;
gks ∈ Gδks (y

k
s ) = co{g ∈ ∂f(y)| ‖y − yks‖ ≤ δks},

hks ∈ {
y−ΠX (y)

ρk
| ‖y− yks‖ ≤ δks },

yks = yks − ρksgks .

Denote

ρs = sup
ks≤k≤ns

ρks , δs = sup
ks≤k≤ns

δks , σs =
ns−1∑
k=ks

ρks .

If 0∈∂f(y)+NX(y) and σs ≥ σ > 0 then for any sufficiently small ε there exist ρ = ρ(y, ε)
and δ = δ(y, ε) such that for {yks}nsk=ks with δks ≤ δ and ρks ≤ ρ there exist indices ls such

that ‖yks − y‖ ≤ ε for k ∈ [ks, ls) and

f(y) = lim
s→∞

f(ys) > lim sup
s→∞

f(ylss ).

Proof. The proof is similar to the proof of Lemma 4.1. We have to consider again two
cases: ψ(y) < 0 and ψ(y) = 0. In the first case the subgradient method operates in
a sufficiently small vicinity of y as an unconstrained method and the statement of the
lemma is known (see [19]). In what follows we consider a new case ψ(y) = 0 (the case
ψ(x) < 0 may also be considered as a simple repetition of the case ψ(y) = 0). As in
proof of Lemma 4.1 for y = lims y

s define µ, ν, γ by (17)- (19) and ε1, ε2, ε3, c such that
(20)-(24) hold.

Now set
ε = min{ε3, σν/2}

and fix some ε ≤ ε. Set δ1 = ε/4, ρ1 = ε/(4Γ). Let for ‖ys− y‖ ≤ ε/4, δs ≤ δ1, ρs ≤ ρ1 for
s ≥ S.

Define the index

ms = sup{m| ‖yrs − y‖ ≤ ε/2 ∀ r ∈ [ks, m)}.
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We now show that ε/2 ≤ ‖ymss − y‖ ≤ 3ε/4. Firstly we shall prove the left inequality.
If ‖ymss − y‖ ≤ ε/2 then ms = ns and we obtain a contradiction:

ε2 > 3ε/4 ≥ ‖ynss − ys‖ ≥ σν/2.

Furthermore

‖ymss − y‖ ≤ ‖yms−1
s − y‖+ ρms−1

s ‖gms−1
s + hms−1

s ‖ ≤ 3ε/4.

Since

ε/4 ≤ ‖
ms−1∑
k=ks

ρks(g
k
s + hks)‖ ≤ Γ

ms−1∑
k=ks

ρks ,

then
ms−1∑
k=ks

ρks ≥
ε

4Γ
.

Let gks ∈ Gδks (y
k
s ), then

gks =
n+1∑
i=1

λkis g
ki
s ,

n+1∑
i=1

λkis = 1;

gkis ∈ ∂f(ykis ), ‖ykis − yks‖ ≤ δks .

If ‖ys − y‖ ≤ ε/4, δs ≤ ε/4, ks ≤ k ≤ ms, 1 ≤ i ≤ n+ 1, then

‖ykis − y‖ ≤ ‖ykis − yks‖+ ‖yks − y‖ ≤ δks + 3ε/4 ≤ ε ≤ ε3.

For ykis we can use (23):

f(ykis ) ≤ f(y)+ < gkis , y
ki
s − ys > +c‖ykis − ys‖+ (Γ + c)‖ys− y‖.

If we replace ykis (1 ≤ i ≤ n+ 1) by a close point yks , then

f(yks ) ≤ f(y)+ < gkis , y
k
s − ys >

+ + c‖yks − y‖+ (2Γ + c)δs + (Γ + c)‖ys− y‖.

