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Abstract

In this paper, we consider the problem of incorporating additional preference
information into Value Efficiency Analysis by using the “price” information of inputs
and outputs. This is done to improve the accuracy of the estimation of the Value
Efficiency Scores. Value Efficiency developed by Halme et al [1998] is an efficiency
concept, which takes into account the decision maker’s preferences. Value Efficiency
Analysis is based on the assumption that an implicitly known value function reaches its
maximum at the Most Preferred Solution on the efficient frontier. The Most Preferred
solution is an input-output vector preferred to all other possible input-output vectors.
The ultimate goal is to measure a need to improve (radially) the values of inputs and/or
outputs to make them equally preferred to the Most Preferred Solution. Because we do
not know the value function, we approximate the indifference curves of all possible
value functions satisfying certain assumptions by their tangents at the Most Preferred
Solution. The resulting cone of the tangents consists of points less or equally preferred
tothe Most Preferred Solution. However, in addition to the Most Preferred Solution
information about the “prices” of inputs and outputs may be available as well. We show
how this information can be incorporated into the analysis and illustrate the approach by
an example on the performance of municipal dental units in Finland.

Keywords: Efficiency Analysis, Data Envelopment Analysis, Value Efficiency, Value
Function, Multipliers.
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Restricting Weights in Value
Efficiency Analysis

Merja Halme
Pekka Korhonen

 1.  Introduction
Data Envelopment Analysis (DEA) introduced by Charnes et al. [1978] has gained a
wide range of applications measuring comparative efficiency. It is a non-parametric
method based on linear programming. The productivities of units, specified as the ratio
of the weighted sum of outputs and inputs, are compared with each other and efficient
units are identified. The units can be analyzed together only if they use the same inputs
and produce the same outputs with similar production technologies. In a DEA
programme, optimal weights are defined for each unit’s all inputs and outputs, i.e. the
weights that are the most favorable for the unit.

It is considered an advantage of DEA that no preference information is needed that the
weights are allowed total flexibility. However, many value judgment schemes have
been proposed for several reasons. The first weights restrictions in DEA were put
forward by Thompson et al. [1986]. Weights restrictions are the most straightforward
way to incorporate preference information in a DEA analysis. It is often the case that
some information on the relative importance or relative prices of the inputs and outputs
is available. It would not be reasonable to exclude that from the analysis. The weights
do not always have an interpretation as prices.

Outside of weights restrictions, preference information can be incorporated into DEA by
target setting (e.g. Golany [1988] and Thanassoulis and Dyson [1992]), by adding
unobserved (artificial) decision-making units (DMU) into the analysis (Thanassoulis et
al. [1998]) or by Value Efficiency Analysis (Halme et al. [1998]). For reviews on value
judgment schemes, see Allen et al. [1997] and Pedraja et al. [1997].

Value Efficiency Analysis (VEA) is an approach to incorporate value judgments in DEA
via the most preferred solution (MPS), which is the input-output vector on the efficient
frontier preferred by the decision maker (DM) to all other possible input-output vectors.
To insert this information into efficiency analysis, requires a modification of the
original model. The modification changes the  efficient frontier. In that sense, the Value
Efficiency Analysis is analogous to weights restrictions models. In Value Efficiency
Analysis, the DM does not explicitly consider the weights. He/she only chooses the
MPS among all the efficient (virtual) units.
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In this paper we propose the use of both kinds of preference information in the analysis:
the most preferred input-output vector as well as information on weights of inputs
and/or outputs, when it is reasonable. We may apply weights restrictions before or after
Value Efficiency Analysis. In this paper we deal with both cases. The use of weights
restrictions in the context of Value Efficiency Analysis can be interpreted as an aim to
improve the precision of the approximation of Value Efficiency Scores.

To illustrate our approach, we present an example concerning the analysis of municipal
dental units in Finland, where there are two kinds of labor inputs: better paid dentists
and less paid other staff (in man years).  The outputs are divided into two parts: patients
under 18 years of age and other patients (that have been taken care of). The treatment of
the latter group is more expensive. We demonstrate that we get very useful results by
combining these two different ways to incorporate preference information.

