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Abstract

Standard models of agency theory typically assume that the principal has considerable
information about the preferences of the agent. Once this assumption is relaxed, the
question arises whether the principal should try to obtain additional information about
the agent’s preferences. In this paper we introduce the concept of a Value of Preference
Information (VPI), which describes the benefits to the principal from obtaining
additional information about the agent’s preferences. We show analytically that the VPI
is non-negative and that the VPI will not decrease when the principal’s information
structure is refined. Computational methods are used to study factors influencing the
VPI. The results of these experiments show a strong relationship between the entropy of
the principal’s information structure and the VPI. It is thus possible to evaluate an
information structure independently of the decision problem delegated to the agent.
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The Value of Preference Information
in Agency Relationships

Rudolf Vetschera

1.  Introduction
Agency models provide considerable insight into the consequences of asymmetric
information in economic transactions. Typical problems studied in agency theory
involve the hidden information problem, where an agent possesses private information
about the environment, or the hidden action problem, in which the principal is not able
to observe the actions taken by the agent (Grossman/Hart 1983; Spremann 1987;
Levinthal 1988). To mitigate the effects of asymmetric information, the principal must
design a compensation system, which induces to agent to act in the principal’s interest.
In designing a compensation system, the principal anticipates the agent’s reactions to the
incentive system, and chooses the incentive system which maximizes her net benefit
(i.e. the benefit left to the principal after paying the incentives to the agent).

Agency models can be considered as a special case of hierarchical decision models
(Schneeweiß 1995). Many important problems in hierarchical planning result from the
fact that the upper level (the principal in an agency model) is not able to analyze the
lower level’s (the agent’s) decision problem with the same precision as the lower level.
Thus the upper level’s anticipation of the lower level’s reaction will only be
approximate. In the hierarchical planing literature, considerable effort is made to study
the effects of this approximation on decision quality.

This aspect is largely neglected in the agency literature. While asymmetry of
information is considered with respect to the state of the environment or the actions
taken by the agent, the agent’s preferences are typically assumed to be known to the
principal. In the terminology of hierarchical planning, the principal’s anticipation of the
agent’s decision model is identical to the agent’s decision model itself. Usually, these
preferences are represented by the agent’s utility function.

These assumptions about the principal’s information on the agent’s preferences can be
regarded as a strong argument against the realism of agency models (Nilakant/Rao
1994). (Anthony 1988 p. 173-174) even calls agency models "worthless" because of
their overly simplified assumptions. Even in models dealing with the hidden
characteristics problem, where the principal lacks information about certain
characteristics of the agent, it is usually assumed that the principal knows a probability
distribution of utility functions across agents or at least the utility functions of several
classes of agents, for which a self-selection contract is drawn up.
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In (Vetschera 1998a; Vetschera 1998b) a model has been proposed which relaxes the
stringent assumptions about the preference information available to the principal. This
model is based on concepts from multi-criteria decision making under incomplete
information (Weber 1987). Incomplete information models were originally developed
for decision makers who are unable or unwilling to exactly articulate their preferences.
The model uses these techniques to represent the situation of a principal who is not fully
informed about the agent’s preferences.

The amount of information a principal possesses about an agent’s preferences can be of
great importance in designing an incentive system. For example, a system of monetary
incentives will work better with agents for whom income is an important goal, than with
agents for whom it is not. We can therefore expect that a principal will benefit from
obtaining more precise information about the agent’s preferences. In the present paper,
we extend the model of (Vetschera 1998a) to derive a measure for the value of
preference information to the principal and to analyze the factors on which that value
depends. As the resulting models are too complex to derive conclusions analytically,
computational methods are used to obtain the results.

The remainder of the paper is structured as follows. In section two, we briefly review
the agency model with incomplete preference information. In section three, we develop
the concept of a value of preference information (VPI). Section four presents results of
computational experiments to analyze how the VPI depends on various characteristics
of the decision problem and the information system available to the principal. Section
five concludes the paper by summarizing the results and identifying open questions for
further research.

2.  An Agency Model with Incomplete Preference
Information
In this section, we will review the underlying model only briefly. the reader is referred
to (Vetschera 1998b; Vetschera 1998a) for a more detailed analysis.

To highlight the incomplete preference information aspect of the problem, the model
only deals with a decision situation under certainty. This is in contrast to the usual
assumptions of agency models, where uncertainty of the environment is an important
factor. In fact, in the decision problem modeled here, it would be possible for the
principal to design a first best contract, in which the agent is rewarded only if he
chooses the alternative which is optimal for the principal. We will assume that this is
not possible for some reason and the incentive system has to be designed in the way
usually considered in agency models, i.e. incentives are specified as a linear function of
the profit to the principal.

