EIIASA

International Institute for Applied Systems Analysis e A-2361 Laxenburg e Austria
Tel: +43 2236 807 ¢ Fax: +43 2236 71313 « E-mail: info@iiasa.ac.at ¢ Web: www.iiasa.ac.at

INTERIM REPORT IR-98-103 / December

The Efficiency of Adapting Aspiration
Levels

Martin Posch (Martin.Posch@univie.ac.at)
Alexander Pichler (apichler@radon.mat.univie.ac.at)
Karl Sigmund (ksigmund@esi.ac.ar)

Approved by
Ulf Dieckmann (dieckman@iiasa.ac.at)
Project Coordinator, Adaptive Dynamics Network

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its
National Member Organizations, or other organizations supporting the work.



[ IASA STUDIES IN ADAPTIVE DYNAMICS No. 33

The Adaptive Dynamics Network at
IASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.

Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability

to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.

Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.

These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.

A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.

The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

Win-stay, lose-shift strategies in repeated games are based on an aspiration level. A
move is repeated if and only if the outcome, in the previous round, was satisficing
in the sense that the payoff was at least as high as the aspiration level. We in-
vestigate the conditions under which adaptive mechanisms acting on the aspiration
level (selection, for instance, or learning) can lead to an efficient outcome; in other
words, when can satisficing become optimising? Analytic results for 2 x 2-games are
presented. They suggest that in a large variety of social interactions, self-centered
rules (based uniquely on one’s own payoff) cannot suffice.
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The Efficiency of Adapting Aspiration Levels

Martin Posch
Alexander Pichler
Karl Sigmund

1 Introduction

In a game theory without rationality (see Rapoport, 1984), players are not assumed
to be able to fully understand the situation they are engaged in. Their moves are
based on knee-jerk rules rather than on strategic analysis. Possibly the simplest of
such rules is the win-stay, lose-shift principle, which consists in repeating an action if
it proved successful, and in switching to another action if not. Suppose that we were
playing a machine with two levers, one resulting in a positive, the other in a negative
outcome. The win-stay, lose-shift principle would result in our repeating the action
with the positive outcome; if we erroneously tried the wrong action, we would switch
back, in the next round, to the right action. Many experiments have shown that such
a behaviour, or some approximation of it, is widespread among human and animal
actors. Interestingly, this crudest form of a learning rule works even in situations
involving several agents, as in the so-called minimal social situation (Colman, 1995).

The win-stay, lose-shift principle was originally formulated by Thorndike (1911):

Of several responses made to the same situation, those which are accompanied or
closely followed by satisfaction are more firmly connected with the situation; those
which are accompanied or closely followed by discomfort have their connection with
the situation weakened.

The wide range of validity of this principle was soon recognised (see, e.g., Hoppe,
1931, Rescorla and Wagner, 1972). In the hands of Herbert Simon, satisfaction-
seeking behaviour became a leading contender for explaining social and economic
decision making (see Simon, 1955, 1957, 1962; Winter, 1971; Radner, 1975). A
considerable amount of empirical evidence suggests that the behaviour of individuals
and firms aims at satisficing, rather than optimising.

But when do we feel satisfied? In certain situations (as when foraging for food,
or for sex) our body knows. In other situations, we have to find out. We may feel
pleased if we pulled a lever which delivers one dollar, but not if we are told that
the alternative would have delivered ten. In such a situation, we must learn what
to aim for; whereas in the foraging case, our genome has done the learning already.
Natural selection operating in a population, or a learning rule based on individual
trial and error, can cause an adaptation of the aspiration level.

It is easy to see how selection, or learning rules, lead to an optimal aspiration level
when playing against nature. We are interested in exploring how adaptation works
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when playing against other players. In the repeated Prisoner’s Dilemma game, for
instance, a strategy called PAVLOV does very well (see Kelley et al, 1962, Colman,
1995, Kraines and Kraines, 1988, and Nowak and Sigmund, 1993). PAVLOV is a
win-stay, lose-shift rule with an aspiration level lying somewhere between the two
highest and the two lowest payoffs. Is there any reason to assume that selection, or
learning, will adapt the aspiration level precisely to this interval? And how would
such adaptive mechanisms fare in other games? We will assume that our players are
‘blind robots’ without any knowledge of the structure of the iterated game, except
that they have two options. They need not even be aware of the existence of another
player. Their only information is the payoff which they obtain in each round.