The rest of this paper is organized as follows. Section 2 reviews the basic DEA-models
and the traditional weights restriction approach. Section 3 provides an introduction to
Value Efficiency Analysis and its use together with weights restrictions.  Section 4
considers the properties and use of the set of weights optimal for the MPS. Section 5
concludes the paper.

2.   Data Envelopment Analysis with Weights Restrictions

2.1 General DEA Model
Assume we have n decision making units (DMU) each consuming m inputs and

producing p outputs. Let X ∈ ℜ
m×n
+ and Y ∈ ℜ

p×n
+  be matrices, consisting of

nonnegative elements, containing the observed input and output measures for the
DMUs. We further assume that there are no duplicated units in the data set. We denote
by xj (the jth column of X)  the vector of inputs consumed by DMUj, and by xij the
quantity of input i consumed by  DMUj. A similar notation is used for outputs. When it

is not necessary to emphasize the different roles of inputs and outputs, we denote u = 



 y

-x  

and U =  



 Y

-X  .1) Furthermore, we denote 1 = [1, ..., 1]T and refer by ei to the ith unit

vector in ℜn.

We consider set T = { u  u = Uλ,  λ ∈ Λ}, where Λ =  { λ  λ ∈ ℜ
n
+ and Aλ ≤ b}, ei ∈

Λ, i =1,…, n. Further consider matrix A ∈ ℜ
k× n
  and  vector b ∈ ℜ

k
  which are used to

specify the feasible values of  λ-variables. All efficient DMUs lie on the efficient

                                                
1) Because the results concerning u and U are valid for 



 y

x   and 



 Y

X   as well, for simplicity, we often

refer to u and U, although we are factually interested in results concerning 



 y

x   and  



 Y

X  .



3

frontier, which is defined as a subset of points of set T satisfying the efficiency
condition defined below:

Definition 1.  Point u* ∈ T is efficient iff there does not exist another u ∈ T such that u
≥ u*, and u ≠ u*.

Definition 2.  Point u* ∈ T is weakly efficient iff there does not exist another u ∈ T
such that u > u*.

The purpose of  DEA is to diagnose which of the existing units uj = Uej  (uj ∈ T, j = 1,
2, …, n) are efficient and how inefficient the rest of the units are. The original DEA-
models as introduced by Charnes et al. [1978] were constant returns to scale models,

later on called CCR-models, i.e. set T was defined by setting  Λ =  { λ  λ ∈ ℜ
n
+}.

Later Banker, Charnes and Cooper [1984] developed the BCC models with variable

returns to scale, i.e. Λ =  { λ  λ ∈ ℜ
n
+ and 1Tλ = 1} The CCR and BCC-models are the

most common model types in DEA. To unify the presentation we formulate a general
model (for short, GEN) which includes CCR- and BCC-models as special cases. We
would like to emphasize that subsequent considerations are valid for other standard
DEA-models as well. Note that the original primal formulation in Charnes et al. [1978])
is currently in the DEA-literature (see, e.g. Charnes et al. [1994]) called the dual and
vice versa.

General DEA Model

(Primal)

General DEA Model

(Dual)

max Z = σ + ε(1Ts+ + 1Ts-)

s.t.                                           (2.1a)

    Yλ  - σwy - s+ =  gy,

    Xλ +σwx + s-

  = gx,

    Aλ + δ  = b,

      λ, δ, s-, s+ ≥ 0,

        ε > 0, (“Non-Archimedean”)

Min     W = νTgx - µ Tgy

  + ηTb

s.t.                                          (2.1b)

     -µTY  + νTX  + ηTA - γT  =  0T

      µT wy + νTwx           = 1

          µ, ν ≥ ε1

       γ, η  ≥ 0
            ε > 0 , (“Non-Archimedean”)

Vector  gy consists of general aspiration levels for outputs and gx of general aspiration

levels for inputs. Denote  g= 



gy

gx  ∈ ℜm+p. Vectors wy ≥ 0 and  wx ≥ 0  with w= 



wy

wx  ≠ 0

are the weighting vectors for outputs and inputs, respectively. By choosing the vectors g
and w in an appropriate way, we will get one of the original DEA-models.
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In DEA-models, g is one of the existing units 



yj

xj

 = 



Y

X ej (uj ∈ T, j = 1, 2, …, n).