The decision situation could also be interpreted as a decision under risk when both the
principal and the agent are risk neutral and have the same probabilistic information
about the environment. Effects of asymmetric information about the environment or
different risk attitudes could be incorporated into the model to bring it more in line with
traditional agency models. But such modifications would further increase the
complexity of the model without offering additional insight into the problem studied
here.
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The agent has to select his action among a set of discrete alternatives Ai: i=1,...,N. Each
alternative is characterized by a vector of K attributes: Ai = (ai1,...,aiK). The first attribute
represents the profit each alternative yields for the principal, the other attributes
represent characteristics of the alternative which are relevant to the agent. These
attributes could relate, for example, to the effort the agent must spend in carrying out
that alternative or the prestige associated with realizing the alternative or other
"personal interests" (Lindstädt 1997) an agent might have in an alternative. All
attributes are to be maximized.

The incentive system consists in paying the agent a fixed portion c of the profit of the
selected alternative. Thus the principal retains a net profit of (1-c)⋅ai1 if the agent selects
alternative Ai. A possible fixed payment, which is offered to the agent independently of
the result obtained, would be irrelevant to the results obtained here and thus is not
explicitly taken into account in the model.

The agent is assumed to have a linear utility function which, taking into account the fact
that the agent receives only part of the profit of each alternative, can be written as

u A w c a w ai i k ik
k

K

( ) = ⋅ ⋅ + ⋅
=

∑1 1
2

(1)

The weights wk (k=1,...,K) are known to the agent, but not to the principal. The principal
only knows upper and lower bounds on the weights so that

w w wk k k≤ ≤ (2)

An extension of the model to more general (linear) conditions on the weights is
straightforward, but in this paper we will only consider lower and upper bounds.
Furthermore, without loss of generality, we assume that the weights are scaled so that

wk
k

∑ = 1 (3)

The set

W w w w w w wK k k k k
k

= ≤ ≤ =








∑( , , ) ;1 1K (4)

is the set of all weight vectors the principal considers as possible. We denote the subset
of weight vectors for which alternative Ai is optimal according to (1) by O A Wi( ) ⊆ .
Set O(Ai) is defined by the following linear constraints on the wk’s:
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From (5), it is obvious that any fixed compensation to the agent that is paid
independently of the alternative chosen would cancel out from the left and right hand
sides of the first constraint and thus does not influence O( Ai ).

Since the principal has only incomplete information on the agent’s preferences, she can
anticipate the agent’s reaction to an incentive system only stochastically. Assuming that
weight vectors are uniformly distributed over W¸ the probability that the agent chooses
alternative Ai is given by

p A c W
Vol O A

Vol Wi
i( | , )

( ( ))

( )
= (6)

where Vol(.) denotes the volume of the respective polyhedron. We use the notation
p(Ai|c,W) to denote that this probability depends on the level of compensation c as well
as the information W. The expected net profit of the principal is therefore given by

G c W c p A c W ai i
i

N

( , ) ( ) ( | , )= − ⋅ ⋅
=
∑1 1

1

(7)

We assume that the principal is risk neutral and thus wishes to maximize G(c,W). We
define

c W G c W
c

*( ) arg max ( , )= (8)

as the optimal level of compensation for a given set of preference information W.

3.  The Value of Preference Information
The question now arises whether the principal is able to increase her net profit by
obtaining additional information on the agent's preferences, i.e. by reducing the set W.
In (Vetschera 1998a), we have analyzed the effects of changes in the upper and lower
bounds for a single weight wk. In this paper, we extend this approach in two directions:
firstly, we consider more general information structures. Secondly, we establish the
value of information in an ex ante situation, before additional information on the agent's
preferences is actually obtained.

The approach taken here to determine the value of preference information is thus similar
to the calculation of the value of information in decision problems under risk (Lindley
1985). The entire framework is outlined in figure 1.
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Figure 1: Framework for determining the VPI

We consider the principal’s decision situation before information is received. If the
principal does not receive additional information on the agent’s preferences, she can
determine the optimal level of compensation c*, leading to an expected net profit G. If
she decides to obtain additional information, she might receive one of several possible
information results. Each of these information results corresponds to a different set Wj,
for which the corresponding optimal cj can be determined, leading to an expected net
profit Gj. The expected net profit after information can then be computed by taking the
expectation over all possible information results. The value of information is the
difference between the expected net profit after obtaining information and the expected
net profit without information.