In section 2, we shall briefly discuss some mechanisms for adapting the aspiration
level, studying first the action of selection, and then two particularly simple learning
rules, which are extremal cases of convex updating of the aspiration level, called
YESTERDAY and FARAWAY. In sections 3 to 5, we turn to the simplest games,
symmetric games between two players having two strategies each. We examine
whether adaptive mechanisms lead to an efficient outcome for such 2 x 2 games.
This is one aspect of a larger question, namely: when is satisficing optimising?

In this paper, our approach will be based on analytic methods. We restrict our
attention to deterministic win-stay, lose-shift strategies based on switching to the
alternative option if and only if the payoff from the previous round falls below the
aspiration level. (In Thorndike’s formulation, win-stay, lose-shift is a stochastic rule:
the difference between aspiration level and actual payoff only affects the propensity
to switch.) For a simulation-based exploration of win-stay, lose-shift strategies with
longer memory sizes we refer to Posch (1998).

2 Games against Nature

Consider a two-armed bandit. Pulling one lever yields payoff R, pulling the other
P, with P < R. Let a be the aspiration level of a player. The player will repeat the
former action if the payoff was at least a, and switch to the other action otherwise.
With some probability € > 0 this action is misimplemented. For simplicity, we shall
only consider the limiting case e — 0. We assume that the game consists of a large
number of rounds, and that the payoff for the repeated game is given by the limit-
in-the-mean (l.i.m.) of the payoff per round (i.e. lim(p; + ... + pn)/N for N — oo,
where p,, is the payoff in round n). If a > R, the player will switch after every round,
and obtain as L.i.m. payoff (R + P)/2. If a < P, the player will always be satisfied,
switch only by mistake, and then repeat the new action till the next mistake occurs.
Again the Li.m. payoff is (R + P)/2. For P < a < R, the player will always pull
the R-lever, except by mistake; after an erroneous P, the player will switch back to
R. The l.i.m. payoff is R.

How does selection act on the frequencies x1,z2 and x5 of the three strategies
corresponding to the intervals | — 0o, P], | P, R| and |R, +o0o[ of possible aspiration
levels? We shall assume that payoff is converted into reproductive fitness, and that
like begets like. This yields the replicator equation

i; = zi(fi — f) (1)
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where f; is the Li.m. payoff for strategy i and f = Yz, fx is the average Li.m.
payoff in the population (see Hofbauer and Sigmund, 1998). The dynamics on the
corresponding unit simplex S5 leads to the extinction of the 'wrong’ aspiration levels:
x9 converges to 1. In this sense, selection yields an aspiration level a in | P, R].

What about learning? Conceivably the simplest way in which experience can
affect a player’s aspiration level consists in conver updating, by taking into account
the payoff obtained in the previous round. More precisely, if a, is the aspiration
level and p, the payoff in the n-th round, then a, = (1 — @)a,—1 + ap,—1 for some
fixed @ €]0,1[. If the aspiration level is initially higher than R, then the player
will restlessly switch between the two possible actions, and a,, will steadily decrease
until it is lower than R. If, on the other hand, a, is lower than P, then the player
will repeat the previous action. If this action happens to yield R, the aspiration
level will soon be between R and P. If the action yields P, then a, approaches P
from below. A mistake in implementation will eventually bring it into the ‘right’
interval. Once there, it will converge towards R from below. An eventual mistake
in implementation happening now will not cause a,, to leave the interval | P, R] and
will immediately be corrected.

When players play each other (rather than a two-armed bandit), convex updating
can lead to complex outcomes. We shall therefore restrict attention to two updating
rules which represent two instructive extremal cases. With YESTERDAY, a =1
i.e. ay, is just p,_1, the payoff obtained in round n — 1. Even if a player starts with
the P-lever, the first mistake will lead to the R-lever. The player then stays with
this option: any further mistake will immediately be corrected.