Vector w is either 



yj

0 , 



0

xj

, or 



yj

xj

 depending on the orientation chosen. Thus a DMU (uj

∈ T, j = 1, 2, …, n) is efficient if and only if (iff) the optimal value Z* of model (2.1a)
equals 0. Then all slack variables s- and s+ equal zero as well. Otherwise, the DMU is
inefficient (Charnes et al. [1994]). Efficiency considerations can be made using the dual
model (2.1b) as well. Note that in our formulation, σ is zero for efficient units - not one
as usually.

2.2  DEA Model with Weights Restrictions
The demands of real life applications probably are the origin of the incorporation of
preference information in DEA. A natural incentive is some a priori knowledge on
prices or the relative importance of outputs but also the need to have more realistic
efficiency scores as well as the need to rank the efficient units.Because in the DEA-
literature, so far only linear weights restrictions have been encountered, we may present
the weights restrictions as follows:

-µTBy + νTBx  ≥ c, (2.2)

where By ∈ ℜ
p× r
  and Bx ∈ ℜ

m× r
 . Dimension r refers to the number of constraints.

If  c ≠ 0  we refer to them as absolute weights restrictions. The absolute weights
restrictions are typically imposing a range for an individual weight. This approach was
developed by Dyson and Thanassoulis [1988] and generalized by Roll et al. [1991].
Also virtual weights restrictions introduced by Wong and Beasley  [1990] belong to this
category.

If c = 0 we speak about relative weights restrictions. The class of relative weights
restrictions includes among others, the assurance region models by Thompson et al.
[1990] as well as cone ratio DEA models (e.g. Charnes et al [1989]). Golany and Roll
(1994) introduced standards in DEA which resulted in a model where the upper and
lower bounds of the weights are treated as variables.

Roll et al. [1991] showed that the linear weights restrictions work as artificial units. This
can be easily seen by adding the weights restrictions into the dual model (2.1b) and
writing the primal and dual weights restricted DEA-models.

In the primal model (2.2a) new columns appear, which correspond to the new units in
the problem. Note, however, that the primal’s θ -variables do not appear in the
constraint Aλ + δ  = b.  Another deviation from a “standard” unit is that new input-
output vectors may contain zero and/or negative elements.
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General DEA Model

with weights restrictions

(Primal)

General DEA Model

with weights restrictions

(Dual)

max Z = σ + ε(1Ts+ + 1Ts-) + cTθ

s.t.                                                   (2.2a)

  Yλ  - σwy - s+ + Byθ  =  gy,

  Xλ +σwx + s-

  + Bxθ  = gx,

  Aλ + δ  = b,

      θ  ≥ 0

      λ, s-, s+ ≥ 0,

      ε > 0, (“Non-Archimedean”)

min     W = νTgx - µ Tgy

  + ηTb

s.t.                                                           (2.2b)

     -µTY  + νTX  + ηTA - γT  =  0T

      µT wy + νTwx           = 1

     -µTBy + νTBx  ≥ c

          µ, ν ≥ ε1

       γ  ≥ 0, η ≥ 0
       ε > 0  (“Non-Archimedean”)

Note that the weights restrictions modify T, the set of possible input-output vectors. The
original efficient frontier clearly changes after the incorporation of weights restrictions.
The resulting new feasible set is Tw = { u  u = Uλ + Bθ, λ ∈ Λ, θ ≥ 0}. Clearly T ⊆ Tw

. Thus the units originally efficient  in set T are not necessarily efficient in Tw.

Especially, when the absolute weights restriction method is used, there is a possibility
that model (2.2b) may not have a feasible solution and the primal (2.2a) is unbounded. It
may, of course, happen in case of relative weights as well. In that case the weights
restrictions are in conflict with one another.

2.3  An Example – Efficiency Analysis of Municipal Dental Units
Our data from year 1995 consists of 21 Finnish municipal dental units. The units are
evaluated with three input variables: material costs (1000 FIM), dentists (working years)
and other staff (working years). The two output-variables are the number of patients
treated divided into two categories: less than 18 years and more than or equal to 18
years old.