To formalize this approach, we introduce the concept of an information structure I. We
define an information structure as a partitioning of set W into disjoint subsets Wj which
fulfill the following two properties:

U
j

j

j l

W W

W W l j

=

∩ = ∅ ∀ ≠
(9)

In order to compute the VPI for an information structure I, we need to calculate

• the probabilities p(Wj) of obtaining the different information results Wj and

• the a posteriori choice probabilities p( Ai |c,Wj ) for each alternative after obtaining
information result Wj.

Using again the assumption of uniform distribution, the probabilities p(Wj) can be
computed as

p W
Vol W

Vol Wj

j
( )

( )

( )
= (10)
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The a posteriori choice probabilities are

p A c W
Vol O A W

Vol Wi j

i j

j

( | , )
( ( ) )

( )
=

∩
(11)

For a given information structure I, the value of preference information is then defined
as

VPI p W G c W W G c W Wj j j
j

= ⋅ −∑ ( ) ( * ( ), ) ( * ( ), ) (12)

An obvious question is whether this value is always non-negative, i.e. whether obtaining
(costless) preference information is always beneficial for the principal. This property
can indeed be shown.

Proposition 1: The value of preference information defined in (12) is non-negative.

Proof: To prove this proposition, it is sufficient to show that, under any information
structure, the principal can obtain at least the same expected net profit as without
information. This can be achieved by selecting the same value c*(W) for all information
results. The expected net profit with information then becomes:
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( ( ) )

( )

( * ( ))
( ( ))

( )
( * ( ), )

(13)

The principal thus can at least obtain the same result as without information by leaving
c unchanged. Since c*(Wj) is the value of c maximizing the expected net profit for
information result Wj, it will be different from c*(W) only if c*(Wj) yields a higher net
profit. Therefore, the situation of the principal can only improve or remain unchanged
by obtaining additional information. QED

In fact, proposition 1 is only a special case of a more general relationship. We call an
information structure I’ a refinement of information structure I, if

∀ ∈ ∃ ∈ ⊆W I W I W Wk j k j’ : (14)
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and for at least one Wk ∈ I’:

W W Ik j⊂ ∈ (15)

Thus, every information result in I’ must be contained in only one result of I and at least
one result of I’ must be a proper subset of some result in I. I’ is thus obtained from I by
splitting up at least one result of I and not changing any existing boundaries between
information results. By using the same argument as before, it can be shown that the VPI
will never decrease when an information structure is refined.

4.  Determinants of the VPI
The concept of refining information structures provides a ranking of information
structures independently of the actual decision problem which is delegated to the agent.
This is an extension to the framework depicted in figure 1, where the value of
preference information depends on the decision problem and its solution obtained under
different information sets.

But refinement only establishes a partial ordering of information structures. Changes in
information structures which result from "shifting the borders" between different
information results cannot be ranked using this concept. Consider for example an
information structure I1, which indicates that the agent’s weight w1 is either high or low,
i.e. that the agent is more or less responsive to monetary incentives. The concept of
refinement states that an information structure I2, which splits the weight space further
along w1 and distinguishes between very highly, highly, moderately and weakly
responsive agents is preferable to I1. It also indicates that an information structure I3,
which not only differentiates for w1 but also for w2 and indicates whether the agent is
strongly or weakly influenced not only by money but also by e.g. prestige, is preferable
to I1. But refinement does not allow us to determine whether I2 or I3 is better for the
principal.

In this section, we will analyze problems of this kind. Such an analysis is not possible
using analytical methods. In (Vetschera 1998a) it was shown that the optimal value c*
can be determined analytically only for problems with up to three alternatives, since
calculating c* for a problem with n alternatives involves solving a polynomial of degree
2(n-1). Therefore, we analyze different factors influencing the value of the VPI using
computational methods.

4.1  Entropy
Of particular interest are factors which are independent of the decision problem and
involve only properties of the information structure. If it is possible to attribute
differences in the VPI to differences in the information structure, more general
recommendations can be given which information about an agent’s preferences should
be sought by the principal.

One potential approach to find such general factors is information theory. In
information theory, the information content of a code is measured by its entropy, which
is defined as (Conant 1990):
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E p pi i
i

= − ⋅∑ ld( ) (16)

where pi is the probability of occurrence of each symbol in the code and ld is the
logarithm of base 2. The higher the entropy of a code, the higher is the information
content of a message of given length written in that code.