FARAWAY is the opposite case, in some sense. Of course a = 0 means no updat-
ing at all, which is uninteresting. Instead of this, we shall assume that the aspiration
level is slowly, but continuously modified towards the long-run average. This means
that if the aspiration level is in | — oo, P] or [R,+o0], it steadily inches towards
(R + P)/2 and eventually enters the interval |P, R]. Once there, it converges to-
wards R. The direction of change defines a dynamics leading asymptotically towards
R, which is just ‘right.

3 2 X 2-games

The simplest non-trivial games involve two players with two options each, which we
call C and D. We shall assume that the game is symmetric, i.e. that the two players
are interchangeable. The payoff matrix is

R S
(77 @)
i.e. R is the payoff for using C against a player also using C, S for using C against
D etc. We consider only the generic situation where the four payoff values are
pairwise distinct. There are then 12 different rank orderings. They correspond to
very different strategic situations, see for example Rapoport et al (1976), Binmore

(1992) or Colman (1995). It is no restriction of generality to assume R > P (if this
does not hold, we just interchange C and D) and to normalise the values such that



T
/\ I "l'
I 3 "l'
|
|
[
1 2 A4
1
1,
/R P A ————
l" I
8 ! b
A6
| S
0 [ - S
9 I
11 1 12
10 :
I
0 1

Figure 1: A partitioning of the (S, T')-plane which displays the 12 symmetric 2 x 2-
games.

R =1 and P = 0. Each game, then, corresponds to a point in the (S, T')-plane, and
the 12 rank orderings correspond to 12 planar regions, see Fig.1.

For the Prisoner’s Dilemma, for instance, we have T > 1 and S < 0, for the
Chicken game (also known as Hawk-Dove) ' > 1 > S > 0 etc. For the issue of
equilibrium selection in such games, we refer to Harsanyi and Selten (1988), van
Damme (1991) and Samuelson (1997). In the games 1 and 5, 6, 7, 11, 12, both
players have a dominant strategy (which yields a higher payoff than the alternative,
irrespective of the other player’s choice); the games 6, 7, 8, 9, 10, 11 are common
interest games (the best outcome for one player is also best for the other — namely
R); and the union of these games, i.e. all except 2, 3 and 4, are Stackelberg-
soluble. (The Stackelberg solution is the strategy which optimises the payoff under
the assumption that the reply is optimal from the co-player’s view. The game is
Stackelberg-soluble if, when both players adopt their Stackelberg solution, none can
do better by deviating unilaterally, see Colman and Stirk, 1998).

The four payoff values divide the real line into 5 intervals. All aspiration levels in
the same interval define the same win-stay, lose-shift strategy. The two unbounded
intervals correspond to strategies which are unaffected by the co-player. They consist
in switching to the other option in every round (this will be called NO SATISFAC-
TION), or in sticking with one option until a mistake leads to the alternative (this is
called LET IT BE). The three bounded intervals correspond (in ascending order) to
aspiration levels which are modest, balanced, or ambitious. For both the Prisoner’s
Dilemma and the Chicken game, for instance, a balanced aspiration level lies in [0, 1]
and corresponds to the strategy PAVLOV. This strategy consists in playing C if and
only if the co-player used the same option, in the previous round, as one did oneself.

We may describe each strategy based on the outcome of the previous round
by a quadruple (pg, ps, pr, pp) where py is the probability of using C after having
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experienced in the previous round outcome k € {R, S, T, P}. Since we consider only
deterministic win-stay, lose-shift rules, the p; are either 0 or 1. Thus PAVLOV, for
instance, is (1,0,0,1). In Fig.2 we display for each game the ambitious, balanced or
modest strategies. We note that in crossing a frontier line, exactly one strategy is
modified, each time by altering two of its digits p.

