# SOME APPROACHES TO THE WATER PROJECT

Yuri A. Rozanov

December 1973

Research Memoranda are informal publications relating to ongoing or projected areas of research at IIASA. The views expressed are those of the author, and do not necessarily reflect those of IIASA.

.

### Some Approaches to the Water Project

Yuri A. Rozanov

# 1. <u>Decomposition</u>

Under decision making concerning Large Scale Systems (LSS) of Water Resources (WR), which is a big river basin with cities, industry and agriculture systems, water reservoirs, hydroelectric power stations, etc., we need some kind of decomposition because of this LSS complexity.

Suppose, with some reason, we divide our LSS into different parts  $S_i$ ; i = 1,...,n, where each system  $S_i$  is situated downstream with respect to previous components  $S_1, \ldots, S_{i-1}$  (see Fig. 1).



The system  $S_i$  might be a big complex of various components  $S_{ik}$  (k = 1,..., $n_i$ )--plants, irrigation systems, etc.--for which it is necessary to supply WR.

It seems reasonable to assume that during a considerable period of time (t,t +  $\Delta$ t) for all components S<sub>ik</sub> we know proper inflows

$$x_{ik}^* = x_{ik}^*(t)$$

under which these components operate in a <u>normal</u> way. Let us assume also that if an actual inflow

$$x_{ik} = x_{ik}(t)$$

is different from the normal inflow  $x_{ik}^* = x_{ik}^*(t)$ , then we lose (in a proper scale) an amount

$$C_{ik}(t, x_{ik}, x_{ik}^*)$$
.

The subproblem for every system  $S_i$  (i = 1,...,n) is to minimize the total loss

$$C[t,x_{i}(t),x_{i}^{*}(t)] = \sum_{k=1}^{n_{i}} C_{ik}(t,x_{ix},x_{ik}^{*})$$

which takes place in the case of the total inflow

 $x_{i}(t) \sum_{k=1}^{n_{i}} x_{ik}$ 

by choosing the optimal inflow distribution

$$(x_{i1}, ..., x_{in_i})$$
 .

Say for a water reservoir  $S_{ik}$  the value  $C_{ik}(t, x_{ik}, x_{ik}^*)$ might be an estimate of a proper loss in a future when it will be necessary to supply WR from  $S_{ik}$ , for an irrigation system it might be a loss of a corresponding crop, etc.

The decomposition problem is how actually to form the inflows  $x_i(t)$  for systems  $S_i(t)$ , i = 1, ..., n.

Let  $i_i$  be a passage-time between  $S_i$  and  $S_{i+1}$  for a main flow. (Remember that  $S_{i+1}$  is situated downstream with respect to  $S_i$ .) Roughly speaking, if some part of WR in the main flow is not consumed by  $S_i$  at the moment t, then this WR will be available for  $S_{i+1}$  at the moment t +  $\tau_i$ .

Let  $w_i(t)$  be a WR innovation which is available for  $S_i$ at the moment t and  $a_i(t)$ ,  $b_i(t)$  are given low limits for the consumption  $x_i(t)$  and the main flow after  $S_i$ :

 $a_{i}(t) \leq x_{i}(t) \leq y_{i-1}(t - \tau_{i-1}) + w_{i}(t) - b_{i}(t)$ 

where  $y_{i-1}(t - \tau_{i-1})$  is the main flow after  $S_{i-1}$  at the previous moment  $t - \tau_{i-1}(\tau_{i-1})$  is the passage-time between  $S_i$  and previous system  $S_{i-1}$ ).



FIGURE 2

Obviously, the inflows for  ${\rm S}_{\rm i}$  and  ${\rm S}_{\rm k},$  k > i are connected only in the corresponding passage-time  $\tau_i$  +  $\cdots$  +  $\tau_{k-1}$ , so if we consider

$$x_1 = x_1(t), w_1 = w_1(t), a_1 = a_1(t), b_1 = b_1(t)$$

and

$$x_{k} = x_{k}(t + T_{k}) , \quad w_{k} = w_{k}(t + T_{k}) ,$$

$$a_{k} = a_{k}(t + T_{k}) , \quad b_{k} = b_{k}(t + T_{k}) ,$$

$$(T_{k} = \tau_{1} + \cdots + \tau_{k-1}) ; \quad k = 2, \dots, n,$$

then the following constraints have to be true:

 $a_1 \leq x_1 \leq w_1 - b_1$ ,

$$a_{k} \leq x_{k} \leq \sum_{i=1}^{k-1} (w_{i} - x_{i}) + w_{k} - b_{k}$$
,  $(k = 2, ..., n)$ .