We can interpret our information results as different symbols of a code. Receiving
preference information is then equivalent to receiving a message of length 1 of that
code. Information theory would then predict that a code (i.e. an information structure)
with higher entropy would, on the average, provide more informative messages. This
should be reflected in a higher VPI.

To test this assumption, computational experiments were performed in which different
information structures (with different entropies) were applied to the same decision
problem. To avoid overlaps with other effects (which were to be analyzed in later
experiments), all information structures were generated by dividing the [0,1] interval for
the weights w1 and w2 into two or three intervals at randomly chosen points. Using two
or three intervals for the two weights resulted in four different types of information
structures with 4, 6 and 9 information results respectively, which were analyzed
separately. The other parameters are listed in table 1.

Number of attributes 3, 4
Number of alternatives 5, 10, 20
Number of decision problems 10
Information structures for each
decision problem

20

Table 1: Parameter values for computational experiments

Table 2 gives an overview of the correlation coefficients between entropy of
information structures and the value of information obtained in these experiments.

High correlations could be reached consistently across all parameter settings for at least
some experiments. However, for some experiments the correlations were negative and
the distribution is markedly skewed. The entropy of an information structure is thus not
always a suitable predictor for the value of preference information across all decision
problems.

The question now arises whether it is possible to identify those decision problems for
which the entropy is a good predictor of the value of information, and those for which it
is not. Table 2 indicates that both the average and the median correlation increase with
the number of alternatives and decrease with the number of attributes. Another
important factor is the structure of the problem. Figure 2 shows (for experiments with 3
attributes and 5 alternatives) the relationship between the optimal value of c without
information and the correlation between entropy and VPI.
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3 Attributes
Number of intervals

Alternatives  2-2  2-3  3-2  3-3
Mean 0.4424 0.2525 0.3181 0.4682

5 Min -0.5210 -0.6390 -0.3540 -0.3481
Max 0.8413 0.7943 0.7311 0.8878
Median 0.5941 0.3034 0.3536 0.5288
Mean 0.4621 0.3768 0.4389 0.5661

10 Min -0.4524 -0.5227 -0.2999 -0.3754
Max 0.8473 0.7620 0.7105 0.8127
Median 0.6104 0.5726 0.5061 0.6964
Mean 0.7275 0.6888 0.5130 0.7734

20 Min 0.3955 0.5123 0.3801 0.6356
Max 0.8950 0.8125 0.6529 0.8991
Median 0.7587 0.7157 0.5080 0.7757

4 Attributes
Number of intervals

Alternatives  2-2  2-3  3-2  3-3
Mean 0.0648 -0.0123 0.0561 0.1336

5 Min -0.5587 -0.6355 -0.4109 -0.5263
Max 0.8857 0.8272 0.7035 0.8357
Median -0.2196 -0.3681 -0.2469 -0.1016
Mean 0.4430 0.3047 0.3510 0.5219

10 Min -0.4186 -0.5116 -0.2390 -0.0272
Max 0.8738 0.8584 0.7520 0.8700
Median 0.4655 0.2884 0.3231 0.5391
Mean 0.4879 0.4181 0.4408 0.5803

20 Min -0.1253 -0.3702 0.0224 0.1160
Max 0.8606 0.8383 0.7638 0.8948
Median 0.5898 0.5104 0.4907 0.6614

Table 2: Correlations between entropy and value of preference information

The figure clearly indicates that low and even negative correlation coefficients occur
only in problems where the optimal value of c is also low and in many instances zero.
As soon as the optimal value of c reaches a threshold of about 0.05, high correlations
are consistently obtained.

An optimal value for c of zero indicates that, without additional preference information,
it is not possible for the principal to set up an effective incentive system. This might be
the case if the difference in profit between the best and the second best alternative from
the principal’s point of view is rather small, but the difference in the other attributes
from the agent’s point of view is rather large. If the principal can not induce the agent to
chose the best alternative, even by transferring to him the entire additional profit, it is
optimal for the principal not to pay the agent any compensation (i.e. to set c=0) and let
the agent chose his most preferred alternative (which is not that bad from the principal’s
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point of view, too). However, if, in such a situation, the principal finds out that the agent
is highly responsive to monetary incentives (i.e. the agent’s weight for incentives w1 is
very high), then the principal might be able to induce the agent to select the best
alternative from the principal’s point of view without awarding him the entire additional
profit. In this situation, only an information structure that allows the principal to identify
such agents will be of positive value. But such an information structure has a low
entropy, because is splits the parameter space into uneven parts: a relatively small part
containing the high values of w1 and a larger part containing other weight vectors. We
can therefore expect the correlation between entropy and value of preference
information to be negative for these problems, while it is positive for more regular
problems.
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Figure 2: Relationship between optimal c and correlation between entropy and VPI

4.2  Other Factors
While these results indicate that the entropy is an important factor influencing the VPI,
it is certainly not the only factor. We can distinguish three levels of other factors: factors
like the entropy, which are only related to the information structure, factors which are
related to general properties of the decision problem and factors related to specific
decision problems.

