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Abstract

Grid approximation schemes for constructing value functions and optimal feedbacks in
problems of guaranteed control are proposed via theory of generalized (minimax, viscos-
ity) solutions of Hamilton-Jacobi equations. Value functions in optimal control problems
are usually nondifferentiable and corresponding feedbacks have the discontinuous switch-
ing character. Therefore, constructions of generalized gradients for local hulls of different
types are used in finite difference operators which approximate value functions. Optimal
feedbacks are synthesized by extremal shift in the direction of generalized gradients. Both
problems of constructing the value function and control synthesis are solved simultane-
ously in the unique grid scheme. The interpolation problem is analyzed for grid values of
optimal feedbacks. Questions of correlating spatial and temporal meshes are examined.
Significance of quasiconvexity properties is clarified for the linear dependence of space-time
grids.

The proposed grid schemes for solving optimal guaranteed control problems can be
applied for models arising in mechanics, mathematical economics, differential and evolu-
tionary games.
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Optimal Control Synthesis in Grid

Approximation Schemes

A. M. Tarasyev (tarasiev@iiasa.ac.at) *

Introduction

In this paper we propose grid schemes for constructing value functions and optimal feed-
backs in problems of guaranteed control. It is known in the theory of optimal control and
differential games that value functions are usually nondifferentiable and the corresponding
optimal synthesis has discontinuous properties on switching surfaces. The theory of gener-
alized (minimax, viscosity) solutions of Hamilton-Jacobi equations ([Crandall, Lions, 1983,
1984], [Subbotin, 1980, 1995]) provides the instrument for operating with nondifferentiable
value functions. Different constructions of nonsmooth analysis such as directional deriva-
tives, Dini subdifferentials are used for describing stability (viability) properties of value
functions at points of nondifferentiability. For constructing generalized solutions approxi-
mation schemes of different types were proposed ( [Lax, 1954], [Godunov, 1959], [Oleinik,
1959], [Fleming, 1961], [Hopf, 1965], [Kruzhkov, 1965], [Crandall, Lions, 1984], [Sougani-
dis, 1985], [Bardi, Falcone, 1990] [Bardi, Osher, 1991], [Osher, Shu, 1991], [Tarasyev, 1994],
[Tarasyev, Ushakov, Uspenskii, 1994] ), and their convergence was proved. In the present
paper we use constructions of local (convex, concave, linear) hulls for approximation of
value functions. The corresponding finite difference operators are based on notions of
generalized gradients - subdifferentials of convex hulls, superdifferentials of concave hulls,
gradients of linear hulls.

There exists the adjoint problem to synthesize optimal feedbacks using approxima-
tions of the value function. If the value function is differentiable then it coincides with
the classical solution of the Hamilton-Jacobi equation and the optimal synthesis can be
constructed by extremal aiming in the direction of gradients. For exactly known (or known
with the high accuracy) nonsmooth value functions optimal feedbacks can be designed by
the method of extremal shift of a trajectory to accompanying points of local extremum
([Krasovskii, 1985], [Krasovskii, Subbotin, 1974, 1988], [A.N. Krasovskii, N.N. Krasovskii,
1995]). The principle of extremal aiming in the direction of quasigradients defined with
the help of Yosida-Moreau transformations (see [Garnysheva, Subbotin, 1994]) also can be
used for finding optimal synthesis. Let us note that the mentioned methods require the
exact calculation of the value function or the high accuracy of its approximations.

In the present paper it is proposed to combine in the unique algorithm the approxi-
mation scheme for constructing the value function and the principle of extremal shift in
the direction of generalized gradients of local (convex, concave, linear) hulls.

In space-time grid realizations of approximation schemes the value function, general-
ized gradients and corresponding optimal feedbacks are calculated only at nodes of the

*The work is partially supported by the Russian Fund for Fundamental Research 96-01-00219, 97-01-
00161.
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fixed grid. But for constructing optimal trajectories which can slide between these nodes
it is necessary to interpolate extremal values of control parameters to internal points. Dif-
ferent types of interpolations: piecewise constant, piecewise minimum, piecewise linear,
are examined and their properties are indicated. In this connection the question on corre-
lation of spatial and temporal grids is studied. In the general case it is necessary to have
the density of the spatial mesh of the higher order accuracy than the density of the tem-
poral mesh. For the linear dependence of space-time grids the impact of quasiconvexity
properties is analyzed.

The elaborated grid approximation schemes for constructing value functions and op-
timal feedbacks can be used for analysis of applied problems of mechanics, mathematical
economics and evolutionary biology.

1 Dynamics and Hamilton-Jacobi Equations

Let us consider a control system described on a time interval T = [t0, ϑ] by a vector
differential equation

ẋ = f(t, x, u, v) = h(t, x) + B(t, x)u+C(t, x)v (1.1)

x ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq

Here x is the n-dimensional phase vector of the system, u, v are nonfixed parameters in
compact convex sets P , Q and can be generated on different principles - open-loop (pro-
gramming control), closed-loop (feedback principle), stochastic principle (random vari-
ables).

We consider the minimax statement of the control problem (control with the guarantee)
when control parameter u is synthesized on the feedback principle in order to minimize
the functional

γ(x(·)) = σ(x(ϑ)) (1.2)

on trajectories x(·) of system (1.1) while v can be induced in different ways and realized
in the most unfavorable form. So the problem is to find a positional control (feedback)
U0 = U0(t, x) that provides an external minimum in the minimax relation

w(t∗, x∗) = min
U

max
x(·)∈X(t∗,x∗,U)

σ(x(ϑ)) (1.3)

and to determine the value w(t∗, x∗), called the optimal guaranteed result or the value
of the game. Here by the symbol X(t∗, x∗, U) we denote the set of trajectories of system
(1.1) generated in the sense of [Krasovskii, Subbotin, 1974, 1988] by a positional control
U = U(t, x) and various realizations of parameter v = v(t) from the initial position (t∗, x∗).

The function (t∗, x∗) → w(t∗, x∗) linking initial positions (t∗, x∗) and optimal guar-
anteed results w(t∗, x∗) is called the value function. The value function w plays the key
role in solving the control problem (1.1), (1.2) and constructing the guaranteeing optimal
feedback (t, x)→ U0(t, x).

Let us note that such statement provides guaranteeing optimal feedbacks which often
are very flexible and can give solution in other senses. Many applied control problems
arising in mechanics, economics, evolutionary biology can be interpreted in terms of opti-
mal control with guarantee: control in mechanical systems, pursuit-evasion games, games
against the nature, bimatrix games.

We assume that function f(t, x, u, v) on the right-hand side of system (1.1) is satisfied
the following conditions.

(F1) Uniform continuity in all variables.
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(F2) The Lipschitz condition by variable x

‖f(t, x1, u, v)− f(t, x2, u, v)‖ ≤ L1(D)‖x1 − x2‖

for all (t, xi) ∈ D, i = 1, 2, u ∈ P , v ∈ Q.
(F3) Extendability of solutions: there exists a constant κ such that

‖f(t, x, u, v)‖ ≤ κ(1 + ‖x‖)

for all (t, x, u, v) ∈ T ×Rn × P ×Q.
(F4) The Lipschitz continuity with respect to variable t

‖f(t1, x, u, v)− f(t2, x, u, v)‖ ≤ L2(D)|t1 − t2|

for all (tj, x) ∈ D, j = 1, 2, u ∈ P , v ∈ Q.
Here D is a compact set, D ⊂ T ×Rn.
The function σ(x) in the payoff functional (1.2) is assumed to be
(Σ) Lipschitz continuous

|σ(x1)− σ(x2)| ≤ L3(Dϑ)‖x1 − x2‖

for all xk ∈ Dϑ, k = 1, 2, where Dϑ is a compact set, Dϑ ⊂ Rn.
Let us turn our attention to the value function (t, x)→ w(t, x). Since there exists the

saddle point in the “small game”

max
v∈Q

min
u∈P

< s, f(t, x, u, v)>= min
u∈P

max
v∈Q

< s, f(t, x, u, v)>=

< s, h(t, x) > +min
u∈P

< s, B(t, x)u > +max
v∈Q

< s, C(t, x)v >= H(t, x, s) (1.4)

then the theorem on alternative [Krasovskii, Subbotin, 1974, 1988] implies the existence
of the saddle point in the original game posed in the classes of “pure” feedbacks (t, x)→
U(t, x), (t, x)→ V (t, x)

w(t∗, x∗) = min
U

max
x(·)∈X(t∗,x∗,U)

σ(x(ϑ)) = max
V

min
y(·)∈Y (t∗,x∗,V )

σ(y(ϑ))

Here the symbol Y (t∗, x∗, V ) denotes the set of trajectories y(·) generated by a positional
strategy V = V (t, x) from the initial position (t∗, x∗).

The function (t, x, s)→ H(t, x, s) defined by the saddle point (1.4) is called the Hamil-
tonian of the dynamical system (1.1).

It is known that the dynamic programming principle [Bellman, 1957] is valid for the
value function w

w(t, x) = min
U

max
x(·)∈X(t,x,U)

w(s, x(s)) =

max
V

min
y(·)∈Y (t,x,V )

w(s, y(s)) (1.5)

for all (t, x) ∈ T ×Rn, t ≤ s ≤ ϑ.
One can verify that the value function w(t, x) is Lipschitz continuous and is conse-

quently differentiable almost everywhere. At points (t, x) of differentiability of the value
function w the dynamic programming principle (1.5) turns into the so-called Bellman-
Isaacs equation - first order partial differential equation of the Hamilton-Jacobi type

∂w

∂t
(t, x) +H(t, x,

∂w

∂x
(t, x)) = 0 (1.6)
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From (1.5) it also follows that the value function w satisfies the boundary condition

w(ϑ, x) = σ(x) (1.7)

for all x ∈ Rn.
The core characteristic of the value function w is the so-called property of u and v-

stability [Krasovskii, Subbotin, 1974, 1988] which provides the weak invariance [Aubin,
1990] of epigraph (hypograph, Lebesgue sets) of the value function with respect to differ-
ential inclusions relating to dynamical system (1.1). Accurately the property of u-stability
is formulated in the following way.

(PS) A function w is called u-stable at a point (t∗, x∗) if for all control parameters
v ∈ Q and numbers ε > 0 there exist a number δ > 0 and a trajectory x(·) = (x(t), t∗ ≤
t ≤ t∗ + δ, x(t∗) = x∗) of the differential inclusion

ẋ(t) ∈ F (t, x(t), v) (1.8)

F (τ, y, v) = {f ∈ Rn : f = f(τ, y, u, v), u ∈ P}

such that the inequality
w(t, x(t)) ≤ w(t∗, x∗) + ε(t− t∗) (1.9)

takes place for all t ∈ [t∗, t∗ + δ].
A function w which satisfies the property of u-stability (1.9) at all points is called

u-stable.
Inequality (1.9) means that any trajectory x(·) of differential inclusion (1.8) survives

in epigraph of function w.
The property of v-stability is formulated in the dual form.
One can prove (see [Krasovskii, Subbotin, 1974, 1988]) that properties u and v stability

together with boundary condition (1.7) uniquely determine value function w. So they form
a block of necessary and sufficient conditions.

Properties of u and v-stability can be formulated in different equivalent ways. The
most preferable is the infinitesimal form in which constructions of nonsmooth analysis
appear. In terms of directional derivatives these properties were formulated in the work
[Subbotin, 1980] and the notion of generalized (minimax) solution of Hamilton-Jacobi
equation coinciding with the value function was introduced. The notion of viscosity solu-
tion is presented in the works [Crandall, Lions, 1983, 1984] where stability properties are
expressed in terms of Dini subdifferentials and superdifferentials. Viscosity solutions in
application to differential games were studied in [Barron, Evans, Jensen, 1984].

In this paper for describing stability properties and defining generalized solutions of
Hamilton-Jacobi equations - value functions, we use notions of conjugate derivatives (see
[Subbotin, Tarasyev, 1985]).

Definition 1.1 A Lipschitz continuous function w(t, x) is called a generalized (minimax)
solution of the boundary value problem (1.6), (1.7) - the value function of control problem
(1.1), (1.2), if the differential inequalities

inf
s∈Rn

sup
h∈Rn

(< s, h > −∂−w(t, x)|(1, h)−H(t, x, s))≥ 0 (1.10)

sup
s∈Rn

inf
h∈Rn

(< s, h > −∂+w(t, x)|(1, h)−H(t, x, s))≤ 0 (1.11)

are fulfilled for all (t, x) ∈ [t0, ϑ) and the boundary condition (1.7) holds.



– 5 –

Here lower and upper directional derivatives of function w at point (t, x) in direction (1, h)
are defined by relations

∂−w(t, x)|(1, h) = lim inf
δ↓0

w(t+ δ, x+ δh)− w(t, x)

δ

∂+w(t, x)|(1, h) = lim sup
δ↓0

w(t+ δ, x+ δh)−w(t, x)

δ

At points where functionw is differentiable, inequalities (1.10), (1.11) turn into Hamilton-
Jacobi equation (1.6) and so can be considered as its generalization.

Below we propose approximation schemes for constructing the value function (t, x)→
w(t, x) and designing the optimal feedback (t, x) → U0(t, x). Finite-difference operators
used in these schemes are essentially based on constructions of upper and lower conjugate
derivatives D∗, D∗ from differential inequalities (1.10), (1.11)

D∗w(t, x)|(s) = sup
h∈Rn

(< s, h > −∂−w(t, x)|(1, h)) (1.12)

D∗w(t, x)|(s) = inf
h∈Rn

(< s, h > −∂+w(t, x)|(1, h)) (1.13)

In order to realize approximation schemes it is necessary to restrict constructions on
a compact domain Gr ⊂ T ×Rn, r > 0 which we define in the following way.