With the substitution

$$x_1 - a_1 \rightarrow x_1$$
,  $w_1 - b_1 - a_1 \rightarrow w_1$ 

 $x_k - a_k \rightarrow x_k$ ,  $w_k - b_k + b_{k+1} \rightarrow w_k$ , (k = 2, ..., n),

the constraints for the new variables will be

$$0 \le x_{1} \le w_{1}$$
  
$$0 \le x_{k} \le \sum_{i=1}^{k-1} (w_{i} - x_{i}) + W_{k} ; \quad k = 2,...,n,$$

or (what is the same!)

$$x_{k} \geq 0$$

$$0 \leq \sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} w_{i} ; \quad k = 1, \dots, n.$$

Suppose the <u>minimal</u> loss for the system  $S_i$  under the inflow  $x_i$  is  $C_i$  ( $\cdot, x_i, x_i^*$ ). We cannot expect a possibility to find out in an analytical structure of this function. But if we know a few values for different  $x_i$ , then we can try to find a proper approximation.

Let us assume that under WR shortage, the inflows  $x_i$  have not to exceed the corresponding limits  $x_i^*$ :

$$x_{i} \leq x_{i}^{*}; \quad i = 1, ..., n.$$

What kind of approximation for the loss functions  $C_i(\cdot, x_i, x_i^*)$  might be used in order to act with respect to the principle of the minimal total loss:

$$\sum_{i=1}^{n} C_{i}(\cdot, x_{i}, x_{i}^{*}) = \min$$

Generally such approximation has not to be <u>linear</u> because a small error in such approximation might give us an absolutely wrong result concerning the choice of  $x_1, \ldots, x_n$ . For example, in the case of two systems  $S_1, S_2$  with linear loss functions

.

$$C_{i}(\cdot, x_{i}, x_{i}^{*}) = \lambda_{i}(x_{i}^{*} - x_{i})$$

the minimization of the total loss

$$\lambda_1(x_1^* - x_1) + \lambda_2(x_2^* - x_2)$$

With coefficients  $\lambda_2 > \lambda_1$  under the constraints (1) makes us supply to the second system S<sub>2</sub> <u>as much as it is possible</u> so the first system S<sub>1</sub> might be without WR at all; that seems obviously non-realistic if  $\lambda_1$  is only a very little smaller than  $\lambda_2$ .

.

Thus a linear loss function gives an absolute privilege for one or a few systems that seems non-realistic and we

have to take some care about the approximation of actual loss.

We suggest a quadratic approximation which has a good "robustness" property with respect to possible errors in our loss estimation. Namely, we suggest to take

$$C_{i}(\cdot, x_{i}, x_{i}^{*}) = \lambda_{i}(x_{i}^{*} - x_{i})^{2}$$

with the proper coefficient  $\lambda_i$ , i = 1,...,n. Then the problem on optimal choice of the corresponding inflows  $x_1, \ldots, x_n$  can be solved on the basis of minimization of the total loss function

$$r(x,x^{*}) = \sqrt{\sum_{i=1}^{n} \lambda_{i}(x_{i} - x_{i}^{*})^{2}}$$

The various aspects of this problem, including the various conditions of uncertainty and decision making under risk, were presented recently at an IIASA seminar [1].

Note that under the decision to supply for the system  $S_i$ the proper WR, we can divide this total inflow  $x_i$  in the corresponding components  $x_{ik}$  independently of other systems  $S_i$ ,  $j \neq i$ .

# 2. Inputs of WR LSS

A collection of water data w.(t) =  $\{w_1(t), \ldots, w_n(t)\}$ for a water basin has to be considered as a <u>multivariate</u> random process.



Usual tool of its analysis is based on the corresponding mean value vector function.

$$A(t) = Ew(t) = \{A_1(t), \dots, A_n(t)\}$$

and correlation matrix function

$$B(s,t) = D^{\frac{1}{2}}(s) R(s,t) D^{\frac{1}{2}}(t)^{*}$$

where

$$D^{\frac{1}{2}}(t) = \{D_{1}^{\frac{1}{2}}(t), \dots, D_{n}^{\frac{1}{2}}(t)\}$$

is a vector of standard deviations

$$D_{k}^{\frac{1}{2}}(t) = \left( Var w_{k}(t) \right)^{\frac{1}{2}}$$
,  $k = 1, ..., n$ ,

and

$$R(s,t) = \{R_{kj}(s,t)\}$$

is a matrix of correlation coefficients

$$R_{kj}(s,t) = \frac{E[w_{k}(s) - A_{k}(t)] [w_{j}(t) - A_{j}(t)]}{D_{k}^{\frac{1}{2}}(s)D_{j}^{\frac{1}{2}}(t)}$$

Concerning various inputs  $w_1(t), \ldots, w_n(t)$  of WR system, which are water streams, levels of water reservoirs, etc. it seems reasonable to assume that all these components are <u>positively correlated</u>:

$$R_{k,i}(s,t) \ge 0$$

because its increasing (or decreasing) usually occurs for the same reason--snow melting, rain, drought, etc.--so increasing (or decreasing) of some components occurs with the same phenomena as for other components, and similar connection takes place in time.

We are not going to discuss in detail a structure of functions A(t), D(t), and R(s,t) but note that usually A(t), D(t) are assumed to be seasonal periodic functions and

$$R(s,t) = R(t - s)$$

is assumed to be a correlation function of multivariate <u>stationary Markov type random process</u> (multidimensional auto-regression model).