Information structures can have the same value of entropy, but relate to different
attribute weights. The same probability distribution of information results (and thus the
same entropy) can also be obtained by information structures that relate to one or to
several weights. From an information theory point of view, this fact should make no
difference. We thus can formulate the hypothesis that the VPI will not depend on the
weights involved in defining the information results.

As second group of factors is related to the complexity of the decision problem which,
in our framework, can be measured by the number of attributes and alternatives of the
problem. Increasing the number of attributes makes it more likely that changes in one
weight will be offset by changes in other weights and thus decrease the VPI. On the
other hand, since a larger number of alternatives provides smaller steps by which the
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agent’s behavior can change, we expect this variable to have a positive influence on the
VPI.

The third group is related to characteristics of a specific decision problem. Two possible
factors are the optimal level of c and the expected profit which can be obtained without
preference information. Figure 2 already showed that optimal value of c without
information interacts with the entropy of the information structure to determine the VPI,
but it might also have a direct influence. Based on figure 2, we can formulate the
hypothesis that the interaction of entropy and the optimal value of c will increase the
VPI. A high initial value of c indicates that it is rather hard for the principal to provide
an adequate incentive. Information will be particularly useful in this context, so we
expect a high value of c to have also a positive effect on the VPI. On the other hand, if
the expected profit without preference information is already high, it might be difficult
to improve that result, so we expect this variable to have a negative effect on the VPI.

To analyze the potential effects of these variables, a combined regression
analysis/analysis of variance was performed on the VPI obtained in the experiments
using the SAS GLM procedure. Since significant correlations existed between the
number of attributes and the other variables, the analysis was performed separately for
the experiments with three and four attributes. Therefore the hypothesis on the number
of attributes could not be tested. The main results are given in table 3.

3 Attributes (R2 = 0.253566)
Variable Expected F Value Pr > F Observed
N. Alternatives (+) 6.87 0.0088 (+)
Type of Split none 6.41 0.0003
Entropy (+) 56.41 0.0001 (+)
Optimal c (+) 78.86 0.0001 (-)
Interaction (+) 50.81 0.0001 (+)
Expected Profit (-) 273.11 0.0001 (-)

4 Attributes (R2 = 0.249885)
Variable Expected F Value Pr > F Observed
N. Alternatives (+) 13.61 0.0002 (+)
Type of Split none 4.58 0.0033
Entropy (+) 78.02 0.0001 (+)
Optimal c (+) 0.34 0.5623
Interaction (+) 86.95 0.0001 (+)
Expected Profit (-) 20.02 0.0001 (+)

Table 3: Results of linear model estimation

As can be seen from table 3, most hypotheses were confirmed by the statistical analysis,
although to a varying degree. The number of alternatives has indeed a significantly
positive effect on the VPI, although this effect is not as marked as that of other
variables. Contrary to our hypothesis, the type of split does have a significant influence,
but this influence is rather weak when compared to the other variables. The entropy and
the interaction effect between entropy and optimal c both exhibited the expected highly
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significant positive influence. Interestingly, no significant effect could be attributed to
the optimal c in the experiments with four attributes. In the experiments with three
attributes, the observed effect worked in the opposite direction as expected. Profit
without information exhibited the expected influence only in the experiments with three
attributes, while the effect was considerably weaker (and in the opposite direction as
expected) in the experiments with four attributes. Since the entropy was thus shown to
be an important factor influencing the VPI, a second set of experiments was performed
to analyze the effect of other factors more closely by keeping the entropy constant
across experiments. In these experiments, information structures with maximum entropy
were used. Since these are different for three and four attributes, separate experiments
for these two conditions were performed.