Denote by the symbol X(t∗, x∗) the set of solutions x(·) of the differential inclusion

ẋ ∈ F (t, x(t)), t ∈ [t∗, ϑ], x(t∗) = x∗ (1.14)

Here
F (τ, y) = {f ∈ Rn : f = f(τ, y, u, v), u ∈ P, v ∈ Q} (1.15)

is the set of velocities of system (1.1).
Consider a set G which is strongly invariant with respect to differential inclusion (1.14)
(G1) If (t∗, x∗) ∈ G, then (t, x(t)) ∈ G for all x(·) ∈ X(t∗, x∗), t ∈ [t∗, ϑ].
According to condition (F3) there exist compact domains G satisfying the principle of

strong invariance (G1).
Let

K = max
(t,x,u,v)∈G×P×Q

‖f(t, x, u, v)‖ (1.16)

be the maximum velocity of system (1.1) in domain G.
By condition (F3) velocity K is restricted as follows

K ≤ max
(t,x)∈G

κ(1 + ‖x‖)

Let us introduce now the domain Gr by the following invariance conditions
(G2) Gr ⊂ G.
(G3) If (t∗, x∗) ∈ Gr, then (t, x∗ + (t− t∗)Br) ⊂ Gr, for all t ∈ [t∗, ϑ].
Here parameter r and ball Br are connected with dynamics (1.1) and its characteristics

F (t, x) (1.15), K (1.16) by relations

r > K, Br = {b ∈ Rn : ‖b‖ ≤ r}

F (t, x) ⊂ Br, (t, x) ∈ Gr
Let us indicate properties of the Hamiltonian (t, x, s)→ H(t, x, s) : Gr×Rn×Rn → R

in the domain Gr which follow from conditions (F1)-(F4) and relation (1.4):
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(H1) Uniform continuity in all variables.
(H2) The Lipschitz condition by variable x

|H(t, x1, s)−H(t, x2, s)| ≤ L1(Gr)‖s‖‖x1 − x2‖

for all (t, xi) ∈ Gr, i = 1, 2, s ∈ Rn.
(H3) The Lipschitz condition by variable s

|H(t, x, s1)−H(t, x, s2)| ≤ r‖s1 − s2‖

for all (t, x) ∈ Gr, sj ∈ Rn, j = 1, 2.
(H4) The Lipschitz condition by variable t

|H(t1, x, s)−H(t2, x, s)| ≤ L2(Gr)‖s‖|t1 − t2|

for all (tk, x) ∈ Gr, k = 1, 2, s ∈ Rn.
(H5) Positive homogeneity by variable s

H(t, x, λs) = λH(t, x, s)

for all (t, x, s) ∈ Gr ×Rn, λ ≥ 0.

2 Subdifferentials of Local Convex Hulls and Finite Differ-
ence Operators

We introduce now finite difference operators with constructions of nonsmooth analysis:
subdifferentials of local convex hulls and superdifferentials of local concave hulls for ap-
proximating generalized solutions of Hamilton-Jacobi equations - value functions.

Let t ∈ T , t + ∆ ∈ T , t < ϑ, ∆ > 0, (t, x) ∈ Gr. Assume that at time t + ∆ a
Lipschitz continuous function u(·) is given in the domain Dt+∆ = {x ∈ Rn : (t+ ∆, x) ∈
Gr, t+ ∆ ∈ T} and L = L(Dt+∆) is its Lipschitz constant. This function is considered in
the subsequent constructions as an approximation of the solution x→ w(t+∆, x) at time
t + ∆. We define operator u → F (t,∆, u) approximating the Hamilton-Jacobi equation
in the neighborhood of a point (t, x) ∈ Gr by the formula that can be interpreted as a
generalization of Hopf’s formula [Hopf, 1965], [Bardi, Osher, 1991] or of the programming
maximin formula [Krasovskii, Subbotin, 1974], [Ushakov, 1981] connected with inequalities
for conjugate derivatives (1.10), (1.11)

v(x) = F (t,∆, u)(x) =

= f(x) + sup
y∈O(x,r∆)

max
s∈Df(y)

{∆H(t, x, s) + f(y)− f(x)− < s, y − x >} (2.1)

Here the function x → v(x) : Dt → R is treated as an approximation of the solution
x→ w(t, x) in the domain Dt = {s ∈ Rn : (t, x) ∈ Gr, t ∈ T}.

The set O(x, r∆) is a neighborhood of point x of radius r∆, r > K, ∆ > 0, (t, x) ∈ Gr
O(x, r∆) = {y ∈ Rn : ‖y − x‖ < r∆}

The function y → f(y) : O(x, r∆)→ R is the local convex hull of the function y → u(y)
in the closed neighborhood O(x, r∆)

f(y) = inf{
n+1∑
k=1

αku(yk) : yk ∈ O(x, r∆), αk ≥ 0, k = 1, ..., n+ 1,

n+1∑
k=1

αkyk = y,
n+1∑
k=1

αk = 1}, y ∈ O(x, r∆) (2.2)
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O(x, r∆) = {y ∈ Rn : ‖y − x‖ ≤ r∆}
The set Df(y) is the subdifferential [Clarke, 1983], [Rockafellar, 1970] of the convex

function f at a point y, y ∈ O(x, r∆)

Df(y) = {s ∈ Rn : f(z)− f(y) ≥< s, z − y >, z ∈ O(x, r∆)} (2.3)

Let us note that the inequality

f(y)− f(x)− < s, y − x >≤ 0, y ∈ O(x, r∆), s ∈ Df(y)

takes place in definition (2.1).
Let us consider properties of local convex hulls and subdifferentials.

Lemma 2.1 1. The estimate

|f(z)− f(y)| ≤ L
(
1 +

r∆ + ‖y− x‖
r∆− ‖y− x‖

)
‖z − y‖ (2.4)

takes place for the convex hull f : O(x, r∆)→ R, z ∈ O(x, r∆), y ∈ O(x, r∆).
For y = x it implies

|f(z)− f(x)| ≤ 2L‖z − x‖
2. The function f : O(x,K∆) → R satisfies the Lipschitz condition with constant

L(1 + (r +K)/(r−K)).
3. Subgradients s ∈ Df(y), y ∈ O(x, r∆) satisfy the inequality

‖s‖ ≤ L
(
1 +

r∆ + ‖y − x‖
r∆− ‖y − x‖

)
In particular, the following relations hold

‖s‖ ≤ 2L, s ∈ Df(x)

‖s‖ ≤ L
(

1 +
r +K

r −K

)
, s ∈ Df(y), y ∈ O(x,K∆)

Proof.
Let us estimate the difference f(z)− f(y), z ∈ O(x, r∆), y ∈ O(x, r∆). According to

definition of the convex hull (2.2) for a point y ∈ O(x, r∆) and arbitrary number ε > 0
there exist points yk ∈ O(x, r∆) and coefficients αk ≥ 0,

∑n+1
k=1 αkyk = y,

∑n+1
k=1 αk = 1

such that

f(z)− f(y) < f(z)−
n+1∑
k=1

αku(yk) + ε

Let

zk = yk + (z − y)− (yk − y)‖z − y‖
h(y, β)

, k = 1, ..., n+ 1

h(y, β) = (r2∆2 − ‖y − x‖2 sin2 β)1/2 + ‖y − x‖ cosβ

cos β =
< z − y, x− y >
‖z − y‖‖x− y‖

One can verify that

z =
n+1∑
k=1

αkzk, zk ∈ O(x, r∆), k = 1, ..., n+ 1
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Then

f(z)− f(y) <
n+1∑
k=1

αku(zk)−
n+1∑
k=1

αku(yk) + ε ≤

L‖z − y‖+ L‖z − y‖
n+1∑
k=1

αk‖yk − y‖
(r∆− ‖y− x‖) + ε ≤

L‖z − y‖
(
1 +

r∆ + ‖y − x‖
r∆− ‖y − x‖

)
+ ε

since
‖yk − y‖ ≤ ‖yk − x‖+ ‖x− y‖ ≤ r∆ + ‖y− x‖

Changing places of y and x and eliminating ε we obtain the estimate (2.4).
The rest inequalities of Lemma 2.1 follow from estimate (2.4). 2

Lemma 2.2 Assume that function y → ξ(y) : O(x, r∆)→ R is convex, Lipschitz contin-
uous and the following relation holds

ξ(y) > ξ(y0), y ∈ O(x,K∆), y 6= y0, y0 ∈ ∂O(x,K∆)

∂O(x,K∆) = {y ∈ O(x,K∆) : ‖y − x‖ = K∆}, r > K

Then there exist a sequence {ym}, ym ∈ O(x,K∆), limm→∞ ym = y0, a sequence lm,
lm ∈ Dξ(ym) and a vector l0 ∈ Dξ(y0) ⊂ Rn, limm→∞ lm = l0 such that inequalities

ξ(y)− ξ(y0) ≥< l0, y − y0 >≥ 0 (2.5)

are valid for all y ∈ O(x,K∆).

Proof
Since function ξ(y) satisfies the Lipschitz condition then for any ε > 0 there exists a

point zε such that the following relations hold

‖y0 − zε‖ =
ε

λ
, zε ∈ O(x,K∆), ξ(zε) ≤ ξ(y0) + ε

Here λ is a Lipschitz constant of function ξ(y) on the set O(x,K∆).
Define function ψ(y, ε) by the relation

ψ(y, ε) =
(y− zε)2

χ(α)
− 1, α = α(y, ε)

χ(α) = ((K2∆2 − (x− zε)2 sin2 α)1/2 + ‖x− zε‖ cosα)2

cosα =
< y − zε, x− zε >
‖y − zε‖‖x− zε‖

Function y→ ψ(y, ε) is strictly convex, differentiable and nonpositive

ψ(y, ε) ≤ 0, y ∈ O(x,K∆)

It has the strict minimum at point zε

ψ(y, ε)> ψ(zε, ε) = −1, y ∈ O(x,K∆), y 6= zε

Furthermore, function ψ(y, ε) receives zero values at the boundary

ψ(y, ε) = 0, y ∈ ∂O(x,K∆)
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Gradients ∇ψ(y, ε) of function ψ(y, ε) by variable y satisfy the inequality

‖∇ψ(y, ε)‖ ≤ 2
λ

ε
, y ∈ O(x,K∆)

Compose the function
γ(y, ε) = ξ(y) + 2εψ(y, ε)

One can verify relations

γ(zε, ε) = ξ(zε)− 2ε ≤ ξ(y0) + ε− 2ε < ξ(y0) = γ(y0, ε)

Besides
γ(y0, ε) = ξ(y0) ≤ ξ(y) = γ(y, ε), y ∈ ∂O(x,K∆)

Combining these inequalities we obtain the relation

γ(zε, ε) < γ(y, ε), y ∈ ∂O(x,K∆), zε ∈ O(x,K∆)

Therefore, there exists an internal minimum point yε ∈ O(x,K∆)

γ(yε, ε) ≤ γ(y, ε), y ∈ O(x,K∆)

Necessary conditions of minimum for convex function y → γ(y, ε) at point yε ∈
O(x,K∆) implies

0 ∈ Dγ(yε, ε)

Here Dγ(yε, ε) is the subdifferential of function y → γ(y, ε) at point yε. The last inclusion
means that there exists a subgradient lε ∈ Dξ(yε) satisfying the condition

lε = −2ε∇ψ(yε, ε)

According to definition of subdifferentials we have inequalities

ξ(y)− ξ(yε) ≥< lε, y − yε >=< −2ε∇ψ(yε, ε), y− yε >≥
2ε(ψ(yε, ε)− ψ(y, ε))≥ 2εψ(yε, ε) ≥
2εψ(zε, ε) = −2ε, y ∈ O(x,K∆) (2.6)

Let us consider a sequence εm ↓ 0, m → ∞ and introduce notations ym = yεm ,
lm = lεm ∈ Dξ(ym).

Since ‖ym − x‖ < K∆ then

‖lm‖ = ‖ − 2εm∇ψ(ym, εm)‖ ≤ 2εm2
λ

εm
= 4λ

Thus, sequences {ym}, {lm} are bounded. Without loss of generality assume that they
converge. So there exist a limit point y∗ ∈ O(x,K∆) and a limit vector l0 ∈ Rn

y∗ = lim
m→∞

ym, l0 = lim
m→∞

lm

Let us show that y0 = y∗. Assuming the contrary y0 6= y∗ and passing to the limit in
inequality (2.6) by m→∞ we obtain the relation

ξ(y)− ξ(y∗) ≥ 0, y ∈ O(x,K∆)

In particular, ξ(y)− ξ(y0) ≥ 0. It contradicts to the condition of the strict minimum
ξ(y0) < ξ(y∗). Hence, y0 = y∗.
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Let us prove that l0 ∈ Dξ(y0). By definition of subdifferentials we have the inequality

ξ(y)− ξ(ym) ≥< lm, y − ym >, y ∈ O(x, r∆)

Passing to the limit by m→∞ we obtain the relation

ξ(y)− ξ(y0) ≥< l0, y − y0 >, y ∈ O(x,K∆)

y0 ∈ ∂O(x,K∆) ⊂ O(x, r∆)

which means l0 ∈ Dξ(y0).
Furthermore, passing to the limit in relation (2.6) while εm ↓ 0 we get the second

necessary inequality in (2.5). 2
Using Lemma (2.1) and Lemma (2.2) we indicate now properties of operator F (2.1).

Property 2.1 Operator F (2.1) is finitely defined for all Lipschitz continuous functions
u and the following estimates are valid

min
y∈O(x,r∆)

u(y)− 2LK∆ ≤ F (t,∆, u)(x)≤ max
y∈O(x,K∆)

u(y) (2.7)

Proof.
Consider a Lipschitz continuous function u : O(x, r∆) → R. Let y → f(y) be the

convex hull of function u on the set O(x, r∆). According to Lemma (2.1) subdifferential
Df(y), y ∈ O(x, r∆) is a bounded set and, hence, is a convex compactum.

Function

s→ (∆H(t, x, s) + f(y)− f(x)− < s, y − x >) : Df(y)→ R

is a continuous one on the compactum Df(y). Hence, maximum in (2.1) is well-defined.
Let y ∈ O(x, r∆), s ∈ Df(y). We estimate now the expression

R = R(t,∆, x, y, s) = ∆H(t, x, s) + f(y)− f(x)− < s, y − x >

We have
|H(t, x, s)| ≤ K‖s‖ ≤ K < s,

s

‖s‖ >

Then

R ≤ f(y)− f(x+ ∆K
s

‖s‖)+ < s, x+ ∆K
s

‖s‖ − y > +

f(x+ ∆K
s

‖s‖)− f(x) ≤ f(x+ ∆K
s

‖s‖)− f(x)

since
(x+ ∆K

s

‖s‖) ∈ O(x,K∆) ⊂ O(x, r∆)

Hence,

F (t,∆, u)(x) = f(x) + sup
y∈O(x,r∆)

max
s∈Df(y)

R(t,∆, x, y, s)≤

max
‖l‖≤1

f(x+ ∆Kl) ≤ max
y∈O(x,K∆)

f(y) ≤ max
y∈O(x,K∆)

u(y)

Thus, value F (t,∆, u)(x) is bounded above and finitely defined.
Let us estimate value F (t,∆, u)(x) from below. According to Lemma (2.1) we have

the necessary relations for y = x, s ∈ Df(x)

F (t,∆, u)(x) ≥ f(x) + ∆H(t, x, s)≥
min

y∈O(x,r∆)
u(y)−K∆‖s‖ ≥ min

y∈O(x,r∆)
u(y)− 2LK∆ 2
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Property 2.2 The following equalities are valid for operator F

F (t,∆, u)(x) = f(x) + sup
y∈O(x,r∆)

max
s∈Df(y)

R(t,∆, x, y, s) =

= f(x) + sup
y∈O(x,K∆)

max
s∈Df(y)

R(t,∆, x, y, s) =

= f(x) + max
y∈O(x,K∆)

max
s∈Df(y)

R(t,∆, x, y, s) (2.8)

Thus, supremum in definition of operator F (2.1) on the set O(x, r∆) coincides with
supremum on the set O(x,K∆), r > K and is realized on the set O(x,K∆).