We will impose the following additional weights restrictions into the model:

 ν2 ≥ 1.5ν3

 µ1 ≤ µ2.
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The weight (the annual costs) of dentists should be at least 150 per cent of that of the
other staff. Moreover the weight  (cost) of younger patients should be less or equal to
that of the older patients. If we did not introduce this restriction, units could  manipulate
their productivity by favoring the treatments of younger, easier patients.

The weights restrictions are based on information about relative prices. Note that each
relative weights restriction corresponds to inputs/outputs measured in the same units.

Table 2.1  The dental units’ input-output data

inputs outputs
Dental unit materials dentists o staff patients <18 patients >18

1000 FIM years years
Helsinki 5648 132 212 73158 54154
Espoo 2396 54,5 83 33098 25357
Tampere 2789 40,5 52 28486 17157
Vantaa 2231 59,5 85 29580 10624
Turku 2061 53,5 52 24139 17291
Oulu 1689 36,5 61,5 20223 11293
Lahti 1001 27 43 20565 14251
Kuopio 898 29,5 37,5 14049 9348
Pori 1393 26,5 33 13785 7415
Jyväskylä 973 23 34,5 12106 11945
Hämeenlinna 1511 27,5 40,5 13247 9958
Lappeenranta 799 15,5 21 10737 4164
Kotka 523 16 27 10021 4480
Vaasa 1341 21,5 29 10534 6200
Mikkeli 758 21 25,5 10526 5298
Porvoo 1046 19,5 30,5 9687 5349
Joensuu 1296 22 29 8958 6575
Seinäjoki 767 18 24 10161 9207
Rauma 960 23 29,5 9452 8245
Kokkola 972 17 22 9520 2753
Kouvola 550 17 20,5 8238 5647
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Table 2.2  The combined DEA  inefficiency scores without and with weights
restrictions

The weights restrictions result in scores that show the unit in a less favorable light. In
this example, however, they did not affect the scores in any dramatic way.

3.  Setting restrictions on Multipliers in Value Efficiency
Analysis

3.1 Value Efficiency Analysis
The idea of Value Efficiency Analysis is to incorporate the DM’s preference
information into the analysis in the form of a desirable combination of inputs and
outputs, not setting absolute or relative weights restrictions.  As explained in Halme et
al. [1998], preference information is incorporated via the Most Preferred Solution, i.e. a
(virtual or existing) DMU on the efficient frontier having the best combination of of
inputs and outputs. It is obvious that the MPS is efficient.

The purpose of Value Efficiency Analysis is to evaluate the efficiency of each unit in
relation to the indifference contour of the Decision Maker’s value function passing
through the Most Preferred Solution. The evaluation could be done easily, if we
explicitly knew the value function. In practice, the assumption is not realistic. Because
the value function is unknown, we cannot characterize the indifference curve precisely
but we have to approximate it. We do this by trying to find a region containing all

scores
dental units combined with weight

DEA restrictions
Helsinki 0.000 0.000
Espoo 0.000 0.000
Tampere 0.000 0.000
Vantaa 0.077 0.226
Turku 0.000 0.098
Oulu 0.139 0.183
Lahti 0.000 0.000
Kuopio 0.123 0.143
Pori 0.111 0.177
Jyväskylä 0.002 0.002
Hämeenlinna 0.173 0.176
Lappeenranta 0.001 0.106
Kotka 0.035 0.113
Vaasa 0.187 0.208
Mikkeli 0.089 0.201
Porvoo 0.207 0.247
Joensuu 0.222 0.240
Seinäjoki 0.000 0.000
Rauma 0.149 0.164
Kokkola 0.097 0.235
Kouvola 0.094 0.159
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vectors 



 y

x  ∈ ℜp+m surely less than or equally preferred to the most preferred unit. It is

necessary to make assumptions about the value function.