In both cases, the information structures used consisted of four information results,
which were generated by splitting the parameter space for the first attribute (profit) and
the second attribute into two parts each or by splitting only the parameter space for the
first or the second attributes into four parts. In the following figures, these different
types of information structures are denoted by 41 (Splitting the parameter space for the
first attribute into four parts), 22 and 14. The experiments of type 22 determine the
maximum entropy that can be obtained, since it is not possible to split the parameter
space into parts of the same size using only bounds on weights. For the case of three
attributes, the maximum entropy of 1.01615 is obtained by splitting the parameter space
for both weights into the intervals (0, 0.275) and (0.275,1). For experiments with four
attributes, the maximum entropy of 1.36859 is obtained by splitting the parameter space
for the first two weights into the intervals (0,0.201) and (0.201,1).

3 Attributes (R2=0.086399)
Variable Expected F Value Pr > F Observed
N. Alternatives (+) 23.49 0.0001 (+)
Type of split none 149.01 0.0001
Expected profit (-) 166.57 0.0001 (-)
Optimal c (+) 11.43 0.0007 (+)

4 Attributes (R2=0.362513)
N. Alternatives (+) 393.34 0.0001 (+)
Type of split none 676.73 0.0001
Expected profit (-) 355.47 0.0001 (-)
Optimal c (+) 931.17 0.0001 (+)

Table 4: Results, constant entropy

Table 4 shows the results of a estimating a linear model on the remaining influence
factors. In contrast to the experiments with different entropy, there are marked
differences between the cases of three and four attributes. The overall fit of the model is
rather poor for the case of three attributes, while in the experiments with four attributes,
it is even better than in the experiments with different entropy values. Conforming to
our hypothesis, the number of attributes had a positive influence. The expected profit
without information had a consistent negative influence on the value of preference
information. The optimal value of c, which in the previous experiments was found to
influence the VPI mainly through its interaction with entropy, has a significant positive
influence in the experiments with four attributes.
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Figure 3: Box plot of VPI, 3 attributes
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The type of split also has a significant influence in both sets of experiments. The
influence of this parameter is further demonstrated in figures 3 and 4. These figures
contain a few instances in which a negative VPI was calculated due to the limited
precision of numerical calculations when computing the volumes of polyhedra.

It can be noticed that for information structures which provide information on two
weights (type 22) rather than only one weight (types 14 and 41), the variance of the VPI
is considerably higher. Especially in the experiments with four attributes, the VPI is also
higher when the information structure provides information about the value of the first
weight. This effect can be readily explained. In order to select an optimal value of c, the
principal should try to find out how strongly the agent will react to monetary incentives.
If the alternatives are characterized only by few attributes, this information is implicitly
also conveyed by information about other weights. But if there are several other
weights, changes in one of those might easily be compensated by the weights not related
to monetary incentives, so this information is of less value to the principal. As was
already observed in the first set of experiments, this effect becomes stronger when the
number of alternatives increases.

5.  Conclusions and Topics for Further Research
In this paper, we have introduced the concept of the value of preference information in
an agency context. We have shown that, in general, obtaining additional information on
the agent’s preferences is beneficial for the principal.

The simulation experiments enabled us to identify several factors that influence the
value of preference information. One important result we have obtained is the fact that
the VPI is to a large extent independent of the decision problem itself and can be
predicted by the entropy of the information structure. This result means that it is
possible to evaluate an information structure in general terms, without knowing which
decision problems will be delegated to the agent.

Our simulation results also indicated that, contrary to intuition, in more complex
decision problems with more alternatives, the principal will be able to make better use
of information on the agent’s preferences. However, the markedly different results
obtained in the experiments with three and four attributes indicate that these results
should be generalized only very cautiously.

The model underlying the analysis of this paper is a rather simple one and relies on
some strong assumptions. The present approach can therefore be extended in several
directions. First of all, the model used here represents a decision problem under
certainty, while traditional agency models usually deal with decisions under uncertainty.
While the model can also be thought of as representing a decision under risk, where
both principal and agent are risk neutral, taking into account the risk aspect explicitly is
certainly an important next step.

The model also relies on the assumption of a linear utility function, where only the
weights are unknown to the principal. A more general model should also include the
possibility that the principal is unaware of more fundamental, structural properties of
the agent’s utility function.

Finally, many decision problems in which uncertainty about the behavior of other actors
plays an important role are not characterized by the distinct hierarchical roles of
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principal and agent, but involve an exchange relationship between actors of more equal
power and rank. Network structures of organizations are characterized at the same time
by a more symmetric distribution of power and higher behavioral uncertainty than
hierarchies. Extending the present model to a game theoretic model, in which players
are uncertain about the benefits other players derive from different outcomes of the
game, might therefore lead to more realistic models of such organization structures.
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