Proof.
Evidently supremum on the setO(x, r∆) is not less than supremum on the setO(x,K∆),

r > K. Let us prove the inverse inequality.
For this purpose we estimate the difference

dif = sup
y∈O(x,K∆)

max
s∈Df(y)

R(t,∆, x, y, s)− sup
y∈O(x,r∆)

max
s∈Df(y)

R(t,∆, x, y, s)

For ε > 0 let us choose yε ∈ O(x, r∆), lε ∈ Df(yε) such that

dif ≥ sup
y∈O(x,K∆)

max
s∈Df(y)

R(t,∆, x, y, s)−

∆H(t, x, lε)− f(yε) + f(x)+ < lε, yε − x > −ε

Consider the function
y→ ξ(y) = f(y)− < lε, y >

on the set O(x,K∆). Let
y0 = arg min

y∈O(x,K∆)
ξ(y)

Two cases are possible.
Case 1. Let y0 ∈ O(x,K∆). Then lε ∈ Df(y0) since the relation

f(y)− f(y0) ≥< lε, y − y0 >, y ∈ O(x,K∆), y0 ∈ O(x,K∆)

is valid.
In this case we continue the estimate

dif ≥ ∆H(t, x, lε) + f(y0)− f(x)− < lε, y0 − x > −
∆H(t, x, lε)− f(y0) + f(x)+ < lε, yε − x > −ε ≥
f(y0)− f(yε)+ < lε, y0 − yε > −ε ≥ −ε

Since ε > 0 is an arbitrary number then we obtain the necessary inequality dif ≥ 0.
Case 2. Let y0 ∈ ∂O(x,K∆) and there are no other minimum points ymin of function

ξ(y) such that ymin ∈ O(x,K∆). Let us prove that point y0 is the unique minimum point
of function ξ(y) in this case.

Assuming the contrary

ξ(y1) = ξ(y0), y1 6= y0, y1 ∈ ∂O(x,K∆)

and using the convexity property of function ξ(y) we obtain the inequality

λξ(y1) + (1− λ)ξ(y0) ≥ ξ(λy1 + (1− λ)y0), 0 < λ < 1
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and, hence,
ξ(y1) = ξ(y0) ≥ ξ(λy1 + (1− λ)y0)

So we obtain that point

y(λ) = λy1 + (1− λ)y0, y(λ) ∈ O(x,K∆)

is also a minimum point of function ξ(y) and come to the contradiction.
Thus, point y0 is the unique minimum point and by Lemma 2.2 there exist a sequence

ym, ym ∈ O(x,K∆), limm→∞ ym = y0, a sequence lm, lm ∈ Dξ(ym) and a vector l0 ∈
Dξ(y0), limm→∞ lm = l0 such that for all y ∈ O(x,K∆) the inequality

ξ(y)− ξ(y0) ≥< l0, y − y0 >≥ 0

takes place.
In other words, there exist a vector s0 ∈ Df(y0) and a sequence sm, sm ∈ Df(ym),

limm→∞ sm = s0 such that for all y ∈ O(x,K∆) the following relations

f(y)− f(y0)− < lε, y − y0 >≥< s0 − lε, y − y0 >≥ 0

are valid.
Taking into account the Lipschitz continuity (H3) of the HamiltonianH we obtain the

estimate

dif ≥ ∆H(t, x, s0) + f(y0)− f(x)− < s0, y0 − x > −
∆H(t, x, lε)− f(yε) + f(x)+ < lε, yε − x > −2ε ≥
−∆K‖s0 − lε‖+ (f(y0)− f(yε)− < lε, y0 − yε >)+ < s0 − lε, x− y0 > −2ε ≥

< s0 − lε, (x−K∆
(s0 − lε)
‖s0 − lε‖

)− y0 > −2ε ≥ −2ε

since

(x−K∆
(s0 − lε)
‖s0 − lε‖

) ∈ O(x,K∆)

Arbitrariness of number ε > 0 implies the necessary inequality dif ≥ 0.
Let us prove that external supremum in definition (2.1) of operator F is realized on

the set O(x,K∆).
For a sequence {εm}, εm ↓ 0, m→∞ let us choose sequences ym, ym ∈ O(x,K∆), sm,

sm ∈ Df(y) such that

F (t,∆, u)(x) ≤ f(x) + (∆H(t, x, sm) + f(ym)− f(x)− < sm, ym − x >) + εm (2.9)

Sequence {ym} is bounded. According to Lemma 2.1 sequence {sm} is also bounded

‖sm‖ ≤ L
(
1 +

r +K

r −K

)
Without loss of generality let us assume that sequences {ym}, {sm} converge. So there

exist a point y0 ∈ O(x,K∆) and a vector s0 ∈ Rn such that

y0 = lim
m→∞

ym, s0 = lim
m→∞

sm

Let us show that s0 ∈ Df(y0). Really, since sm ∈ Df(ym), ym ∈ O(x,K∆) ⊂ O(x, r∆)
then for all y ∈ O(x, r∆) the following inequality is valid

f(y)− f(ym) ≥< sm, y − ym >
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Passing to the limit by m→∞ in this inequality we obtain relations

f(y)− f(y0) ≥< s0, y − y0 >, y ∈ O(x, r∆), y0 ∈ O(x,K∆) ⊂ O(x, r∆)

The last inequality means that

s0 ∈ Df(y0), y0 ∈ O(x,K∆)

Passing also to the limit by m→∞ in relation (2.9) we derive inequalities

F (t,∆, u)(x) ≤ f(x) + (∆H(t, x, s0) + f(y0)− f(x)− < s0, y0 − x >) ≤
f(x) + sup

y∈O(x,K∆)

max
s∈Df(y)

{∆H(t, x, s0) + f(y0)− f(x)− < s0, y0 − x >}

Besides, the inverse inequality is evidently fulfilled. Hence, all inequalities turn into
equalities. Therefore, the external supremum is realized on the set O(x,K∆). 2

Property 2.3 Relation (2.1) in definition of operator F is the programming maximin
formula on local convex hulls and can be regarded as generalization of Hopf ’s formula

F (t,∆, u)(x) = sup
s∈Rn
{< s, x > +∆H(t, x, s)− f∗(s)} =

max
q(·)

min
p(·)

f(x+ ∆h(t, x) +
∫ t+∆

t
B(t, x)p(τ)dτ +

∫ t+∆

t
C(t, x)q(τ)dτ) =

max
q∈Q

min
p∈P

f(x+ ∆(h(t, x) + B(t, x)p+ C(t, x)q)) (2.10)

Here
f∗(s) = sup

y∈O(x,r∆)

{< s, y > −f(y)}

is the conjugate function

τ → p(τ) : [t, t+ ∆)→ P, τ → q(τ) : [t, t+ ∆)→ Q

are Lebesgue measurable programming controls.

Proof.
Taking into account Property 2.1 we have the following formula for operator F

F (t,∆, u)(x) = max
y∈O(x,K∆)

max
s∈Df(y)

{∆H(t, x, s)+ f(y)− < s, y − x >}

Properties of subdifferentials of convex functions imply relations

s ∈ Df(y)⇐⇒< s, y > −f(y) = f∗(s)

Hence,

F (t,∆, u)(x) = max
y∈O(x,K∆)

max
s∈Df(y)

{< s, x > +∆H(t, x, s)− f∗(s)}

Using the scheme of proof of Property 2.2 one can find out that maximum on the set

{s ∈ Rn : s ∈ Df(y), y ∈ O(x,K∆)}
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coincides with supremum on the space Rn

F (t,∆, u)(x) = sup
s∈Rn
{< s, x > +∆H(t, x, s)− f∗(s)} =

= sup
Rn

max
q∈Q

min
p∈P
{< s, x > +∆(h(t, x) +B(t, x)p+ C(t, x)q)− f∗(s)}

The last relation generalizes the Hopf’s formula [Hopf, 1965], [Bardi, Osher, 1991] and
according to permutability of operators

sup
Rn
, max

q∈Q
, min

p∈P

coincides with the programming maximin formula [Krasovskii, Subbotin, 1974], [Ushakov,
1981] for the convex hull y→ f(y)

F (t,∆, u)(x) = max
q∈Q

min
p∈P

f(x+ ∆(h(t, x) +B(t, x)p+ C(t, x)q))

3 Properties of Operators with Generalized Gradients and
Convergence of Approximation Schemes

Approximation schemes for Hamilton-Jacobi equations were considered in the framework
of the theory of viscosity solutions [Crandall, Lions, 1984], [Souganidis, 1985]. Sufficient
conditions providing convergence of approximation schemes were formulated for finite dif-
ference operators. Explicit approximation schemes with operators of Lax-Friedrichs type
were analyzed in the work [Crandall, Lions, 1984]. Sufficient conditions of convergence of
approximation schemes were given in the work [Souganidis, 1985] and implicit approxima-
tion schemes with Lax-Friedrichs operators were developed.

We formulate now these sufficient conditions for convergence of approximation schemes
and check them for operator F (2.1) based on constructions of subdifferentials of local
convex hulls.

Theorem 3.1 Finite difference operator u→ F (t,∆, u) (2.1) based on subdifferentials of
local convex hulls satisfies the following conditions.

(F1) Compatibility : for ∆ = 0 the map F is the identity operator

F (t, 0, u)(x) = u(x), x ∈ Dt (3.1)

(F2) Continuity : Mapping (t,∆)→ F (t,∆, u) is continuous.
(F3) Additivity with constants : for all points x ∈ Dt and constants a ∈ R the equality

F (t,∆, u+ a)(x) = F (t,∆, u)(x) + a (3.2)

takes place.
(F4) Boundedness : there exists a constant C1 ≥ 0 such that for all x ∈ Dt the

following inequality holds

|F (t,∆, u)(x)− u(x)| ≤ C1, C1 = (r+ 2K)L∆ (3.3)

(F5) Monotonicity :

if u(x) ≥ v(x) for all x ∈ Dt+∆

then F (t,∆, u)(x) ≥ F (t,∆, v)(x) for all x ∈ Dt (3.4)
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(F6) Exponential growth : there exists a constant C2 ≥ 0 such that the inequality

‖F (t,∆, u)‖Dt ≤ exp(C2∆)(‖u‖Dt+∆
+C2∆) (3.5)

is valid.
Here

‖F (t,∆, u)‖Dt = max
x∈Dt

|F (t,∆, u)(x)|

‖u‖Dt+∆
= max

x∈Dt+∆

|u(x)|

By virtue of positive homogeneity (H5) of the Hamiltonian H one can assume C2 = 0.
(F7) Lipschitz continuity by variable x : there exists a constant C3 such that for all

xi ∈ Dt, i = 1, 2 the Lipschitz condition holds

|F (t,∆, u)(x1)− F (t,∆, u)(x2)| ≤ exp(C3∆)L‖x1 − x2‖ (3.6)

Here

C3 = L1(Gr)

(
1 +

r +K

r −K

)
L1(Gr) is a Lipschitz constant (H2) of the Hamiltonian H, L is a Lipschitz constant

of the function u on the set Dt+∆.
(F8) Generator type condition : there exists a constant C4 such that for all twice

differentiable functions ϕ : Dt+∆ → R and points x ∈ Dt ⊂ Dt+∆ the following estimate
holds ∣∣∣∣F (t,∆, ϕ)(x)− ϕ(x)

∆
−H(t, x,∇ϕ(x))

∣∣∣∣≤ C4‖∂2ϕ‖∆ (3.7)

C4 = r2 + 2Kr

(
2 +

r+K

r−K

)
Here

‖∂2ϕ‖ =
n∑
i,j

∥∥∥∥∥ ∂2ϕ

∂xi∂xj

∥∥∥∥∥ ,
∥∥∥∥∥ ∂2ϕ

∂xi∂xj

∥∥∥∥∥ = max
y∈Dt+∆

∣∣∣∣∣∂2ϕ(y)

∂xi∂xj

∣∣∣∣∣
Proof.
Arguments in proves of conditions (F1)-(F7) are similar. Therefore, omiting proves of

conditions (F1)-(F4), (F6), (F7) we give the proof of the monotonicity condition (F5). We
also present the proof of the generator type condition (F8) for Hamilton-Jacobi equation
(1.6).

Proof of condition (F5).
Let us introduce the following notations. By symbols f(y) and h(y) we denote convex

hulls of functions y → u(y) and y → v(y) respectively on the set O(x, r∆). Remind that
u(y) ≥ v(y) and, hence, f(y) ≥ h(y), y ∈ O(x, r∆).

Let us estimate the difference

dif = F (t,∆, u)(x)− F (t,∆, v)(x)

Let ε > 0, yε ∈ O(x,K∆), lε ∈ Dh(yε) be such that

dif ≥ F (t,∆, u)(x)−∆H(t, x, lε)− h(yε)+ < lε, yε − x > −ε

Consider the function ξ(y) = f(y)− < lε, y > on the set O(x,K∆). Let

y0 = arg min
y∈O(x,K∆)

(f(y)− < lε, y >)
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Two cases are possible.
Case 1. Let y0 ∈ O(x,K∆). Then lε ∈ Df(y0), since

f(y)− f(y0) ≥< lε, y − y0 >, y ∈ O(x,K∆), y0 ∈ O(x,K∆)

Hence, we have relations

dif ≥ ∆H(t, x, lε) + f(y0)− < lε, y0 − x > +

∆H(t, x, lε)− h(yε)+ < lε, yε − x > −ε ≥
f(y0)− h(yε)− < lε, y0 − yε > −ε ≥
h(y0)− h(yε)− < lε, y0 − yε > −ε ≥ −ε

According to the arbitrariness of ε > 0 we obtain the necessary inequality

F (t,∆, u)(x)− F (t,∆, v)(x) ≥ 0

Case 2. Let y0 ∈ ∂O(x,K∆). In this case we can repeat arguments of the proof of
Property 2.2 and obtain the monotonicity condition.