Halme et al. [1998] developed the requisite theory by assuming that the DM’s

(unknown) value function v(u), u = 



 y

-x   ∈ ℜp+m is pseudoconcave, and strictly

increasing in u (i.e. strictly increasing in y and strictly decreasing in x) and with a

maximal value v(u*), u* = 



 y*

-x*  ∈ T, at the Most Preferred Solution u*. Because the

value function is pseudoconcave, then the region containing all vectors u ∈ ℜp+m surely
less than or equally preferred to the Most Preferred Unit can be characterized by the
tangent hyperplanes of all possible pseudoconcave value functions obtaining their
maximum at the MPS as explained in Halme et al. [1998]. Those hyperplanes define a
new 'Efficiency Frontier' and efficiency is then defined in relation to this frontier using a
standard DEA-technique. The resulting scores are called Value Efficiency Scores.
Because we use an approximation and not the true indifference contour of the value
function the resulting value efficiency scores are actually optimistic approximations of
the true scores.
The basic idea of Value Efficiency Analysis is illustrated in Fig.1. We have five units
(A, B, C, D, E), which produce two outputs and use the same amount of one input.
Consider the output-oriented model and illustrate the problem in the output space.
Clearly all units except unit B are efficient. The classic efficiency measure for unit B is

the ratio: 
OB
OB1. In Value Efficiency Analysis, we would like to evaluate the ratio: 

OB
OB4,

but because the value function is unknown that is not possible. If we could approximate

the indifference contour by a tangent, then we could use the ratio: 
OB
OB3. However, we

cannot assume the tangent is known. This is why we consider all possible tangents of

the contour. This idea leads to the use of the ratio: 
OB
OB2 as an approximate measure for

Value Efficiency. Without any additional knowledge of the value function this

approximation is the best we can get and  we call the ratio 
BB2

OB2 Value Efficiency Score.

Note that 
BB2

OB2 = 0 for a value efficient unit.
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Figure 1: Illustration of Value Efficiency Analysis

Value efficiency scores can be calculated as easily as efficiency scores in standard DEA

by  solving a linear programming problem. A DMU0 with input-output vectors u0 = 



 y0

-x0

is value inefficient with respect to any strictly increasing pseudoconcave value function

v(u), u = 



 y

-x  with a maximum at  u*, if the optimum value Z* = W* is strictly positive

in this problem formulation (3.1a-b).

A

B

C

D

E

B1

B2 B3

B4

O Output 1

Output 2

Most Preferred
Point

Efficient Frontier
Indifference Contour
of Value Function at
Most Preferred Point
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General Value Efficiency Model

(Primal)

General Value Efficiency Model

(Dual)

max Z = σ + ε(1Ts+ + 1Ts-)

s.t.                                           (3.1a)

    Yλ  - σwy - s+ =  gy,

    Xλ +σwx + s-

  = gx,

    Aλ + δ = b,

       s- , s+ ≥ 0,

        ε > 0, (“Non-Archimedean”)

        λj ≥ 0, if λj* = 0,  i = 1,2, …, n

        δj ≥ 0, if δj* = 0,  i = 1,2, …, k

Min     W = νTgx - µ Tgy

   + ηTb

s.t.                                          (3.1b)

     -µTY  + νTX  + ηTA - γ  =  0

      µT wy + νTwx           = 1

          µ, ν ≥ ε1

       γj   

≥ 0, if λj* = 0

 = 0, if λj* > 0
, j = 1,2, …, n

      ηj   

≥ 0, if δj* = 0

= 0, if δj* > 0
, j = 1,2, …, k

       ε > 0 , (“Non-Archimedean”)

λ* and δ* correspond to the Most Preferred Solution:  y*  = Yλ*,  x*  = Xλ*

The only difference compared with standard primal DEA-models is that some variables
are allowed to have negative values. This simple modification of the DEA model makes
it possible to take into account value judgments in the form of the MPS.

3.2  Restricting  Weights in Value Efficiency Analysis
A Value Efficiency Analysis model incorporates preference information into the
efficiency analysis by using information about the MPS and the functional form of the
value function. However, we may wish to impose additional weights restrictions,
absolute or relative, in problem (3.1b). The reason for this might be the knowledge of
relative prices or relative importance of some of the input-output variables. Also there
might arise a need to check if the additional weights restrictions are in harmony with the
MPS chosen. Thus information on the absolute or relative weights may be used as a
supplement to Value Efficiency Analysis and thus to improve Value Efficiency Score
estimates. Also, it may happen the DM is unable to locate a unique MPS. Then the
weights restrictions may be used to choose among the MPS candidates, particularly
some of them can be rejected owing to the conflict with the new information.