Multiplying these inequalities by λkis and summing in i, we obtain

f(yks ) ≤ f(y)+ < gks , y
k
s − ys >

+c‖yks − ys‖+ (2Γ + c)δs + (Γ + c)‖ys− y‖
= f(y)+ < gks + hks , y

k
s − ys > − < hks , y

k
s − ys > +

+c‖yks − ys‖+ (2Γ + c)δs + (Γ + c)‖ys− y‖, (53)

where
hks = (ỹks − zks )/ρks , ‖ỹks − yks‖ ≤ δks , zks = ΠX(ỹks ).

Let us evaluete the term uks = − < hks , y
k
s −ys >. If ψ(yks ) ≤ 0 then hks = 0 and uks = 0.

Consider the case ψ(yks ) > 0, i.e. uks 6= 0. Since

hks ∈ NX(zks ) = {λg| g ∈ ∂ψ(zks ), λ ≥ 0},

then
hks = λksd

k
s , dks ∈ ∂ψ(zks ), λks > 0.



– 16 –

We have
0 < λks = ‖hks‖/‖dks‖ ≤ Γ/(µ/2) = 2Γ/µ.

Substitute zks and dks into expansion (24):

ψ(zks ) ≤< dks , z
k
s − y > +c‖zks − y‖. (54)

Since
yks = yks − ρkshks = yks − ỹks + zks ,

then
‖yks − zks‖ = ‖yks − ỹks ‖ ≤ δks .

Replacing zks in (54) by a close point yks , we obtain:

0 = ψ(yks ) ≤< dks , y
k
s − y > +c‖yks − y‖+ (2Γ + c)δks . (55)

Now multiply (55) by λks ≤ 2Γ/µ:

0 ≤< hks , y
k
s − ys > +(2Γc/µ)‖yks − ys‖+ (Γ + 2cΓ/µ)‖ys − y‖+ 2Γ(2Γ + c)δks/µ.

i.e.

− < hks , y
k
s − ys >≤ (2Γc/µ)‖yks − ys‖+ Γ(1 + 2c/µ)‖ys− y‖+ 2Γ(2Γ + c)δks/µ. (56)

Using inequality (56) we can rewrite (53) in the following form:

f(yks ) ≤ f(y)+ < gks + hks , y
k
s − ys > +(c+ 2Γc/µ)‖yks − ys‖

+(2Γ + c+ 2Γc/µ)‖ys − y‖+ (2Γ + c)(1 + 2Γc/µ)δks . (57)

Now we evaluate scalar products

< gks + hks , y
k
s − ys >=< gks + hks ,

k−1∑
i=ks

(gis + his) > .

by means of Lemma 4.2. Set

P = co{G(z)| ‖z − y‖ ≤ ε‖,
pr = grs + hrs, k = ks ≤ r ≤ m = ms,

γ0 = ν/2, Γ0 = 2Γ,

then
ms∑
k=ks

ρks ≥
ms−1∑
k=ks

ρks ≥
‖ymss − ys‖

2Γ
≥ ε

4Γ
= σ0 > 0 for s ≥ S,

lim
s→∞

sup
k≥ks

ρks = lim
s→∞

σs = 0.

By Lemma 4.2 for all sufficiently large s there exist indices ls, ks < ls ≤ ms, such that〈
glss + hlss ,

ls−1∑
k=ks

ρksQ
k
s/

ls−1∑
k=ks

ρks

〉
≥ ν2

16
,

ls−1∑
k=ks

ρks ≥
εν

48Γ2
.
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Substituting these values for k = ls into inequality (57), we obtain finally for c =
ν2

64Γ(1+2Γ/µ) :

f(ylss ) ≤ f(y)− ν2

16

ls−1∑
k=ks

ρks + 2Γ(1 + 2Γ/µ)c
ls−1∑
k=ks

ρks

+(2Γ + c)(1 + 2Γc/µ)δs + (2Γ + c+ 2Γc/µ)‖ys − y‖

≤ f(y)− ν2

1600Γ2
εν + +(2Γ + c)(1 + 2Γc/µ)δs

+(2Γ + c+ 2Γc/µ)‖ys− y‖. (58)

Hence we have proved that for all sufficiently small ε ≤ ε and sufficiently large s there
exist indices ls such that ‖yks − y‖ ≤ ε for k ∈ [ks, ls) and f(ylss ) satisfies (58). From here
the statement of the Lemma follows.2

Lemma 5.5 In method (35)-(37)

lim
k→∞

‖xk+1(ω)− xk(ω)‖ = 0 a.s.