Proof of condition (F8).
By the symbol f(y) we denote the convex hull of the function y → ϕ(y) on the set

O(x,K∆). Let y ∈ O(x,K∆), l ∈ Df(y).
We estimate at first the expression

‖l−∇ϕ(x)‖ =< l−∇ϕ(x),
l −∇ϕ(x)

‖l−∇ϕ(x)‖ >

Let point z be given by the relation

z = y + α
(l−∇ϕ(x))

‖l −∇ϕ(x)‖ , 0 < α ≤ K∆− ‖y − x‖

One can check that z ∈ O(x,K∆), α = ‖z − y‖.
Then according to definition of a subgradient l ∈ Df(y) we get relations

‖l−∇ϕ(x)‖ =< l −∇ϕ(x),
(z − y)
‖z − y‖ >=

1

‖z − y‖(< l, z− y > − < ∇ϕ(x), z − y >) ≤

1

‖z − y‖(f(z)− f(y)− < ∇ϕ(x), z − y >)

Let

ε > 0, yk ∈ O(x, r∆), αk ≥ 0,
n+1∑
k=1

αkyk = y,
n+1∑
k=1

αk = 1

be such that

f(y) ≥
n+1∑
k=1

αkϕ(yk)− ε‖z − y‖

Then

‖l−∇ϕ‖ ≤ 1

‖z − y‖(f(z)−
n+1∑
k=1

αkϕ(yk)− < ∇ϕ(x), z− y >) + ε
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Let

zk = yk + (z − y)− (yk − y)‖z − y‖
h(y, α)

, k = 1, ..., n+ 1

h(y, α) = (r2∆2 − ‖y− x‖2 sin2 α)1/2 + ‖y − x‖ cosα

cosα =
< z − y, y − x >
‖z − y‖‖y − x‖

One can verify that

z =
n+1∑
k=1

αkzk, zk ∈ O(x, r∆), k = 1, ..., n+ 1

According to the Lagrange mean value theorem applied to the function y → ϕ(y) we
have relations

‖l−∇ϕ(x)‖ ≤ 1

‖z − y‖(
n+1∑
k=1

αkϕ(zk)−

n+1∑
k=1

αkϕ(yk)− < ∇ϕ(x), z− y >) + ε =

1

‖z − y‖(
n+1∑
k=1

αk < ∇ϕ(wk), (z − y)−
(yk − y)‖z − y‖

h(y, α)
> −

n+1∑
k=1

αk < ∇ϕ(x), z− y >) + ε

wk = yk + ϑk(zk − yk), 0 < ϑk < 1, wk ∈ O(x, r∆)

Taking into account the equality

n+1∑
k=1

αk < ∇ϕ(x), yk − y >=< ∇ϕ(x),
n+1∑
k=1

αkyk − y >= 0

we have the estimate

‖l −∇ϕ(x)‖ ≤ 1

‖z − y‖(
n+1∑
k=1

αk < ∇ϕ(wk)−∇ϕ(x), (z − y)− (yk − y)‖z − y‖
h(y, α)

>) + ε

We continue estimation by the Lagrange mean value theorem applied to the function
y →∇ϕ(y)

‖l −∇ϕ(x)‖ ≤ ‖∂2ϕ‖
n+1∑
k=1

αk‖wk − x‖
(
1 +
‖yk − y‖
h(y, α)

)
+ ε ≤

‖∂2ϕ‖r
(

1 +
r +K

r −K

)
∆ + ε

Due to arbitrariness of ε > 0 we obtain the inequality

‖l−∇ϕ(x)‖ ≤ ‖∂2ϕ‖r
(

1 +
r +K

r −K

)
∆ (3.8)
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We estimate now the following expression∣∣∣∣F (t,∆, ϕ)(x)− ϕ(x)

∆
−H(t, x,∇ϕ(x))

∣∣∣∣≤
1

∆
|f(x)− ϕ(x)|+ | 1

∆
sup

y∈O(x,K∆)
max

s∈Df(y)
{∆H(t, x, s) +

f(y)− f(x)− < s, y − x >} −H(t, x,∇ϕ(x))|

Let us evaluate the first term. Let

ε > 0, xk ∈ O(x, r∆), αk ≥ 0,
n+1∑
k=1

αkxk = x,
n+1∑
k=1

αk = 1

be such that
1

∆
|f(x)− ϕ(x)| ≤ 1

∆
|
n+1∑
k=1

αkϕ(xk)−
n+1∑
k=1

αkϕ(x)|+ ε

By the Lagrange mean value theorem we have

1

∆
|f(x)− ϕ(x)| ≤ 1

∆
|
n+1∑
k=1

αk < ∇ϕ(tk), xk − x > |+ ε

tk = xk + λk(xk − x), 0 < λk < 1, tk ∈ O(x, r∆), k = 1, ..., n+ 1

Since
n+1∑
k=1

αk < ∇ϕ(x), xk − x >= 0

then
1

∆
|f(x)− ϕ(x)| ≤ 1

∆
|
n+1∑
k=1

αk < ∇ϕ(tk)−∇ϕ(x), xk − x > |+ ε

Again by the Lagrange mean value theorem we have

1

∆
|f(x)− ϕ(x)| ≤ 1

∆
‖∂2ϕ‖

n+1∑
k=1

αk‖tk − x‖‖xk − x‖+ ε ≤

‖∂2ϕ‖r2∆ + ε

and, hence,
1

∆
‖f(x)− ϕ(x)‖ ≤ ‖∂2ϕ‖r2∆ (3.9)

Let us estimate the second term. For ε > 0 one can find a point yε ∈ O(x,K∆) and a
subgradient lε ∈ Df(yε) such that

| 1
∆

sup
y∈O(x,K∆)

max
s∈Df(y)

{∆H(t, x, s)+

f(y)− f(x)− < s, y − x >} −H(t, x,∇ϕ(x))| ≤

|H(t, x, lε)−H(t, x,∇ϕ(x))|+ 1

∆
|f(yε)− f(x)− < lε, yε − x > |+ ε =

|H(t, x, lε)−H(t, x,∇ϕ(x))|+ 1

∆
(f(x)− f(yε)− < lε, x− yε >) + ε =
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In the last inequality we take into account that according to definition of subdifferen-
tials the following relation holds

f(x)− f(yε)− < lε, x− yε >≥ 0

Using (3.8) one can estimate the first term in this sum

|H(t, x, lε)−H(t, x,∇ϕ(x))| ≤ ‖∂2ϕ‖Kr
(

1 +
r +K

r −K

)
∆ (3.10)

Let us evaluate the expression

1

∆
(f(x)− f(yε)− < lε, x− yε >)

Let

ε > 0, yk ∈ O(x, r∆), αk ≥ 0,
n+1∑
k=1

αkyk = yε,
n+1∑
k=1

αk = 1

be such that

1

∆
(f(x)− f(yε)− < lε, x− yε >) ≤

1

∆
(f(x)−

n+1∑
k=1

αkϕ(yk)− < lε, x− yε >) + ε

Assume

xk = yk + (x− yε) +
(yk − yε)‖x− yε‖
(r∆ + ‖x− yε‖)

One can verify that

x =
n+1∑
k=1

αkxk, xk ∈ O(x, r∆), k = 1, ..., n+ 1

Then by the Lagrange mean value theorem we obtain estimates

1

∆
(f(x)− f(yε)− < lε, x− yε >) ≤

1

∆
(
n+1∑
k=1

αkϕ(xk)−
n+1∑
k=1

αkϕ(yk)− < lε, x− yε >) + ε =

1

∆
(
n+1∑
k=1

αk < ∇ϕ(pk), (x− yε)−
(yk − yε)‖x− yε‖
(r∆ + ‖x− yε‖)

> −

< lε, x− yε >) + ε, pk = yk + µ(xk − yk)
0 < µk < 1, pk ∈ O(x, r∆), k = 1, ..., n+ 1

Taking into account the relation

n+1∑
k=1

αk < ∇ϕ(x), yk − yε >= 0



– 20 –

we have

1

∆
(f(x)− f(yε)− < lε, x− yε >) ≤

1

∆
(
n+1∑
k=1

αk < ∇ϕ(pk)−∇ϕ(x), x− yε > +

n+1∑
k=1

αk < ∇ϕ(x)− lε, x− yε > −

n+1∑
k=1

αk < ∇ϕ(pk)−∇ϕ(x), yk − yε >
‖x− yε‖

(r∆ + ‖x− yε‖)
) + ε ≤

1

∆
(‖∂2ϕ‖‖pk − x‖‖x− yε‖+ ‖∂2ϕ‖r

(
1 +

r +K

r −K

)
‖x− yε‖∆ +

‖∂2ϕ‖‖pk − x‖‖x− yε‖
‖x− yε‖

(r∆ + ‖x− yε‖)
) + ε ≤

1

∆
‖∂2ϕ‖‖x− yε‖(2‖pk − x‖+ r(1 +

r +K

r −K )∆) + ε ≤

∆‖∂2ϕ‖K(2r+ r(1 +
r+K

r−K )) + ε

Due to arbitrariness of ε > 0 we obtain the inequality

1

∆
(f(x)− f(yε)− < lε, x− yε >) ≤ ∆‖∂2ϕ‖Kr(3 +

r +K

r −K ) (3.11)

Combining inequalities (3.8), (3.11) we derive the necessary estimate∣∣∣∣F (t,∆, ϕ)(x)− ϕ(x)

∆
−H(t, x,∇ϕ(x))

∣∣∣∣≤
‖∂2ϕ‖r2∆ + ‖∂2ϕ‖Kr(1 +

r +K

r −K )∆ + ‖∂2ϕ‖Kr(3 +
r+K

r−K )∆ =

(r2 + 2Kr(2 +
r+K

r−K ))‖∂2ϕ‖∆ = C4‖∂2ϕ‖∆ 2

Using results of [Crandall, Lions, 1984], [Souganidis, 1985] about sufficiency of condi-
tions (F1)-(F8) for convergence of approximation schemes one can formulate the following
proposition.

Theorem 3.2 Let function w be the generalized solution of the boundary value problem
(1.6), (1.7) in domain Gr and for partition Γ = {t0 < t1 < ... < tN = ϑ} of interval T
with step ∆ = ti+1 − ti, i = 0, ..., N − 1 the approximation scheme with operator F (2.1)
be determined by formulas

uΓ(ϑ, x) = σ(x), x ∈ Dϑ

uΓ(t, x) = F (t, ti+1 − t, uΓ(ti+1, ·))(x) (3.12)

t ∈ [ti, ti+1), x ∈ Dt, i = 0, ..., N − 1

Then approximation scheme (3.12) converges to generalized solution w of problem
(1.6), (1.7) with the estimate of convergence ∆1/2

‖uΓ −w‖Gr ≤ C∆1/2 (3.13)

Here
‖uΓ −w‖Gr = max

(t,x)∈Gr
|uΓ(t, x)−w(t, x)|
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In practice we use a grid realization of operator F (t,∆, u). We define grid operator
F ∗(t,∆, u) as a piecewise linear function whose graph vertices are situated at nodes of the
fixed grid. For this purpose we need the following notations.

Let
(τ, x0) ∈ Gr, τ ∈ Γ, hi = γi∆ > 0, i = 1, ..., n

We define the spatial grid GR(τ) by the formula

GR(τ) = {y ∈ Rn : y = x0 +
∑

(m1h1e1 + ...+mnhnen), (τ, y) ∈ Gr,
mi = 0,±1,±2, ..., i = 1, ..., n}

Here vectors ei are basis vectors eji = 0, eii = 1, i, j = 1, ..., n, i 6= j in Rn.
Let D∗τ be the convex hull of the grid GR(τ)

D∗τ = {y ∈ Rn : y =
n∑
j=0

αjyj, yj ∈ GR(τ), αj ≥ 0,
n∑
j=0

αj = 1}

Let us fix t ∈ Γ, t+ ∆ ∈ Γ and a simplex partition Ω of the n-dimensional cube.
Assume that at time t + ∆ values of function u are given at nodes yj of the spatial

grid GR(t+ ∆). Define function u : D∗t+∆ → R as piecewise linear interpolation of these
values according to partition Ω. Assume that values of operator F (t,∆, u) are calculated
at nodes xj of spatial grid GR(t). We define operator F ∗ by piecewise linear interpolation
of values of operator F

F ∗(t,∆, u)(x) =
n∑
j=0

αjF (t,∆, u)(xj) (3.14)

x ∈ D∗t , x =
n∑
j=0

αjxj, xj ∈ GR(t), αj ≥ 0, j = 0, ..., n,
n∑
j=0

αj = 1

xm = x0 +
∑

(k1h1e1 + ...+ knhnen), m = 1, ..., n, ki = 0,±1, i = 1, ..., n

Coefficients αj = αj(Ω) and points xj = xj(Ω), j = 0, ..., n are determined uniquely
by partition Ω.

We can formulate for operator F ∗ the similar results as for operator F .

Theorem 3.3 Operator F ∗ (3.14) satisfies conditions (F1)-(F8) with parameters

C∗1 = (r + 2K +
√
nmax

i
γi)L∆ (3.15)

C∗2 = C2 = 0 (3.16)

C∗3 = C3 = L1(Gr)

(
1 +

r +K

r −K

)
(3.17)

C∗4 = (C4 + nmax
i
γ2
i +
√
nKmax

i
γi)‖∂2ϕ‖+

√
nL1(Gr) max

i
γi‖∇ϕ‖ (3.18)
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Theorem 3.4 Approximation scheme with operator F ∗

u∗Γ(ϑ, y) = σ∗(y) =
n∑
j=0

αjσ(yj), y ∈ D∗ϑ, y =
n∑
j=0

αjyj

αj = αj(Ω) ≥ 0,
n∑
j=0

αj = 1, yj = yj(Ω) ∈ GR(ϑ)

u∗Γ(t, x) = F ∗(t, ti+1 − t, u∗Γ(ti+1, ·))(x) (3.19)

t ∈ [ti, ti+1), x ∈ D∗t , i = 0, ..., N − 1

converges to the generalized solution w of the boundary value problem (1.6), (1.7) with the
estimate of convergence

‖u∗Γ − w‖G∗r ≤ C
∗∆1/2 (3.20)

Here
‖u∗Γ − w‖G∗r = max

(t,x)∈G∗r
|u∗Γ(t, x)− w(t, x)|

G∗r = {(t, x) ∈ Gr : t ∈ T, x ∈ D∗t }

Parameter C∗ in (3.20) depends only on Lipschitz constants of the payoff function σ

and the Hamiltonian H.