To impose weights restriction in Value Efficiency Analysis, we supplement the dual
model (3.1b) with linear constraints: -µTby + νTBx  ≥ c, By ∈ ℜpχr and Bx ∈ ℜmχr in the
same way as weights restrictions were added in the standard DEA model (2.1b). In
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(3.2a) we present the dual model with weights restrictions and the corresponding primal
model with additional columns corresponding to the new  restrictions.

Restricted Value Efficiency Model

(Dual)

Restricted Value Efficiency Model

(Primal)

min      W = νTgx - µ Tgy

   + ηTb

s.t.                                          (3.2b)

     -µTY  + νTX  + ηTA - γ  =  0

       µT wy + νTwx                 = 1

     -µTby + νTBx    - ξ       = c

          µ, ν ≥ ε1

       γj   

≥ 0, if λj* = 0

 = 0, if λj* > 0
, j = 1,2, …, n

      ηj   

≥ 0, if δj* = 0

= 0, if δj* > 0
, j = 1,2, …, k

       ξ ≥  0

       ε > 0 , (“Non-Archimedean”)

Max Z = σ + ε(1Ts+ + 1Ts-) + cTθ

s.t.                                                 (3.2a)

    Yλ  - σwy - s+ + Byθ  =  gy,

    Xλ +σwx + s-

  + Bxθ  = gx,

    Aλ + δ = b,

      s- , s+ ≥ 0,

      ε > 0, (“Non-Archimedean”)

      λj ≥ 0, if λj* = 0,  i = 1,2, …, n

      δj ≥ 0, if δj* = 0,  i = 1,2, …, k

      θi 

≥ 0, if ξi ≥ 0

 is unrestricted, if ξi = 0
, i = 1,2, …, m.

λ*  and δ*  correspond to the Most Preferred Solution: y*  = Yλ* and  x*  = Xλ*

Problems (3.1a-b) always have a (finite) solution (if 2.1a-b has a (finite) solution and) if
the MPS is efficient. However, it may occur that the dual (3.2b) has no feasible solution
and the primal’s optimum is unbounded. It means that the weights constraints -µTby +
νTBx  ≥ c are in conflict with the MPS or it may happen that after inserting them to the
basic model (2.1b), model (2.2b) have no feasible solution.

If the problem of infeasibility only appears in model (3.2b), but not in model (2.3b) we
may project the MPS onto the efficient frontier of the weights restricted production set
Tw. This can be done by solving (2.2a) or (2.2b) with the MPS as the unit zero. This
resulting point on the efficient frontier is then used as a new MPS. Alternatively, we
may give the DM an opportunity to consider his MPS choice and possibly find another
one, It may be possible that the conflict also appears in the original models (2.2a,b). In
that case we have to ask the DM to re-consider the weights restrictions. The main end is
to have an MPS in harmony with the additional weights restrictions.

Alternatively, we may start readily from the model (2.2a) and then search the efficient
frontier of set TW. An advantage of this approach is that we immediately see if the
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weights restrictions are in conflict with the original model. A drawback is that we
cannot guarantee that the MPS found belongs to the feasible set of the original problem
(2.1a). In this case, we may consider the MPS as a virtual unit which may lie on the
“true” efficient frontier, but not on the estimated frontier. Anyhow, we want to locate
the most preferred unit on the modified efficient frontier, also belonging to the original
efficient frontier. After finding that we may carry out Value Efficiency Analysis.

It is up to the DM and may depend on the problem, in which order the DM likes to carry
out the two phases: set up weight restrictions and locate the MPS. In each case, Value
Efficiency Analysis is carried out in a straightforward way with model (3.2a) or (3.2b).
In our presentation we prefer to use the primal model (3.2a).

3.3 An Example - Value Efficiency Analysis of Municipal Dental Units
Consider further the municipal dental units. We carry out Value Efficiency Analysis
first without weights restrictions and then with the restrictions used in Subsection 2.3:

ν2 ≥ 1.5ν3

µ1 ≤  µ2.