Proof.

‖xk+1(ω)− xk(ω)‖ ≤ ‖sk(ω)‖
≤ ρk‖ 1

nk

∑k
r=rk

gr(ω)‖+ ρk‖ 1
nk

∑k
r=rk

(ξr(ω)− gr(ω))‖
≤ ρk‖ 1

nk

∑k
r=rk

gr(ω)‖+ ρk‖ζkk (ω)‖,

where
gr(ω) = E{ξr(ω)| x0(ω), . . . , xk(ω)},
ζkk (ω) = 1

nk

∑k
r=rk

(ξr(ω)− gr(ω)), nk = k − rk + 1.

Here gr ∈ ∂f(xr(ω)) are uniformly bounded and hence

lim
k→∞

ρk‖
1

nk

k∑
r=rk

gr(ω)‖ = 0.

By Lemma 5.1 sequence {ζk0 (ω)} (see (49)) a.s. has a limit, hence limk→∞ ρkζ
k
k (ω) = 0

a.s. 2
Now we can complete the proof of Theorem 5.1. Consider the set Ω′ ⊆ Ω such that

the sequence {ζk0 (ω)}∞k=0 defined by (49) converges. By Lemma 5.1 P(Ω′) = 1. Let us fix
some ω ∈ Ω′. The remaining part of the proof repeats steps 10 − 50 of Theorem 4.1 and
uses Lemma 5.2 instead of Lemma 4.1.

6 Concluding Remarks

In this paper we developed easy implementable computational procedures which may
naturally incorporate fast Monte Carlo simulation and thus deal with nonsmooth and
nonconvex problems analyzed in our recent paper [9]. These techniques aim at specific
classes of problems with so-called generalized differentiable performance functions that do
not require the concept of stochastic mollifier gradients introduced in [9] primarily in the
connection with discontinuous performance functions. As we illustrated in Section 2 mod-
els with such performance functions cover important area of risk control involving stopping
time (ruin) problems. Interesting enough that proposed search procedures may incorpo-
rate (see Remark 4, 2) random mechanisms of stochastic mollifiers with their additional
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power to bypass local solutions without joint constraints on step-sizes of the procedure and
the ”stochasticity” of mollifiers. The estimates of generalized gradients in (35)− (37) may
also be biased and called stochastic quasigradient similar to how this notion is used in such
situations for other (i.e. convex) functions. The convergence requirements are the same as
for stochastic quasigradient procedures with convex functions and constraints, although
the technique of proofs is essentially different and it is based on stopping time arguments
(Lemma 4, 1). The stochastic optimization procedure (35)-(37) is based on (see Remark
5,1) averaging operation. This type of operations were introduced by Ermoliev (see [6]
and discussions in [11] p.150) for so-called compound stochastic optimization problems.
Averaging stochastic gradients as a particular case was firstly studied by Bagenov and
Gupal [1], Chepurnoi [2], Ermoliev [7] (pp.214-215), Ruszczyński and Syski [25].

This paper deals only with the analysis of conceptual (basic) procedure that can be
modified correspondingly for a particular case of problem. For example, in cases of insur-
ance risk processes (as we showed in Section 2) there exist simple algorithms for the cal-
culation of stochastic generalized gradients that can be easily embedded into Monte Carlo
scenario simulation techniques. This algorithm provides feedbacks to policy variables in
such a way that drives them towards improvements with respect to given collections of
performance indicators. Let us also notice that proposed procedures have also been mo-
tivated by the study of the stochastic tâtonnement process [10] where the question of
convergence plays an essential role. The use of (35)− (37) type procedures combined with
fast Monte Carlo simulations show a rather fast improvement of initial policy variables
(see, for example [23]).
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