4 Algorithms for Computing Values of Operator F

We indicate now some properties of operator F which are necessary for computational
algorithms. Let us introduce the following notations

F (t,∆, ri, u)(x) = f(ri, x) + max
y∈O(x,K∆)

max
s∈Df(y)

{∆H(t, x, s) +

f(ri, y)− f(ri, x)− < s, y − x >}, i = 1, 2

F (t,∆, S, u)(x) = f(S, x) + max
y∈O(x,K∆)

max
s∈Df(y)

{∆H(t, x, s) +

f(S, y)− f(S, x)−< s, y − x >}

Here r2 > r1 > K, the set S = S(x, r1, r2,∆) is the convex polytope satisfying inclu-
sions

O(x, r1∆) ⊆ S(x, r1, r2,∆) ⊆ O(x, r2∆)

Functions f(S, ·), f(ri, ·) are convex hulls of the function u(·) on sets S(x, r1, r2,∆),
O(x, ri∆), i = 1, 2 respectively.

Property 4.4 Inequalities

F (t,∆, r1, u)(x) ≥ F (t,∆, S, u)(x)≥ F (t,∆, r2, u)(x) (4.1)

are valid for operator F .

Proof.
It is clear that convex hulls are connected by relations

f(r1, y) ≥ f(S, y) ≥ f(r2, y), y ∈ O(x, r∆)
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By definition of operator F the following equalities are valid

F (t,∆, ri, u)(x) = F (t,∆, ri, f(ri, ·))(x), i = 1, 2

F (t,∆, S, u)(x) = F (t,∆, S, f(S, ·))(x)

Combining these relations with monotonicity condition (F5) we obtain the necessary
chain of inequalities (4.1). 2

A peculiarity of operator F consists in the mathematical programming problem (2.1).
In the case when the convex hull f is a piecewise linear function and the Hamiltonian
H is a piecewise linear, positively homogeneous function by the impulse variable s this
mathematical programming problem can be reduced to solution of the series of linear
programming problem.

Assume that function u is piecewise linear. Then convex hull f(·) = f(S, ·) of function
u determined on convex polytope S(x, r1, r2,∆) is also piecewise linear. In particular, in
the neighborhood O(x,K∆) we can represent function f in the following way

f(y) = max
j

max
n

(< ljn, y − yj > +f(yj)), j = 1, ..., Nf, n = 1, ..., Nj

Here points yj and vectors ljn satisfy the following condition: for any point y ∈
O(x,K∆) there exists an index i0 ∈ J(y) such that for all i ∈ J(y) the inclusion holds

coL(y, i) ⊆ coL(y, i0)

J(y) = {i : max
n

(< lin, y − yi > +f(yi)) = max
j

max
n

(< ljn, y − yj > +f(yj))}

L(y, i) = {l = lik : < lik, y − yi >= max
n

< lin, y − yi >}

SubdifferentialDf(y) of function f at point y ∈ O(x,K∆) is determined by the formula

Df(y) = coL(y, i0(y))

Assume that at point yj , j = 1, ..., Nf the following relation takes place

i0 = i0(yj) = j

Then subdifferential Df(yj) of functionf at point yj ∈ O(x,K∆) is a convex polytope

Df(yj) = co{ljn : n = 1, ..., Nj} = coL(yj, j), j = 1, ..., Nf

It is clear that for any point y ∈ O(x,K∆) there exists a point yj0 such that

Df(y) ⊆ Df(yj0) (4.2)

Let us suppose that the Hamiltonian H is a piecewise linear, positively homogeneous
function with respect to variable s. For example, the Hamiltonian H satisfies these con-
ditions if control constraints P , Q are convex polytopes.

Let pk be vertices of polytope B(t, x)P and Lkp be cones of linearity

Lkp = Lkp(t, x) = {s ∈ Rn : < s, p− pk >≥ 0, p ∈ B(t, x)P}, k = 1, ..., Np

for the function
s→ min

p∈P
< s, B(t, x)p >

Analogously, let qm be vertices of polytope C(t, x)Q and Lmq be cones of linearity

Lmq = Lmq (t, x) = {s ∈ Rn : < s, q − qm >≤ 0, q ∈ C(t, x)Q}, m = 1, ..., Nq

for the function
s→ max

q∈Q
< s, C(t, x)q >
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Property 4.5 If the function u is piecewise linear, the Hamiltonian H is piecewise linear
and positively homogeneous as a function of s then operator F can be calculated by the
formula

F = F (t,∆, S, u)(x) = f(x) + max
j

max
k

max
m

max
s
{∆(< s, h(t, x) > +

< s, pk > + < s, qm >) + f(yj)− f(x)− < s, yj − x >} (4.3)

s ∈ Lj,k,m = Df(yj)
⋂
Lkp
⋂
Lmq

In this formula the set Lj,k,m = Lj,k,m(t, x) is a convex polytope and the maximized
function is linear by s. Thus, computation of operator F at point x is reduced to the series
of linear programming problems.

Proof.
One can verify that for y ∈ O(x,K∆), s ∈ Lk,m(x, y) = Df(S, y)

⋂
Lkp
⋂
Lmq the

Hamiltonian H is determined by the formula

H(t, x, s) =< s, h(t, x) > + < s, pk > + < s, qm >

Then

F (t,∆, S, u)(x) = f(S, x) + sup
y∈O(x,K∆)

max
s∈Df(S,y)

{∆H(t, x, s) +

f(S, y)− f(S, x)−< s, y − x >} =

f(S, x) + sup
y∈O(x,K∆)

max
k

max
m

max
s
{∆(< s, h(t, x) > + < s, pk > + < s, qm >) +

f(S, y)− f(S, x)−< s, y − x >}, s ∈ Lk,m(x, y) (4.4)

Let us assume by contradiction that in (4.4) there exists a point y ∈ O(x,K∆) such
that for all j = 1, ..., Nf the strict inequality holds

max
k

max
m

max
s∈Lk,m(x,y)

{∆(< s, h(t, x) > + < s, pk > + < s, qm >) +

f(S, y)− < s, y − x >} >
max
k

max
m

max
s∈Lj,k,m

{∆(< s, h(t, x) > + < s, pk > + < s, qm >) +

f(S, yj)− < s, yj − x >} (4.5)

Let parameters k0, m0, s0 realize maxima in the left-hand side of (4.5). According to
condition (4.2) for a point y ∈ O(x,K∆) there exists a point yj0 such that Df(S, y) ⊆
Df(S, yj0).

Hence,

s0 ∈ Df(S, y) ⊆ Df(S, yj0)

s0 ∈ Lk0,m0(x, y) ⊆ Lj0,k0,m0

According to definition of subdifferentials we have inequalities

f(S, yj0)− f(S, y) ≥< s0, yj0 − y >, since s0 ∈ Df(S, y)

f(S, y)− f(S, yj0)− f(S, y) ≥< s0, y − yj0 >, since s0 ∈ Df(S, yj0)

Therefore,
f(S, yj0)− < s0, yj0 − x >= f(S, y)− < s0, y − x >
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and, hence,

∆(< s0, h(t, x) > + < s0, pk > + < s0, qm >) + +f(S, y)− < s0, y − x >=

∆(< s0, h(t, x) > + < s0, pk > + < s0, qm >) + +f(S, yj0)− < s0, yj0 − x >

The last equality contradicts to (4.5) and, hence, relation (4.3) is valid. 2
We give now simple computational formulas for operator F (2.1) on the elementary

diamond of the phase space

S(x, r1, r2,∆) = co{x±∆γiei, i = 1, ..., n}

r1 =

(
n∑
i=1

γ−2
i

)−1/2

, r2 = max
i
γi, K < r1 ≤ r2

O(x, r1∆) ⊆ S(x, r1, r2,∆) ⊆ O(x, r2∆)

In particular, for γi = γ, i = 1, ..., n these conditions mean

r1 =
γ√
n
, r2 = γ

Function u is piecewise linear and can be determined on the set S(x, r1, r2,∆) by
relations

u(y) =
n∑
j=0

αju(yj), y ∈ S(x, r1, r2,∆) (4.6)

y0 = x, yi = x±∆γiei, i = 1, ..., n

y =
n∑
j=0

αjyj ,
n∑
j=0

αj = 1, αj ≥ 0

The convex hull f is also piecewise linear and can be defined by formulas

f(x±∆γiei) = u(x±∆γiei)

f(x) = min{u(x),min
i
{1
2
(u(x+ ∆γiei)− u(x−∆γiei))}} (4.7)

f(y) =
n∑
j=0

αjf(yj), y ∈ S(x, r1, r2,∆)

y0 = x, yi = x±∆γiei, i = 1, ..., n

y =
n∑
j=0

αjyj ,
n∑
j=0

αj = 1, αj ≥ 0

Subdifferential f(x) of function f at point x is a rectangular parallelepiped with sides
parallel to coordinate axes

Df(x) = co{ak : k = 1, ..., 2n}, ak = (a1
k, ..., a

n
k)

aik = ±f(x±∆γiei)− f(x)

∆γi
= ±u(x±∆γiei)− f(x)

∆γi
(4.8)

Operator F is determined by the formula

F = F (t,∆, S, u)(x) = f(x) + ∆ max
s∈Df(x)

H(t, x, s) =

= f(x) + ∆ max
k

max
m

max
s
{< s, h(t, x) > + < s, pk > + < s, qm >} (4.9)

s ∈ Lk,m(t, x) = Df(x)
⋂
Luk(t, x)

⋂
Lvm(t, x)
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5 Constructions of Nonsmooth Analysis in Finite Difference
Operators

We introduce finite difference operators similar to operator F (2.1) in which we use con-
structions of nonsmooth analysis. We indicate properties of these operators and show that
they complement each other giving complete description of grid schemes for constructing
value functions and optimal control synthesis.

At first we consider the finite difference operator G dual to operator F

G(t,∆, u)(x) = g(x) + inf
y∈O(x,r∆)

min
s∈Dg(y)

{∆H(t, x, s) + g(y)− g(x)− < s, y − x >} =

g(x) + min
y∈O(x,K∆)

min
s∈Dg(y)

{∆H(t, x, s) + g(y)− g(x)−< s, y − x >} (5.1)

t ∈ T, t+ ∆ ∈ T, t < ϑ, ∆ > 0, (t, x) ∈ Gr, r > K

Here function g(y) : O(x, r∆)→ R is the local concave hull of function u(y)

g(y) = sup{
n+1∑
k=1

αku(yk) : yk ∈ O(x, r∆), αk ≥ 0, k = 1, ..., n

n+1∑
k=1

αk = 1, y =
n+1∑
k=1

αkyk}, y ∈ O(x, r∆) (5.2)

The superdifferential Dg(y) of function g at point y ∈ O(x, r∆) is defined by the
formula

Dg(y) = {s ∈ Rn : g(z)− g(y) ≤< s, z − y >, z ∈ O(x, r∆)} (5.3)

Property 5.6 Operators F and G are connected by the inequality

G(t,∆, u)(x)≥ F (t,∆, u)(x), x ∈ Dt (5.4)

Proof.
It is obvious that

g(z) ≥ u(z), z ∈ O(x, r∆)

Then

u(z) ≤ g(z) ≤ g(y)+< s, z − y >, s ∈ Dg(y), z ∈ O(x, r∆), y ∈ O(x,K∆)

Let us introduce the linear function

z → w(z) = g(y)+ < s, z − y >

By monotonicity condition (F5) we have necessary relations

F (t,∆, u)(x) ≤ F (t,∆, w)(x) = w(x) + ∆H(t, x, s) +

w(y)− w(x)− < s, y − x >= ∆H(t, x, s) + g(y)− < s, y − x >≤ G(t,∆, u)(x) 2

On the elementary diamond S(x, r1, r2,∆) operator G is computed by formulas

G = G(t,∆, S, u)(x) = g(x) + ∆ min
s∈Dg(x)

H(t, x, s) =

g(x) + ∆ min
k

min
m

min
s
{< s, h(t, x) > + < s, pk > + < s, qm >} (5.5)
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s ∈ Lk,m(t, x) = Dg(x)
⋂
Luk(t, x)

⋂
Lvm(t, x)

g(x±∆γiei) = u(x±∆γiei), i = 1, ..., n

g(x) = max{u(x),max{1
2
(u(x+ ∆γiei)− (u(x−∆γiei))}}

Dg(x) = co{bk : k = 1, ..., 2n}, bk = (b1
k, ..., b

n
k)

bik = ±g(x±∆γiei)− g(x)
∆γi

= ±u(x ±∆γiei)− g(x)
∆γi

Proposition 5.1 The dual operator G has properties analogous to Properties 2.1 - 2.3,
4.4, 4.5 of operator F and satisfies conditions (F1) - (F8). Therefore, approximation
schemes (3.12), (3.19) with operator G converge to the generalized solution w (value func-
tion) and the convergence estimate has the order ∆1/2.

One can combine the lower operator F and the upper operator G by convolution with
coefficients

αi(x) ≥ 0, i = 1, 2, α1(x) + α2(x) = 1

into the universal operator E.
Assume that f(x) < g(x) and coefficients αi(x), i = 1, 2 determine the ratio of devia-

tion of function u from its convex f and concave g hulls

α1(x) =
g(x)− u(x)
g(x)− f(x)

, α2(x) =
u(x)− f(x)

g(x)− f(x)
(5.6)

For coefficients (5.6) the universal operator F is defined by formulas

E = E(t,∆, S, u)(x) = α1(x)F (t,∆, S, u)(x)+ α2(x)G(t,∆, S, u)(x) =

u(x) + ∆(α1(x) max
s∈Df(x)

H(t, x, s) + α2(x) min
s∈Dg(x)

H(t, x, s)) =

u(x) + ∆( max
s∈D∗u(x)

H(t, x, s) + min
s∈D∗u(x)

H(t, x, s)) (5.7)

D∗u(x) = α1(x)Df(x), D∗u(x) = α2(x)Dg(x) (5.8)

Property 5.7 The set D∗u(x) coincides with the subdifferential and the set D∗u(x) (5.8)
- with the superdifferential of function u at point x in the sense of [Demyanov, 1974].