We now assume that there is a small probability € to mis-implement a move,
so that PAVLOV, for instance, becomes (1 — €, €,€,1 — €). The initial move, then,
has no influence on the long-term outcome of the game. In (Nowak et al, 1995)
one can find the l.i.m. payoff obtained by using one strategy against a player using
another, for the limiting case e — 0. A player using PAVLOV obtains, for instance,
(R+ S + P)/3 against a player using the BULLY strategy (0, 0,0, 1), resp. payoff
R against another PAVLOV player (with our normalisation, this becomes (14 .5)/3
resp. 1).

An outcome is Pareto-optimal if no other choice of strategies can lead to an
improvement (i.e. a higher li.m. payoff) for both players. It is easy to see that
the average for the two players is then the maximum of R and (T + S5)/2, i.e.
max{(1, (7T+S5)/2)}. In Fig. 6a we describe when some win-stay, lose-shift strategy
is efficient, i.e. leads to a Pareto-optimal outcome, if all players adopt it. We note
that the ambitious strategy is never efficient.

For any given game, one can set up the replicator equation (1) describing the
dynamics of the frequencies z,,x, and z,, of the ambitious, balanced or modest
strategies under natural selection. The analysis of this equation is straightforward,
but somewhat laborious, since most of the twelve types of game give rise, depending
on the parameters S and T, to several different long-term behaviours (see Pichler,
1998, based on Bomze, 1995). We add that no attractor can be invaded by the win-
stay, lose-shift strategies NO SATISFACTION (0,0,1,1) or LET IT BE (1,1,0,0).

We do not describe all 37 cases, but concentrate on the following issues: (a)
which aspiration levels get selected? and (b) when is the outcome efficient?

Concerning (a), the three aspiration intervals never coexist. At least one is
always eliminated. Two intervals can, in some instances, stably coexist, in the sense
that the dynamics lead to a bimorphic population, part of which use one and part
another interval, with well-defined frequencies of the two types. In most cases, the
attractor consists of one type only. In Fig.3 a-c, we have shaded in black the areas
where an aspiration range is stably adopted by the whole population, and in grey
the areas where it is part of a bimorphism (a stable mixture where a fraction of the
population adopts it). We note that bistable situations (where the initial condition
influences the outcome) are not rare.

Concerning (b), we refer to Fig. 6b. We denote in black the area in the (S, T)-
plane where selection always leads to a Pareto optimal outcome, and in grey the
zone where some initial conditions (x4, zs, ,,) € S3 lead to Pareto-optimality and
others do not. We note that only for a part of the games of type 1, an unstable
efficient outcome exists.
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Figure 2: A description of the (a) ambitious, (b) balanced, (m) modest win-stay,
lose-shift strategies corresponding to the different 2 x 2 games. The figure displays
the corresponding (pg, ps, pr, pp)-coding (see text), and the L.i.m. payoff for a player
using this strategy against a player using the same strategy.
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Figure 3: When does selection among the different win-stay, lose-shift strategies
lead to the (a) ambitious (b) balanced or (m) modest strategy? The dark shading
describes the (S, T')-region where a monomorphic population using this strategy can
emerge, and the light grey describes that region where selection leads to a stable
bimorphic population, with a well-defined fraction using this strategy. In the dark
grey region (cases 11 and 12 for b and 3c), selection leads to a mixed population
in which both the balanced and the modest strategies coexist in a mixture which
depends on the initial condition.
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4 The strategy YESTERDAY

YESTERDAY repeats the previous move if and only if it obtained a payoff at least
as good as in the round before. Let us compute the average payoff between two
YESTERDAY players. As soon as the initial condition, i.e. the transition from
the first round to the next, is given (for instance T — T or T" — R) all further
transitions are specified. Obviously, players experiencing the same outcome in two
consecutive moves (for instance 7' — T') will not shift to another move (except by
mistake, but we shall ignore this for the moment). This yields four stationary states,
namely 7 : R - R — R — ..., and similarly s,¢ and p. Furthermore, since P < R
by convention, the transition P — R and R — P must be followed by the stationary
state r. The other transitions depend on the rank ordering of the payoff values.

Let us consider this for the Chicken game (number 2 in our notation). Fig. 4a
shows how the game develops. For any initial condition, one of the four stationary
states r, s,t or p are reached.