Concerning probability distributions for  $w_1(t), \ldots, w_n(t)$ , one usually assumes that <u>each component</u> has a proper <u>gamma</u> <u>distribution</u>. Now the following problem arises: What type of <u>multi-</u> <u>dimensional distribution</u> for the vector input  $w(t) = \{w_1(t), \dots, w_u(t)\}$  is consistent with all the properties mentioned above, namely with the given positive correlation coefficients  $R_{ki}(s,t)$  and marginal gamma distributions?

We suggest considering some kind of multidimensional gamma distribution which is completely determined with the corresponding parameters A(t),D(t) and R(s,t).

We prefer to describe this multivariate distribution in a way which is convenient for actual <u>modelling</u> (for synthetic hydrology).

Let

$$\{n_{ik}(t), i = 1, \dots, m_k, k = 1, \dots, n\}$$

be a series of independent standard Gaussian variables. With well known linear methods we can obtain identically distributed Gaussian processes

 $\xi_{ik}(t)$ ,  $i = 1, ..., m_k$ ,

(independent for different  $i = 1, \ldots, m_k$ ) such that

$$E\xi_{ik}(t) = 0$$
,  $Var \xi_{ik}(t) = 6_k(t)^2$ 

and

$$Cor^{\{\xi_{ik}(s), \xi_{ij}(t)\}} = \rho_{kj}(s,t) \ge 0$$
.

Let us consider

$$w_k(t) = \sum_{i=1}^{m_k} \xi_{ik}^2(t), \quad k = 1,...,n.$$

We have

$$Ew_{k}(t) = m_{k} \cdot E\xi_{1k}^{2}(t) = m_{k} \cdot 6_{k}(t)^{2}$$
  
Var w\_{k}(t) = m\_{k} \cdot Var \xi\_{1k}^{2}(t) = 2m\_{k} \cdot 6\_{k}(t)^{4}

and

.

$$\begin{split} & \mathbb{E} \left[ \mathbf{w}_{k}(s) - \mathbb{E} \mathbf{w}_{k}(s) \right] \left[ \mathbf{w}_{j}(t) - \mathbb{E} \mathbf{w}_{j}(t) \right] \\ &= \min \left( \mathbf{m}_{k}, \mathbf{m}_{j} \right) \mathbb{E} \left[ \xi_{k}(s)^{2} - 6_{k}(s)^{2} \right] \left[ \dot{\xi}_{j}(t)^{2} - 6_{j}(t)^{2} \right] \\ &= \min \left( \mathbf{m}_{k}, \mathbf{m}_{j} \right) 6_{k}(s)^{2} 6_{j}(t)^{2} \rho_{kj}(s, t)^{2} , \\ & \mathbb{Cor} \left\{ \mathbf{w}_{k}(s), \mathbf{w}_{j}(t) \right\} = \frac{\min \left( \mathbf{m}_{k}, \mathbf{m}_{j} \right)}{\mathbf{m}_{k}^{\frac{1}{2}} \mathbf{m}_{j}^{\frac{1}{2}}} \rho_{kj}(s, t)^{2} . \end{split}$$

Thus, if we set

$$2m_{k} 6_{k}(t)^{4} = D_{k}(t) ,$$

$$\frac{\min(m_{k}, m_{j})}{m_{k}^{\frac{1}{2}} m_{j}^{\frac{1}{2}}} \rho_{kj}(s,t) = R_{kj}(s,t) ,$$

then the multivariate random process with components

$$w_{k}(t) + A_{k}(t) - m_{k} 6_{k}(t)^{2}$$
, k = 1,...,n

has the given parameters

$$A_k(t)$$
,  $D_k(t)$  and  $R_{kj}(s,t)$ ,  $k,j = 1,...,n$ .

All marginal distributions are gamma distributions, namely the probability density of the variable  ${\bf w}_{\bf k}({\rm th})$  is

$$f(x) = \frac{x^{\beta-1}e^{-x/\alpha}}{\alpha^{\beta}\Gamma(\beta)} , \quad x > 0 ,$$

where

$$\alpha = 26_{kk}(t)$$
,  $\beta = \frac{1}{2}m_k$ .

More general multidomensional gamma-type distributions wer suggested by D.R. Krishnaiah and H.M. Rao [2]. See also [3].

#### References

- Letov, Alexander M. and Rozanov, Yuri A. "On Optimal Compromise for Multidimensional Resource Distribution." IIASA Research Report RR-74-8, June 1974.
- [2] Krishnaiah, D.R. and Rao, H.M. "Remarks on a Multivariate Gamma-distribution," <u>Amer. Math</u>. <u>Monthly</u>, Vol. 68, No. 4 (1961).
- [3] Siddiqui, U.U. "Some Properties of Empirical Distribution Function of a Random Process, J. of <u>Research of National Bureau of Standards</u>, Vol. 65B, No. 2 (1961).