Proof.
Remind that Demyanov’s subdifferential ∂∗u(x) and superdifferential ∂∗u(x) of func-

tion u (4.6) at point x is defined by relations

u(x+ h)− u(x) = ∂u(x)|(h) = lim
δ↓0

u(x+ δh)− u(x)
δ

=

max
s∈∂∗u(x)

< s, h > + min
s∈∂∗u(x)

< s, h > (5.9)

We can obtain the necessary equalities ∂∗u(x) = D∗u(x), ∂
∗u(x) = D∗u(x) by trans-

forming the sum

max
s∈D∗u(x)

< s, h > + min
s∈D∗u(x)

< s, h >=

α1(x) max
s∈Df(x)

< s, h > +α2(x) min
s∈Dg(x)

< s, h >=

g(x)− u(x)
g(x)− f(x)

n∑
i=1

(u(x+ ∆γieisign(hi))− f(x))hi
γi∆

−
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u(x)− f(x)

g(x)− f(x)

n∑
i=1

(g(x)− u(x+ ∆γieisign(hi)))hi
γi∆

=

1

g(x)− f(x)
(−u(x)(g(x)− f(x))

n∑
i=1

hi
γi∆

+

(g(x)− f(x))
n∑
i=1

u(x+ ∆γieisign(hi))hi
γi∆

) =

n∑
i=1

(u(x+ ∆γieisign(hi))− u(x))hi
γi∆

= u(x+ h)− u(x) 2

Property 5.8 The following relations for subdifferentialDf(x) and superdifferentialDg(x)
are valid

c ∈ Df(x)
⋂
Dg(x) 6= ∅, c = (c1, ..., cn) (5.10)

ci =
u(x+ ∆γiei)− u(x−∆γiei)

2γi∆
, i = 1, ..., n (5.11)

c =
1

M

M∑
k=1

ak =
1

M

M∑
k=1

bk, M = 2n (5.12)

g(x)− f(x) ≥ ∆ max
s∈Df(x)

H(t, x, s)−∆ min
s∈Dg(x)

H(t, x, s) ≥ 0 (5.13)

Proof.
Let us compose the convolution of vectors ak with coefficients

γk =
1

M
, γk > 0,

M∑
k=1

γk = 1,
M∑
k=1

γkak ∈ Df(x)

According to definition of vectors ak (4.8) we have relations

M∑
k=1

aik = 2n−1u(x+ ∆γiei)− u(x−∆γiei)

γi∆
, i = 1, ..., n

Hence,

1

M

M∑
k=1

aik =
u(x+ ∆γiei)− u(x−∆γiei)

2γi∆
, i = 1, ..., n

Thus,

c =
1

M

M∑
k=1

ak ∈ Df(x)

Analogously one can prove that

c =
1

M

M∑
k=1

bk ∈ Dg(x)

Therefore, relations (5.10)-(5.12) are valid.
The first inequality in (5.13) follows from Property 5.6 G ≥ F . The second inequality

is fulfilled since the intersection of subdifferential and superdifferential is nonempty (5.10).
2
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Property 5.9 The universal operator E can be represented in the form of operators F
and G

E(t,∆, S, u)(x) = F (t,∆, Sβ, u)(x) = G(t,∆, Sβ, u)(x) (5.14)

determined on diamond Sβ

Sβ = co{x± β∆γiei, i = 1, ..., n}

β =
∆(D− d)
g(x)− f(x)

, 0 ≤ β ≤ 1

D = max
s∈Df(x)

H(t, x, s), d = min
s∈Dg(x)

H(t, x, s)

Operator E provides in many cases the precise value of solution at point x for the
guaranteed control problem with the simple motion and positively homogeneous payoff
function

dy

dτ
= h(t, x) +B(t, x)p+C(t, x)q (5.15)

τ ∈ [t, t+ ∆], y ∈ Rn, p ∈ P, q ∈ Q
J(y(·)) = u(y(t+ ∆)) (5.16)

The following boundary value problem for Hamilton-Jacobi equation (Riemann prob-
lem [Bardi, Osher, 1991]) corresponds to the guaranteed control problem (5.15), (5.16)

∂w(τ, y)

∂τ
+ <

∂w(τ, y)

∂y
, h(t, x) > +

min
p∈P

<
∂w(τ, y)

∂y
, B(t, x)p > +max

q∈Q
<
∂w(τ, y)

∂y
, C(t, x)q >= 0 (5.17)

w(t+ ∆, y) = u(y) (5.18)

Let us note that operator F determines solution w of problem (5.17), (5.18) in the
following cases.

1. Assume that the attainability set

AS(t, x,∆) = {f ∈ Rn : f = x + ∆(h(t, x) +B(t, x)p+C(t, x)q), p ∈ P, q ∈ Q}
(5.19)

is contained in diamond Sβ
AS(t, x,∆)⊆ Sβ (5.20)

Then operator F (t,∆, Sβ, u) is the programming maximin and operator G(t,∆, Sβ, u)
is the programming minimax. Hence, their coincidence provides relations

w(t, x) = F (t,∆, Sβ, u) = G(t,∆, Sβ, u) = E(t,∆, S, u) (5.21)

2. If the boundary value function y → u(y) is convex then α2 = 0 and operator E
turns into the programming maximin or Hopf’s formula

w(t, x) = E(t,∆, S, u) = F (t,∆, Sβ, u) =

u(x) + ∆ max
s∈Du(x)

H(t, x, s), f(x) = u(x) ≤ g(x) (5.22)

For the concave boundary value function y → u(y) coefficient α1 is equal to zero and
the dual relation takes place

w(t, x) = E(t,∆, S, u) = G(t,∆, Sβ, u) =

u(x) + ∆ min
s∈Du(x)

H(t, x, s), f(x) ≤ u(x) = g(x) (5.23)
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Proposition 5.2 Values of the universal operator E are bounded by values of the lower
operator F and the upper operator G

F ≤ E ≤ G (5.24)

Therefore, convergence of approximation schemes (3.12), (3.19) with operators F and
G implies convergence of these schemes with operator E.

6 Mean Square Generalized Gradients

As it was mentioned above operators F , G, E provide in many cases precise values for the
solution of the guaranteed control problem with the simple motion - Riemann problem
for the corresponding Hamilton-Jacobi equation. In this sense they can be regarded as
best approximations of solutions. But we should point out the algorithmic and computa-
tional complexity of these formulas containing the series of linear programming problems.
Therefore, we propose now the finite difference operator with the simplier structure based
on local linear hulls and their gradients (generalized gradients of the approximate solu-
tion) defined by the method of least squares. Let us note that similar constructions were
considered in optimization theory [Batukhtin, Maiboroda, 1984], [Ermoliev, Norkin, Wets,
1995].

Let us fix a node x ∈ GR(t) and its neighborhood of radius r1∆, r1 = Nγ, N ≥ 1
given in ρ1-metric

O(x, r1∆) = {y ∈ D∗t+∆ : ρ1(x, y) ≤ r1∆} (6.1)

ρ1(x, y) = max
i
|xi − yi|, i = 1, ..., n (6.2)

The number of nodes yl of the gridGR(t+∆) belonging to the neighborhood O1(x, r1∆)
is determined as M = (2N + 1)n. Assume that at nodes yl values

U = {u(yl) : l = 1, ...,M}

of the function y → u(y) are given.
Let

y → L(y) =< A, y > +B : O1(x, r1∆)→ R (6.3)

be the hyperplane determined by the method of least squares with respect to the value
set U

min
A,B

M∑
l=1

(u(yl)− (< A, yl > +B))2 (6.4)

Condition (6.3) leads to the system of linear equations with respect to parameters A,
B of the hyperplane L

M∑
l=1

< A, ξl > ξl =
M∑
l=1

u(yl)ξl, ξl = yl − x0 (6.5)

B = − < A, x0 > +u0 (6.6)

x0 = x =
1

M

M∑
l=1

yl, u0 =
1

M

M∑
l=1

u(yl) (6.7)

The system (6.5) is a symmetric one and can be written in the form

ΦA = ψ, Φ = {ϕij}, ψ = (ψ1, ..., ψn) (6.8)
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ϕij =
M∑
l=1

ξilξ
j
l , i, j = 1, ..., n, ψ =

M∑
l=1

u(yl)ξl (6.9)

The symmetry of the set O1(x, r1∆) with respect to coordinate planes provides the
diagonal structure of matrix Φ

ϕii = 2(12 + 22 + ...+N 2)(2N + 1)n−1h2 =
1

3
N (N + 1)(2N + 1)nh2, ϕij = 0 (6.10)

ψi = h
∑
η

N∑
k=1

k(u(x+ khei + η)− u(x− khei + η)) (6.11)

η = (η1, ..., ηn), ηi = 0, ηj = ±l
h = γ∆, j 6= i, i, j = 1, ..., n, l = 0, ..., N

Hence, vector A is determined by the formula

A = (A1, ..., An), Ai =
ψi
ϕii

, i = 1, ..., n (6.12)

The principal point consists in the fact that the local linear hull is situated between
convex and concave hulls in the neighborhood O2(x, r2∆) of a smaller radius r2 < r1 given
in the metric ρ2

O(x, r2∆) = {y ∈ D∗t+∆ : ρ2(x, y) ≤ r2∆} (6.13)

ρ2(x, y) =
n∑
i

|xi − yi| (6.14)

Lemma 6.1 Let radiuses r1, r2 of neighborhoods O1(x, r1∆), O2(x, r2∆) be connected by
the inequality

r2 ≤
r1

3
(6.15)

Then the local linear L(y), concave g(y) and convex f(y) hulls constructed in the
neighborhood O1(x, r1∆) satisfy estimates

f(y) ≤ L(y) ≤ g(y), y ∈ O2(x, r2∆) (6.16)

in the neighborhood O2(x, r2∆).

Proof.
Let us remind that the convex hull y → f(y) and the concave hull y → g(y) of the

function y → u(y) in the neighborhood O1(x, r1∆) are determined by relations

f(y) = inf{
n+1∑
k=1

αku(yk) : yk ∈ O1(x, r1∆),

n+1∑
k=1

αkyk = y, αk ≥ 0,
n+1∑
k=1

αk = 1} (6.17)

g(y) = sup{
n+1∑
k=1

βku(yk) : yk ∈ O1(x, r1∆),

n+1∑
k=1

βkyk = y, βk ≥ 0,
n+1∑
k=1

βk = 1} (6.18)
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We prove at first that the linear hull y → L(y) of the function y → u(y) can be
represented in the form analogous to (6.17), (6.18)

L(y) =
M∑
l=1

γl(y)u(yl), y ∈ O1(x, r1∆)

According to (6.5), (6.7) we have

L(y) =< A, y > +B =< A, y − x0 > +u0 =

1

M

M∑
l=1

(
u(yl) +

n∑
i=1

3(yi − xi0)(yil − xi0)
N (N + 1)h2

u(yl)

)

Then for coefficients γl(y), l = 1, ...,M we obtain expressions

γl(y) =
1

M

(
1 +

n∑
i=1

3(yi − xi0)(yil − xi0)
N (N + 1)h2

)
(6.19)

Let us prove that coefficients γl(y) satisfy conditions

M∑
l=1

γl(y)yl = y,
M∑
l=1

γl(y) = 1 (6.20)

We have
M∑
l=1

γl(y) = 1 +
1

M

n∑
i=1

3(yi − xi0)
N (N + 1)h2

M∑
l=1

(yil − xi0) = 1

since according to (6.7) the equality

M∑
l=1

(yil − xi0) = 0

is valid.
Let us calculate the sum

M∑
l=1

γl(y)y
j
l =

1

M

M∑
l=1

(
1 +

n∑
i=1

3(yi − xi0)(yil − xi0)
N (N + 1)h2

)
yjl =

xj0 +
1

M

n∑
i=1

3(yi − xi0)
N (N + 1)h2

M∑
l=1

(yil − xi0)y
j
l =

x
j
0 +

1

M

n∑
i=1

3(yi − xi0)
N (N + 1)h2

M∑
l=1

(yil − xi0)(y
j
l − x

j
0) (6.21)

The last equality holds because

M∑
l=1

(yil − xi0)x
j
0 = x

j
0

M∑
l=1

(yil − xi0) = 0

In relation (6.21) all terms in the sum are equal to zero when i 6= j

M∑
l=1

(yil − xi0)(y
j
l − x

j
0) = 0
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When i = j we obtain the nonzero term

1

M

3(yj − xj0)
N (N + 1)h2

M∑
l=1

(yjl − x
j
0)(y

j
l − x

j
0) = yj − xj0

Hence,
M∑
l=1

γl(y)y
j
l = yj

Thus, relations (6.20) are proved.
Let us find the set of points y for which coefficients γl(y) are nonnegative

γl(y) ≥ 0, l = 1, ...,M (6.22)

From (6.22) it follows

1 +
n∑
i=1

3(yi − xi0)(yil − xi0)
N (N + 1)h2

≥ 0, l = 1, ...,M

Coefficients γl(y) achieve least values when

yil − xi0 = −sign(yi − xi0)Nh

Then we obtain relations

n∑
i=1

|yi − xi0| ≤
(N + 1)h

3
=
r1∆

3

(
1 +

1

N

)
(6.23)

Let us consider the neighborhood O2(x, r2∆) of point x = x0 of radius r2∆ in ρ2-metric

r2∆ =
r1∆

3
≤ r1∆

3

(
1 +

1

N

)
In this neighborhood for coefficients {γl(y)} conditions (6.20) and (6.22) are fulfilled.

Remind that these conditions hold for coefficients αk, βk in definitions (6.17), (6.18) of
convex f(y) and concave g(y) hulls in which lower and upper bounds are calculated. Hence,
estimates (6.16) are valid. 2

Remark 6.1 For the radius
r3 =

r2

n
=
r1

3n
(6.24)

the estimates
f(y) ≤ L(y) ≤ g(y), y ∈ O1(x, r3∆) (6.25)

are valid in the neighborhood O1(x, r3∆) given in ρ1-metric.
Analogously, for the radius

r4 =
r2√
n

=
r1

3
√
n

(6.26)

inequalities
f(y) ≤ L(y) ≤ g(y), y ∈ O(x, r4∆) (6.27)

hold in the neighborhood O(x, r4∆) given in Euclidean metric.
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Assume
r1 > 3

√
nK (6.28)

and define the finite difference operator with the generalized gradient A of the local linear
hull L

LA(t,∆, u)(x) = F (t,∆, L)(x) = G(t,∆, L)(x) =

u0 + ∆H(t, x, A)+< A, x− x0 >= u0 + ∆H(t, x, A) (6.29)

Relations (6.16), (6.28), (6.29) provide estimates for operators LA, F, G.