Assume that the DM names Espoo as the most preferred solution. In this case, we may
think that the DM considers it as an example unit preferred to all others. The
corresponding value inefficiency scores obtained with the combined model (3.1a) are
reported in Table 3.1.

The analysis is repeated by imposing the weights restrictions and using (3.2b).  The
results are also reported in Table 3.1. We see that the scores for most of the units are
strictly less optimistic than the Value Efficiency Scores without weights restrictions in
the second column.

As we already discussed above, an efficient unit in the original set T is not necessarily
efficient in set Tw. Consider e.g. unit Turku as the most preferred solution. After
imposing the weights restrictions and trying to solve the model (3.2b) for any unit, the
solution is unbounded. It means that Turku is not on the efficient frontier in production
set Tw. One solution is to first project Turku onto the efficient frontier by model (2.2a),
and then use this point as the most preferred solution in model (3.1b), or we may ask the
DM to try another most preferred solution.
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Table 3.1. Value Inefficiency and restricted Value Inefficiency Scores

4.  Further Considerations

4.1 The set of weights, optimal for an efficient unit
In some problems, the DM may be unable to set explicit restrictions for weights, but
instead he/she may be willing to consider which weights are in harmony with a certain

MPS 



y*

x*   = 



Y

X λ*. The optimal solutions of the dual (2.1b), where vector g= 



gy

gx

refers to the MPS, can be found considering the optimality conditions (see, e.g. Bazaraa,
Jarvis, and Sherali [1990]) of the primal (2.1a).

First, permute and decompose the columns of matrices X, Y, and A such that X →  [XB

XN  ] , Y → [ YB   YN  ], and  A → [ AB   AN  ], where subscript ‘B’ refers to the columns
corresponding to values λj* > 0, j ∈ {1,2, …, n} and ‘N’ to the remaining columns λj* =

0, j ∈ {1,2, …, n}. Decompose further γ =  



0

γN

   ∈ ℜp and η =  



0

ηN

   ∈ ℜk as well as

the vector b =  



0

bN

  and the rows of the matrix A = [ AB   AN  ] into A =  



 ABB  ANB

 ABN  ANN

 ,

where subscript ‘B’ refers to the columns corresponding to values δj* > 0, j ∈ {1, 2, …,
k}.

Now the optimality conditions for a MPS can be written as follows:

combined value eff value eff
DEA MPS Espoo weight restr

Helsinki 0.000 0.000 0.000
Espoo 0.000 0.000 0.000
Tampere 0.000 0.000 0.000
Vantaa 0.072 0.143 0.215
Turku 0.000 0.000 0.098
Oulu 0.122 0.161 0.192
Lahti 0.000 0.000 0.000
Kuopio 0.110 0.150 0.227
Pori 0.100 0.201 0.270
Jyväskylä 0.002 0.002 0.015
Hämeenlinna 0.148 0.150 0.192
Lappeenranta 0.001 0.238 0.331
Kotka 0.034 0.272 0.379
Vaasa 0.158 0.235 0.340
Mikkeli 0.081 0.247 0.363
Porvoo 0.172 0.286 0.407
Joensuu 0.181 0.216 0.315
Seinäjoki 0.000 0.000 0.037
Rauma 0.130 0.132 0.197
Kokkola 0.089 0.316 0.489
Kouvola 0.086 0.184 0.291
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-µTYB  + νTXB  + ηT
NABN        =  0T

-µTYN  + νTXN  + ηT
NANN  -γN =  0T            (4.1)

 µT wy  +  νTwx                         = 1

             µ, ν ≥ ε1, ηN ≥ 0

             ε > 0.

The set of optimal weights corresponding to the MPS is a convex polyhedron. By
enumerating all possible extreme point solutions of (4.1), we will find a representation
for all possible weights. As an enumeration scheme one may use e.g. the algorithm of
Dyer et al [1977].

Denote those solutions by  



µi

νi , i ∈ M, where M consists of the indices of all extreme

point solutions. The possible weights vectors π corresponding to the MPS selected are
then of the form

π =  ∑
i∈M

 
  αi 



µi

νi  , 1Tα  = 1.