We allow now for misimplementing a move with a small probability €. In the
stationary state r, for instance, one of the players can mistakenly play D instead
of C (we assume that both players are equally likely to get their next move wrong,
and we neglect the possibility that both players make a mistake in the same round,
an event occuring with probability €?). Thus a mistake can lead from R — R to
R — T or to R — S (but not to R — P). Since this leads, after three rounds,
back to r, and since we may neglect the possibility that two mistakes occur within
three rounds (which again has a probability proportional to €?), a mistake leads
from r back to r. Similarly, a mistake in s leads to S — R or to S — P, and hence
after two or four rounds yields the steady state r. The same happens if a mistake
occurs when in state t. But a mistake in p leads with equal probability to P — S
or P — T, and from there to the steady states s or ¢.

Thus errors in implementation can be described by a Markov chain having as
states r, s,t and p (in this order), and as transition matrix

10 0 0
10 0 0
10 o0 o )
0 1/2 1/2 0

This matrix has a unique stationary distribution 7, given by m, = 1 and 75 =
m = m, = 0. It follows that if two players using YESTERDAY play a repeated
Chicken game, their payoff (defined as limit-in-the-mean of the payoff per round)
is R, which is an eminently sensible outcome. Both players cooperate (i.e. do not
escalate the conflict).

If we consider, instead of Chicken, the Prisoner’s Dilemma game (number 1 in
our notation), we find a very different outcome, in spite of the fact that only P and
S have been permuted in the rank ordering of payoff values. In addition to the four
steady states 7, s,t, p, we now find a cycle of period four, namely 7" — P — § —
P — T — ..., which we call ptps. In Fig. 4b, we display the transitions.

From the steady states r,s,t and p, every mis-implementation leads to ptps.
Errors occuring within the cycle have a more varied outcome. A mis-implementation
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Figure 4: The transitions, from round to round, in the payoff for a YESTERDAY
player against another YESTERDAY player, (a) for Chicken (case 2 in Fig.1) and
(b) the Prisoner’s Dilemma (case 1 in Fig.1). The first transition is assumed to be

given as initial condition.
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turns S — P, either into S — S or into S — T, and hence leads with equal
probability either into the steady state s or back into ptps. Similarly, mistakes turn
T — P with equal probability either into the steady state ¢ or back into ptps again,
whereas they turn P — S and P — T into r or p. The transition matrix between
the steady states r, s,t,p and ptps (in this order) is given by

o 0 0 0 1
o 0 0 0 1
o 0o o0 o0 1 |. (4)

0o 0 0 0 1
1/4 1/8 1/8 1/4 1/4

The unique stationary distribution 7 is given by 11—4(2, 1,1,2,8) and the mean payoff
per round is (2R + 3S + 3T + 6P) /14, which is considerably lower than the Pareto-
optimal outcome.

One can similarly compute the payoff for YESTERDAY against itself for each
of the remaining games. The result is shown in Fig. 6¢. The game 8 (the stag hunt
game) admits the cycle ptps and the two games 5 and 12 admit the cycle rsrt. All
other games have only the steady states r, s,t and p.

Among the games where C is the dominating solution, (i.e. where 7" < 1 and
S > 0) YESTERDAY always leads to the corresponding outcome r, except for games
12 and 5. These happen to be precisely the two cases where (T7'+.5)/2 can be larger
than R. The payoff achieved is actually a convex combination of these two values.

Another interesting point concerns games 9 and 10. In these games, players have
to coordinate their strategies, and this is actually achieved by YESTERDAY. How-
ever, the payoff is not necessarily the Pareto optimum R; rather, it is the maximin
solution (which is P in case 9).

Fig. 6¢c displays the games for which YESTERDAY is efficient.