Lemma 6.2 Let local hulls L(y), f(y), g(y) be constructed in the neighborhood O1(x, r1∆)
where parameter r1 be determined by relation (6.28).

Then values of operators LA, F and G at point x satisfy inequalities

F (t,∆, u)(x) ≤ LA(t,∆, u)(x)≤ G(t,∆, u)(x) (6.30)

Proof.
According to (6.16), (6.28) inequalities

f(y) ≤ L(y) ≤ g(y), y ∈ O(x,K∆) (6.31)

are fulfilled in the neighborhood

O(x,K∆) ⊂ O2(x, r2∆), r2 =
r1

3
>
√
nK

Remind that operators F and G satisfy the monotonicity condition. Therefore, rela-
tions (6.28), (6.31) imply the chain of necessary inequalities

F (t,∆, u)(x) = F (t,∆, f)(x)≤ F (t,∆, L)(x) =

LA(t,∆, u)(x) = G(t,∆, L)(x)≤ G(t,∆, g)(x) = G(t,∆, u)(x) 2

Lemma 6.2 implies the convergence result for approximation schemes with operator
LA.

Proposition 6.1 Values of the mean square operator LA are bounded by values of the
lower operator F and the upper operator G (6.30). Therefore, convergence of approxima-
tion schemes (3.12), (3.19) with operators F and G implies convergence of these schemes
with operator LA.

Let us compare the introduced operators with the known constructions of control
theory and theory of Hamilton-Jacobi equations.

Remark 6.2 Operator LA coincides with Lax-Friedrichs operator [Lax, 1954], [Osher,
Shu, 1991]

LF (t, x,∆)(x) = (1−
n∑
i=1

αi)u(x) +

1

2

n∑
i=1

αi(u(x+ γ∆ei) + u(x− γ∆ei)) + ∆H(t, x, c) (6.32)
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on the elementary diamond

S(x, γ,∆) = {y ∈ Rn :
n∑
i=1

|yi − xi| ≤ γ∆}

under conditions

αi =
2

2n+ 1
, i = 1, ..., n, γ > 3

√
nK (6.33)

Vector c in (6.32) is determined by relations (5.10),(5.11).

Remark 6.3 According to Property 2.3 operator F is the maximin formula on the local
convex hull. Analogously, operator G is the minimax formula on the local concave hull.

Therefore, maximin PMM∗ and minimax PMM∗ operators (see, for example, [Krasovskii,
Subootin, 1974], [Pshenichnyi, 1969], [Ushakov, 1980], [Souganidis, 1985])

PMM∗ = max
q∈Q

min
p∈P

u(x+ ∆(h(t, x) + B(t, x)p+ C(t, x)q)) (6.34)

PMM∗ = min
p∈P

max
q∈Q

u(x+ ∆(h(t, x) +B(t, x)p+C(t, x)q)) (6.35)

are connected with operators F , G by relations

F (t,∆, u)(x)≤ PMM∗(t,∆, u)(x)≤ PMM∗(t,∆, u)(x)≤ G(t,∆, u)(x) (6.36)

Convergence of approximation schemes with operators F , G implies convergence of
approximation schemes with operators PMM∗, PMM∗.

Remark 6.4 In operators F , G, E, LA dynamics of the attainability set AS(t, x,∆)
(5.19) is evaluated locally by the set O(x, r∆). If attainability sets are nonsymmetric
with respect to points x then this evaluation is rather rough. In this case approximations
in operators F , G, E, LA can be improved by finding the Chebyshev center x and the
Chebyshev radius r of the attainability set AS(t, x,∆) and introducing its neighborhoods
O(x, r∆) in different metrics instead of the set O(x, r∆).

7 Optimal Control Synthesis and Generalized Gradients in
Grid Schemes

We propose now modifications of the method of extremal shift [Krasovskii, 1985], [Krasovskii,
Subbotin, 1974, 1988], [A.N. Krasovskii, N.N. Krasovskii, 1995] in the direction of gen-
eralized gradients of operators F , G, LA and prove optimality properties for designed
trajectories. Let us note that rules of extremal aiming by quasigradients defined in the
sense of Yosida-Moreau transformations were analyzed in the work [Garnysheva, Subbotin,
1994].

We give also the procedure realizing the extremal shift method in grid schemes. Values
of generalized solutions of Hamilton-Jacobi equations, generalized gradients of local (linear,
convex, concave) hulls and optimal feedbacks are calculated in parallel via the unique grid
scheme.

In the grid scheme values of optimal feedbacks exist only at nodes. For constructing
optimal trajectories which can slide between nodes of the grid it is necessary to solve
the problem on interpolating values of optimal feedbacks to internal points. Different
interpolants: piecewise constant, piecewise minimum, piecewise linear, are analyzed and
their properties are studied. The question of correlation between spatial and temporal
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grids is solved. In the general case the higher order density of the spatial mesh with
respect to the temporal mesh provides optimality properties for designed trajectories.
The quasiconvexity property of grid functions approximating generalized solutions (value
functions) provides the linear dependence of space-time grids.

Let us consider the problem of synthesizing optimal guaranteed feedbacks (t, x) →
U0(t, x). For this purpose we use operator G or operator PMM∗ which can be interpreted
as minimax formulas defined on the local concave hull g or the local approximate function
u respectively

G(t,∆, u)(x) = g(x) + min
y∈O(x,K∆)

min
s∈Dg(y)

{∆H(t, x, s) +

g(y)− g(x)−< s, y − x >} = min
p∈P

max
q∈Q

g(y(t, x,∆, p, q)) (7.1)

PMM∗ = min
p∈P

max
q∈Q

u(y(t, x,∆, p, q)) (7.2)

Here Euler spline y is determined by relations

y(t, x,∆, p, q) = x + ∆(h(t, x) +B(t, x)p+C(t, x)q)

t ∈ T, t+ ∆ ∈ T, t < ϑ, ∆ > 0, (t, x) ∈ Gr, r > K

Let us examine the approximation scheme with operator G (7.1) for partition Γ of
interval T with step ∆

uΓ(ϑ, x) = σ(x), x ∈ Dϑ

uΓ(t, x) = G(t, ti+1 − t, uΓ(ti+1, ·))(x) (7.3)

t ∈ [ti, ti+1), x ∈ Dt, i = 0, ..., N − 1

Assume that the approximate function uΓ is constructed at all points (t, x), t ∈ Γ,
x ∈ Dt. Let us define values of the optimal feedback U0 = U0(t, x) at points (t, x) by the
method of extremal shift using operator G and its generalized gradients - superdifferentials
of local concave hulls

U0 = U0(t, x) = argmin
p∈P

< s0, B(t, x)p > (7.4)

s0 = s0(t, x, y0) = arg min
s∈Dg(y0)

{∆H(t, x, s) + g(y0)− < s, y0 − x >} (7.5)

y0 = y0(t, x) = arg min
y∈O(x,K∆)

min
s∈Dg(y)

{∆H(t, x, s) + g(y)− < s, y − x >} (7.6)

Remark 7.1 According to the minimax formula (7.1) the optimal feedback U0 (7.4) is
determined also by relations

U0 = U0(t, x) = argmin
p∈P

max
q∈Q

g(y(t, x,∆, p, q)) (7.7)

Remark 7.2 The dual operators F , PMM∗ can be used in approximation schemes for
constructing optimal feedbacks (t, x)→ V 0(t, x).

Lemma 7.1 For the optimal feedback U0 (7.4) the basic inequality is valid on the Euler
spline y

max
q∈Q

uΓ(t+ ∆, y(t, x,∆, U0, q)) ≤ uΓ(t, x) (7.8)
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Proof.
For any control parameter q ∈ Q we have according to definitions of operator G and

feedback U0 the necessary chain of inequalities

uΓ(t+ ∆, y(t, x,∆, U0, q)) ≤ g(y(t, x,∆, U0, q)) ≤ max
q∈Q

g(y(t, x,∆, U0, q)) =

inf
s∈Rn

(< s, x > +∆(< s, h(t, x) > + < s, B(t, x)U0 > +

max
q∈Q

< s, C(t, x)q >)− inf
y∈Rn

(< s, y > −g(y))) =

min
y∈O(x,K∆)

min
s∈Dg(y)

(< s, x > +∆(< s, h(t, x) > + < s, B(t, x)U0 > +

max
q∈Q

< s, C(t, x)q >)− < s, y > +g(y)) =

min
s∈Dg(y0)

(< s, x > +∆(< s, h(t, x) > + < s, B(t, x)U0 > +

max
q∈Q

< s, C(t, x)q >)− < s, y0 > +g(y0)) =

∆(< s0, h(t, x) > + < s0, B(t, x)U0 > +max
q∈Q

< s0, C(t, x)q >)−

< s0, y0 − x > +g(y0) = ∆H(t, x, s0)− < s0, y0 − x > +g(y0) = uΓ(t, x) 2

Inequality (7.8) can be transformed for a modification of the Euler spline y

y(t, x,∆, U0, q(·)) = x + ∆(h(t, x) +B(t, x)U0) +
∫ t+∆

t
C(τ, x)q(τ)dτ

Here programming control τ → q(τ) : [t, t+∆)→ Q is a Lebesgue measurable function.

Lemma 7.2 The optimal feedback U0 (7.4) provides estimates

sup
q(·)

uΓ(t+ ∆, y(t, x,∆, U0, q(·)))≤ uΓ(t, x) + LwL2K∆2 (7.9)

Proof.
Taking into account Lipschitz conditions (H2), (H4) for the HamiltonianH , convexity

of the control set Q and using the integral mean value theorem we obtain relations∫ t+∆

t
C(τ, x)q(τ)dτ =

∫ t+∆

t
(C(τ, x)− C(t, x))q(τ)dτ +

C(t, x)

∫ t+∆

t
q(τ)dτ = ε(∆)∆ +C(t, x)∆q, q ∈ Q

‖ε(∆)‖ ≤ L2K∆

Then the basic inequality (7.8) and the Lipschitz continuity of the approximate function
uΓ with the constant Lw imply the necessary inequality (7.9). 2

We apply now basic inequalities (7.8), (7.9) to derivation of optimality properties for
Euler trajectories generated by feedback U0

x(·) = {x(t, t∗, x∗, U0, q(·)) : t ∈ Γ
⋂

[t∗, ϑ], t∗ ∈ Γ, x∗ ∈ Dt∗} (7.10)

x(ti+1) = x(ti + ∆) = x(ti) + ∆(h(ti, x(ti)) +B(ti, x(ti))U
0) +∫ ti+∆

ti

C(τ, x(ti))q(τ)dτ, x(t∗) = x∗, ti, ti+1 ∈ Γ



– 38 –

Theorem 7.1 For any partition Γ, initial position (t∗, x∗) and Lebesgue measurable con-
trol τ → q(τ) : [t∗, ϑ) → Q the trajectory (7.10) generated by feedback U0 satisfies the
estimate

σ(x(ϑ)) ≤ uΓ(t∗, x∗) + LwL2K(ϑ− t∗)∆ (7.11)

and, hence, by Theorem 3.2

σ(x(ϑ)) ≤ w(t∗, x∗) + C∆1/2 + LwL2K(ϑ− t∗)∆ (7.12)

Fixing an arbitrary number ε > 0 one can indicate step ∆ of partition Γ providing the
estimate

σ(x(ϑ)) < w(t∗, x∗) + ε

Proof.
By induction inequality (7.9) implies the estimate

uΓ(ti, x(ti, t∗, x∗, U
∗, q(·)))≤ uΓ(t∗, x∗) + (ti − t∗)∆−1LwL2K∆2

which provides relation (7.11) when ti = ϑ.
Inequality (7.12) follows from estimates (3.13), (7.11). 2

Remark 7.3 For trajectories x(·) generated by feedback UP

UP = UP (t, x) = argmin
p∈P

max
q∈Q

uΓ(t+ ∆, y(t, x,∆, p, q)) (7.13)

in the approximation scheme with minimax operator PMM∗ (7.2) estimates (7.9), (7.12)
are fulfilled.

In reality approximation scheme (7.3) can be realized only at nodes of grid GR(t) but
not in the whole domain Dt, t ∈ Γ. Let us assume that grid GR(t), t ∈ Γ is rectangular
and uniform

GR(t) = {y ∈ Dt : y =
∑

(m1e1 + ...+mnen)γ∆} (7.14)

mi = 0,±1,±2, ..., i = 1, ..., n

ei = (e1
i , ..., e

n
i ), eii = 1, eji = 0, i 6= j

We define values of operator G only at nodes yj of grid GR(t) and interpolate them
linearly into domain D∗t

D∗t = {y ∈ Rn : y =
n∑
j=0

αjyj, yj ∈ GR(t), αj ≥ 0,
n∑
j=0

αj = 1}

according to the given simplicial partition Ω.
Practically we introduce operator y→ G∗(t,∆, u)(y) : D∗t → R

G∗(t,∆, u)(y) =
n∑
j=0

αjG(t,∆, u)(yj) (7.15)

y ∈ D∗t , y =
n∑
j=0

αjyj, yj ∈ GR(t), αj ≥ 0,
n∑
j=0

αj = 1

Here numbers αj = αj(Ω) and nodes yj = yj(Ω) are determined by partition Ω.
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Let us consider the approximation scheme with operator G∗ (7.15) for partition Γ of
interval T with step ∆

u∗Γ(ϑ, y) = σ∗(y) =
n∑
j=0

αjσ(yj), y ∈ D∗ϑ, y =
n∑
j=0

αjyj

n∑
j=0

αj = 1, αj = αj(Ω) ≥ 0, yj = yj(Ω) ∈ GR(ϑ), j = 0, ..., n

u∗Γ(t, x) = G∗(t, ti+1 − t, u∗Γ(ti+1, ·))(x) (7.16)

t ∈ [ti, ti+1), x ∈ D∗t , i = 0, ..., N − 1

Assume that the approximate function u∗Γ is calculated at all points (t, y), y ∈ D∗t ,
t ∈ Γ. Let us determine at first values of the optimal feedback U∗ = U∗(t, x) at nodes x
of grid GR(t), t ∈ Γ using operator G(t,∆, u∗Γ(t+ ∆, ·))(x) = G∗(t,∆, u∗Γ(t+ ∆, ·))(x)

U∗ = U∗(t, x) = argmin
p∈P

< s∗, B(t, x)p > (7.17)

s∗ = s∗(t, x) = arg min
s∈Dg(y∗)