The set of possible weights is not necessary small. In that case, it is not necessary easy
to enumerate possible weights. It means that this approach can be used only when
enumeration is easy to be performed. The equation system (4.1) can be used to check
the consistency of  additional weights restrictions. In that case, enumeration is not
needed. We simply augment the equation system (4.1) with additional constraints, and
will check if the system has feasible solutions.

4.2 Illustrative Example
Consider a simple example of five units with one input and two outputs.

Table 4.1: Data Set for Illustrative Example

Units Input Output1 Output2

A 1 3 2

B 4 3 3

C 7 5 2

D 13 7 3

E 12 11 2



15

Consider the combined BCC model. Units A, B, D and E are efficient. Assume that the
DM will locate the point (5.84, 5.80, 2.33) as his/her MPS. The MPS is obtained by
combining the values of units A, B and E using the coefficients (0.32, 0.33, 0.35)
correspondingly. Thus λA > 0, λB > 0, λC = 0, λD = 0, λE >0, and δ = 0. Thus our equation
system is:

A:   ν1    -   3µ1 - 2µ2  +η = 0

B:  4ν1   -   3µ1 - 3µ2  +η = 0

C:  7ν1   -   5µ1 - 2µ2  +η ≥ 0

D: 13ν1   -  7µ1 - 3µ2  +η ≥ 0

E: 12ν1   - 11µ1 - 2µ2 +η = 0

  7ν1   +  5µ1 + 2µ2      = 1

  µ, ν ≥ 0

Note that we use the last row  in this form for simplicity. We have four equalities, two
inequalities and four variables, so the solution is unique, because the rows (columns) of
those four equalities are linearly independent. It is   v1 = (ν1,  µ1, µ2, η) = (0.050, 0.069,
0.151, 0.459).

Let’s consider another example, where the MPS (2.5,3,2.5) is found by combining A
and B using the coefficients (0.5, 0.5). In this case, the equation system  is of the form:

A:   ν1    -   3µ1 - 2µ2  +η = 0

B:  4ν1   -   3µ1 - 3µ2  +η = 0

C:  7ν1   -   5µ1 - 2µ2  +η ≥ 0

D: 13ν1   -  7µ1 - 3µ2  +η ≥ 0

E: 12ν1   - 11µ1 - 2µ2 +η ≥ 0

  7ν1   +  5µ1 + 2µ2      = 1

  µ, ν ≥ 0.

The solution set is the convex combination of two extreme points, v1  = (0.05, 0.069,
0.151, 0.459) and  v2 = (0.077, 0, 0.231, 0.385).

Finally, assume D is the MPS. The equation system looks like as follows:

A:   ν1    -   3µ1 - 2µ2  +η ≥ 0

B:  4ν1   -   3µ1 - 3µ2  +η ≥ 0

C:  7ν1   -   5µ1 - 2µ2  +η ≥ 0

D: 13ν1   -  7µ1 - 3µ2  +η = 0

E: 12ν1   - 11µ1 - 2µ2 +η ≥ 0

  7ν1   +  5µ1 + 2µ2      = 1

  µ, ν ≥ 0
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The extreme points whose convex combination forms the set of solutions are v3 =
(0.026, 0.059, 0.261, 0.856), v4 = (0, 0.077, 0.308, 1.461) and v5 = (0, 0, 0.5, 1.5).

Let’s demonstrate how to check the reasonability of some constraints. For instance,
assume that D is the MPS, and if we would like to add the constraint µ1 ≥ µ2. It means
that the inequality is added to the last example above. We cannot find a feasible solution
for the equation system. This fact can also be seen by considering the extreme point
solutions as well.. In all v-vectors, µ2 > µ1, implying that it is also true to all convex
combinations as well. This approach helps us to find a consistent set of weights or
reveal that our assumptions concerning the MPS and/or the value function are invalid.

5. Conclusion
In this paper, we have consider two approaches to incorporate preference information
into Data Envelopment Analysis. Those are Value Efficiency Analysis and the use of
weights restrictions. We have further shown that these approaches can be used as
supplements to each other. We have illustrated the use of the approach with a case study
consisting of 21 Finnish municipal dental units.  The results demonstrate that the
approaches can be used successfully together.
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