5 The strategy FARAWAY

A very large updating factor (an « close to 1) seems often inefficient. Small o’s
promise to do better. Numerical simulations show that we can approximate con-
vex updating with very small a (infinitesimally slow updating) by the following
continuous time dynamics. The aspiration levels of the two players at time ¢ are
denoted by a;(t) resp. arr(t). The two corresponding axes are divided by the payoff
values R, S,T and P into five intervals each, and the (ar, arr)-plane therefore into
twenty-five regions. In each of these regions, the win-stay, lose-shift strategies of
both players are well defined and lead to Li.m. payoffs P;(ar,arr) and Prr(ar, arr).
If we assume now that the aspiration levels are steadily updated in direction of the
Li.m. payoff actually achieved, we obtain

ar = Pr(ar,arr) — ar

arr = PH(CLI, CLH) —ayjy. (5)

This yields a dynamics in the (ar, arr)-plane which, as it describes the trait values
of the two players, is somewhat related to adaptive dynamics (cf. Metz et al, 1996),
although it describes individual learning rather than evolution.
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We shall only sketch the mathematical basis of this model (see Posch and Sig-
mund, 1998, for details). The orbits of (5) are piecewise linear. The vector field can
be discontinuous on the boundaries of the twenty-five regions. A standard way to
handle such a differential equation is to transform it into a differential inclusion

(ar,arr) € F(ar,arr) (6)

where F(a},aj;) is the smallest convex set containing all limit values of the right
hand side of (5), for (ar,ar;r) — (a3, a};). Such a differential inclusion has at least
one solution, see Filippov (1988).

It is easy to see that we can restrict our attention to the bounded intervals of the
aspiration levels, namely m, b, and a, since all orbits end up there. The dynamics
is symmetric in (az, asr) and it suffices to study the regions where a; < a;;. Hence,
we have to consider only six regions. In each rectangle, the payoff values (Pr, Prr)
are constant. All orbits in that rectangle point towards (Pr, Pry).

Let us describe this in case 1, which includes the Prisoner’s Dilemma. In the
rectangle m x m (where both players use the modest strategy) the orbits point
towards (0, 0), which is the upper right corner. Similarly in the rectangle bx b (where
both players use the balanced strategy, i.e. PAVLOV), all orbits point towards the
upper right corner, namely (1,1). From the rectangle a x a the orbits point towards
(1/2,1/2) and thus lead into b x b or b x a. In m x b the orbits point towards
((1427T)/5,(1 4 2S5)/5) and hence lead either into m x m or b x b. In m x a the
orbits point to (7/2,.5/2) and thus lead into b X a or m x b. Hence, eventually the
dynamics leads to the rectangles b x b (and thus to (1,1)) or b X a.

In b x a the orbits point towards ((1+ 5)/3,(1 + T')/3). This is where things
can get sticky and we have to distiguish four cases (see Fig. 5).

For T' < 2 the orbits point downwards into the rectangle b x b such that (1,1)
becomes an attractor. Thus, the aspirations ultimately converge to (1,1) and the
players cooperate (case a).

If T > 2 the orbits starting at the lower edge of the rectangle b x a point
upwards and thus (1,1) is no longer attracting. If additionally S > —1 the point
((14.5)/3,(1 +1T)/3) lies in the rectangle b x a and hence becomes an attractor.
Thus, all orbits in b x a converge to ((1+ 5)/3,(1 4+ T)/3) (case b). If instead
S < —1, all orbits in b x a lead into the rectangle m x a. The orbits in m X a in turn
lead into b X a. Thus, they converge to the boundary of the rectangles m x a and

b x a. There the dynamics can lead up or down: if % > I=2 "there is an attractor

S+17
W) on the boundary of b x a and m X a to which all orbits in

b x a converge (case c). If % < g—j the orbits at the boundary point downwards
and will eventually reach the rectangle b x b, where they converge to (1,1). Only an
error pushs them back to b x a (case d). Hence, if the probability for errors is low,
the players cooperate most of the time.