{∆H(t, x, s) + g(y∗)− < s, y∗ − x >}

y∗ = y∗(t, x) = arg min
y∈O(x,K∆)

min
s∈Dg(y)

{∆H(t, x, s)+ g(y)−< s, y − x >}

We define the optimal feedback UC(t, y) in domain y ∈ D∗t , t ∈ Γ by the piecewise
constant interpolation of values {U∗(t, x)} (7.17) calculated at nodes x ∈ GR(t), t ∈ Γ
neighboring to points y

UC(t, y) = U∗(t, x), x = x(y) = arg min
z∈GR(t)

‖y − z‖ (7.18)

Let us introduce the Euler trajectory

y(·) = {y(t, t∗, y∗, UC, q(·)) : t ∈ Γ
⋂

[t∗, ϑ]} (7.19)

generated by feedback UC (7.17), (7.18) and an arbitrary Lebesgue measurable control
τ → q(τ) : [t∗, ϑ)→ Q

y(ti+1) = y(ti + ∆) = y(ti) + ∆(h(ti, y(ti)) + B(ti, y(ti))U
C) +∫ ti+∆

ti

C(τ, y(ti))q(τ)dτ, y(t∗) = y∗, ti, ti+1 ∈ Γ
⋂

[t∗, ϑ] (7.20)

For trajectory y(·) (7.19) we define accompanying points

(x−(ti), x+(ti+1)) (7.21)

by relations
x−(ti) = x(y(ti)) = arg min

z∈GR(t)
‖y(ti)− z‖ (7.22)

x+(ti+1) = x−(ti) + ∆(h(ti, x−(ti)) + B(ti, x−(ti))U
C) +∫ ti+∆

ti

C(τ, x−(ti))q(τ)dτ, ti, ti+1 ∈ Γ
⋂

[t∗, ϑ] (7.23)

Lemma 7.3 For trajectory y(·) (7.19) and accompanying points {(x−(ti), x+(ti+1))} (7.21)
the estimate

‖y(ti+1)− x+(ti+1)‖ ≤ (1 + L1∆)‖y(ti)− x−(ti)‖+ 2L2K∆2 (7.24)

is valid.
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Lemma 7.4 Let parameter γ of grid GR(t), t ∈ Γ be an infinitesimal value with respect
to step ∆

γ = ε(∆), lim
∆→0

ε(∆) = 0

for example,
γ = ρ∆a, a > 0, ρ > 0 (7.25)

and, hence, step h of the spatial grid GR(t) is a high order infinitesimal value

h = ρ∆1+a (7.26)

with respect to the time step ∆.
Then the basic inequality for function u∗Γ is valid

u∗Γ(ti, y(ti)) ≥ u∗Γ(ti+1, y(ti+1))− Lw(

√
n

2
(2 + L1∆)ρ∆a + 3L2K∆)∆ (7.27)

Proof.
The Lipschitz continuity of function u∗Γ and relations (7.9), (7.24) imply inequalities

u∗Γ(ti, y(ti)) ≥ u∗Γ(ti, x−(ti))− Lw‖y(ti)− x−(ti)‖ ≥
u∗Γ(ti+1, x+(ti+1))− LwL2K∆2 − Lw‖y(ti)− x−(ti)‖ ≥
u∗Γ(ti+1, y(ti+1))− Lw(2 + L1∆)‖y(ti)− x−(ti)‖ − 3L2K∆2

Relation (7.25) provides the inequality

‖y(ti)− x−(ti)‖ ≤
√
n

2
ρ∆1+a

for trajectory y(·) and accompanying points x−(ti).
The last two inequalities give estimate (7.27). 2
Using estimate (7.27) one can prove the following proposition for trajectory y(·) (7.19)

generated by the optimal feedback UC (7.17), (7.18).

Theorem 7.2 For any partition Γ, grid GR(t), t ∈ Γ with high order infinitesimal param-
eters (7.26), initial position (t∗, y∗) and Lebesgue measurable control τ → q(τ) : [t∗, ϑ)→ Q

the trajectory y(·) (7.19) generated by the optimal feedback UC (7.17), (7.18) with the
piecewise constant interpolation satisfies the estimate

σ(y(ϑ)) ≤ u∗Γ(t∗, y∗) + ϕ(∆) (7.28)

ϕ(∆) = (ϑ− t∗)Lw(

√
n

2
(2 + L1∆)ρ∆a + 3L2K∆), lim

∆→0
ϕ(∆) = 0

and, hence, by Theorem 3.4

σ(y(ϑ)) ≤ w(t∗, y∗) +C∗∆1/2 + ϕ(∆) (7.29)

Fixing an arbitrary number ε > 0 one can indicate step ∆ of partition Γ which provides
the estimate

σ(y(ϑ)) < w(t∗, y∗) + ε
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Proof.
By induction inequality (7.27) implies the estimate

u∗Γ(ti, y(ti, t∗, y∗, U
C, q(·)))≤ u∗Γ(t∗, y∗) +

(ti − t∗)∆−1Lw(

√
n

2
(2 + L1∆)ρ∆a + 3L2K∆)∆

which provides relation (7.28) when ti = ϑ.
Inequality (7.29) follows directly from relations (3.20), (7.28). 2

Remark 7.4 One can use other piecewise constant interpolations of feedback U∗ = U∗(t, x)
(7.17). For example, the optimal feedback UE(t, y) can be interpolated into domain y ∈ D∗t ,
t ∈ Γ by controls U∗(t, x) calculated at nodes x ∈ GR(t) with least values of the approxi-
mate function u∗Γ in the neighboring simplex

UE(t, y) = U∗(t, x), x = x(y) = argmin
yj

u∗Γ(yj) (7.30)

y =
n∑
j=0

αjyj, yj = yj(Ω) ∈ GR(t),
n∑
j=0

αj = 1, αj = αj(Ω) ≥ 0

In this case estimates (7.27) and (7.29) can be rewritten in the following way

u∗Γ(ti, y(ti)) ≥ u∗Γ(ti+1, y(ti+1))− Lw(

√
n

2
(1 + L1∆)ρ∆a + 3L2K∆)∆ (7.31)

σ(y(ϑ))≤ w(t∗, y∗) +C∗∆1/2 + ϕ∗(∆) (7.32)

ϕ∗(∆) = (ϑ− t∗)Lw(

√
n

2
(1 + L1∆)ρ∆a + 3L2K∆)

Remark 7.5 For trajectory y(·) generated by feedback UP (7.33) which is determined at
nodes x of grid GR(t) by minimax operator PMM∗ (7.2)

UP = UP (t, x) = argmin
p∈P

max
q∈Q

u∗Γ(t+ ∆, y(t, x,∆, p, q)) (7.33)

and interpolated into domain D∗t by piecewise constant rules (7.18) or (7.30) one can
obtain estimates (7.27), (7.29) or (7.31), (7.32).

Let us consider the case of quasiconvex approximate functions y→ u∗Γ(t, y) : D∗t → R,
t ∈ Γ for grids GR(t) with the linear dependence of space-time steps h, ∆

h = γ∆ (7.34)

Here γ is a fixed constant.
Let us formulate the property of quasiconvexity for functions y → u∗Γ(t, y).

Conjecture 7.1 Approximate functions y → u∗Γ(t, y) : D∗t → R, t ∈ Γ satisfy the convex-
ity condition up to the infinitesimal value µ∆1+b, b > 0, µ > 0 in domains with radius ν∆
- the quasiconvexity condition

n∑
j=0

αju
∗
Γ(t, zj) + µ∆1+b ≥ u∗Γ(t,

n∑
j=0

αjzj) (7.35)

n∑
j=0

αj = 1, αj ≥ 0, j = 0, ..., n

‖zk − zl‖ ≤ ν∆, zk, zl ∈ D∗t , k, l = 0, ..., n
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ν > 2K +
√
n(1 + L1∆)γ + 2L2K∆ (7.36)

Let us define feedback UL = UL(t, y), y ∈ D∗t , t ∈ Γ by the linear interpolation of
control values {U∗(t, x)} (7.17) calculated at nodes x = yj(Ω) of grid GR(t)

UL = UL(t, y) =
n∑
j=0

αjU
∗
j , U∗j = U∗(t, yj) (7.37)

y =
n∑
j=0

αjyj , yj = yj(Ω) ∈ GR(t),
n∑
j=0

αj = 1, αj = αj(Ω) ≥ 0, j = 0, ..., n

Let us introduce the Euler trajectory

z(·) = {z(t, t∗, y∗, UL, q(·)) : t ∈ Γ
⋂

[t∗, ϑ]} (7.38)

generated by feedback UL (7.37) and an arbitrary Lebesgue measurable control τ → q(τ) :
[t∗, ϑ)→ Q

z(ti+1) = z(ti + ∆) = z(ti) + ∆(h(ti, z(ti)) +B(ti, z(ti))U
L) +∫ ti+∆

ti

C(τ, z(ti))q(τ)dτ, z(t∗) = z∗, ti, ti+1 ∈ Γ
⋂

[t∗, ϑ] (7.39)

Lemma 7.5 The basic estimate

u∗Γ(ti, z(ti)) ≥ u∗Γ(ti+1, z(ti+1))− µ∆1+b − Lw(
√
nL1γ + 3L2K)∆2 (7.40)

is valid for trajectory z(·) (7.38), (7.39).

Proof.
According to the property of quasiconvexity (7.35), the Lipschitz continuity of function

u∗Γ and definition of feedback U∗ (7.17) we obtain the necessary chain of inequalities

u∗Γ(ti+1, z(ti+1)) = u∗Γ(ti + ∆, z(ti) + ∆(h(ti, z(ti)) +B(ti, z(ti))U
L) +∫ ti+∆

ti

C(τ, z(ti))q(τ)dτ) = u∗Γ(ti + ∆,
n∑
j=0

αjzj + ∆
n∑
j=0

αj(h(ti, z(ti))− h(ti, yj)) +

∆
n∑
j=0

αj(B(ti, z(ti))−B(ti, yj))U
∗
j +

∫ ti+∆

ti

n∑
j=0

αj(C(τ, z(ti))− C(τ, yj))q(τ)dτ) ≤

n∑
j=0

αju
∗
Γ(ti + ∆, zj) + µ∆1+b + Lw(

√
nL1γ + 2L2K)∆2 ≤

n∑
j=0

αju
∗
Γ(ti, yj) + µ∆1+b + Lw(

√
nL1γ + 3L2K)∆2 =

u∗Γ(ti, z(ti)) + µ∆1+b + Lw(
√
nL1γ + 3L2K)∆2

Here points z(ti), yj, zj are connected by relations

z(ti) =
n∑
j=0

αjyj,
n∑
j=0

αj = 1, αj ≥ 0, j = 0, ..., n

zj = yj + ∆(h(ti, yj) + B(ti, yj)U
∗
j ) +

∫ ti+∆

ti

C(τ, yj)q(τ)dτ
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and points zj are disposed in the ball of radius ν∆

‖zk − zl‖ ≤ (1 + L1∆)‖yk − yl‖+ 2L2K∆2 +

∆‖B(ti, yk)U
∗
k‖+ ∆‖B(ti, yl)U

∗
l ‖ < ν∆, k, l = 0, ..., n 2

The basic estimate (7.40) implies the following proposition.

Theorem 7.3 Assume that Conjecture 7.1 is fulfilled for approximate functions u∗Γ in
schemes with operator G∗ (7.15) and the linear dependence (7.34) of space-time steps.

Then for any initial position (t∗, y∗) and Lebesgue measurable control τ → q(τ) :
[t∗, ϑ)→ Q the trajectory z(·) (7.38) generated by the optimal feedback UL (7.17), (7.37)
with the linear interpolation satisfies the estimate

σ(z(ϑ)) ≤ u∗Γ(t∗, z∗) + ψ(∆) (7.41)

ψ(∆) = (ϑ− t∗)(µ∆b + Lw(
√
nL1γ + 3L2K)∆), lim

∆→0
ψ(∆) = 0

and, hence, by Theorem 3.4

σ(z(ϑ)) ≤ w(t∗, z∗) +C∗∆1/2 + ψ(∆) (7.42)

Fixing an arbitrary number ε > 0 one can indicate step ∆ of partition Γ which provides
the estimate

σ(z(ϑ)) < w(t∗, z∗) + ε

Proof.
By induction inequality (7.40) implies relations

u∗Γ(ti, z(ti, t∗, z∗, U
L, q(·)))≤ u∗Γ(t∗, z∗) +

(ti − t∗)∆−1(µ∆1+b + Lw(
√
nL1γ + 3L2K)∆2)

which leads to the estimate (7.41) when ti = ϑ.
Inequality (7.42) follows directly from relations (3.20), (7.41). 2

Remark 7.6 Let Conjecture 7.1 be fulfilled for approximate functions u∗Γ in schemes with
operator PMM∗ (7.2). Then trajectories z(·) generated by feedback UP (7.33) which is
defined at nodes x of grid GR(t) by minimax operator PMM∗ (7.2) and interpolated
linearly (7.37) into domain D∗t satisfy estimates (7.40), (7.42).

Remark 7.7 Assume that Conjecture 7.1 is true for approximate functions u∗Γ in schemes
with operator LA (6.29). Consider trajectories z(·) generated by feedback UA (7.43) which
is defined at nodes x of grid GR(t) by operator LA (6.29) - the minimax formula on local
linear hulls

UA = UA(t, x) = argmin
p∈P

max
q∈Q

L(y(t, x,∆, p, q)) = argmin
p∈P

< A,B(t, x)p > (7.43)

and interpolated linearly (7.37) into domain D∗t . Then estimates (7.40), (7.42) are valid.

Proof.
Conditions of quasiconvexity (7.35), (7.36) imply inequalities

L(y) ≥ u∗Γ(t, y)− µ∆1+b, L(y) ≤ g(y)
y ∈ O(x,K∆), x ∈ GR(t), t ∈ Γ

and, therefore, provide estimates (7.40), (7.42). 2
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Conclusion

The unique grid scheme for constructing value functions and control synthesis is proposed
for solving optimal guaranteed control problems which arise in mechanics, mathematical
economics, evolutionary biology. Finite difference operators based on constructions of non-
smooth analysis - subdifferentials of local convex hulls, superdifferentials of local concave
hulls and their modifications, are elaborated for local approximations of nondifferentiable
value functions and its generalized gradients (dual vectors). Control synthesis is obtained
by the method of extremal shift in the direction of generalized gradients. Convergence
of approximation schemes is proved by using methods of the theory of Hamilton-Jacobi
equations. Properties of space-time grids providing optimality of designed trajectories are
examined.
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