Thus, in cases (a) and (d) FARAWAY leads to cooperation. However, only in
case (a) (1,1) is an attractor. Note that this is exactly the parameter range for which
the Pavlov strategy is evolutionarily stable (see Leimar 1997). For the parameter
ranges (b) and (c) there are two attracting fixed points for the aspiration levels
where the agents switch actions every round, and thereby achieve a Pareto optimal

outcome.

point (0,
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Figure 5: Different parameter values for the Prisoner’s Dilemma lead to different
dynamical outcomes for two players using FARAWAY as updating strategy. Case (a)
T<2 (b)T>2and S > -1, ()T >2,S<—1,and (S—2)/T > (T —-2)/(S+1),
and (d) T">2,S < —1,and (S —2)/T < (T —2)/(S+1).
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A similar analysis can be performed for Chicken (case 2). Again, slow updating
leads to many different outcomes. Only for S < 1/2 and T' < 2 will all orbits
converge to (1,1). For S < 1/2 and T > 2, the point ((1+ 5)/3,(1+ T)/3) will
be an attractor in b x a where the players switch actions every round; for S > 1/2
the points (7, S) and (S,T) are attractors (if T < 2 the point (1,1) will also be an
attractor). In these cases the initial aspiration levels determine which equilibrium
gets selected.

In Fig. 6d the area where FARAWAY is efficient is shaded.

6 Discussion

The problem of adapting the aspiration level has intrigued psychologists and economists
alike (see e.g. Thibaut and Kelley, 1959, Sauermann and Selten, 1962, Weber, 1976,
Tietz, 1997). In order to obtain analytic results, we have concentrated on a partic-
ularly simple setting. Our agents are robots with minimal cognitive abilities. They
use ‘hard-wired’ deterministic win-stay, lose-shift rules based on a specific aspiration
level and on the payoff obtained in the previous round. These are severe restrictions,
and we must discuss how much they affect the conclusions.

The lack of stochasticity in the switching rule is certainly a serious drawback.
In more general win-stay, lose-shift rules, the propensity to switch from one option
to the other is a function of the difference between aspiration level and payoff.
It is reasonable to assume that this function is monotonically increasing, but our
restriction to the step function f(z) = 0 for x < 0 and f(x) = 1 for z > 0 is certainly
too narrow. Often, it pays to display a certain degree of frustration tolerance,
i.e. not always to switch after an unsatisfactory outcome, but only with a certain
probability. There is a huge literature on stochastic decision rules, we only refer to
Bush and Mosteller (1951), Staddon (1983), Kraines and Kraines (1988), Stephens
and Clements (1996), Wedekind and Milinski (1996), Posch (1997).

We note in this context that within the class of deterministic memory-one strate-
gies (those for which pg is 0 or 1, up to the error probability), the highest payoff
achievable by the whole population, in case R < (T'+ S)/2,is 2R+ T + S)/4 (see
Nowak et al, 1995). Hence our win-stay, lose-shift rules can never be efficient in this
case, whereas stochastic memory one strategies, for instance (1/2,0,1,1/2), can.
We stress that for the Chicken game with S > 1/2, one of two FARAWAY players
may end up with l.i.m. payoff T', the other with S. In this case the outcome is
Pareto-optimal: but the two players will converge to different roles, one dominating
the other. This is a good outcome for the entire population, since escalated contests
are avoided.

We must also stress that in the games we have considered (both against nature
and 2 x 2) the payoff was a deterministic function of the outcome. This excludes
important situations like the binary choice model (a stochastic two-armed bandit
whose left lever yields one dollar with probability p, and whose right lever yields
one dollar with probability ¢). In that case, a deterministic win-stay, lose-shift rule
leads to pulling the left lever with probability

l1—¢q
(1-p)+(1—9q)
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Figure 6: Efficiency. In (a) the shaded region describes the (S, T')-values for which
some win-stay, lose-shift strategy is efficient. (b) In the dark region selection among
the different win-stay, lose-shift strategies always leads to the fixation of an efficient
strategy, whereas in the grey region some but not all initial conditions lead to such
an outcome; (c) This displays the payoff values obtained by one YESTERDAY
player against another. The shaded region describes the (S, T')-values for which the
outcome is efficient; (d) In the dark region the adaption of the aspiration level by
two FARAWAY players always leads to a Pareto-optimal outcome, whereas in the
grey region some but not all initial conditions lead to it.
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which is obviously not efficient. Interestingly, however, this comes very close to what
untutored players actually do (Estes’ law or the matching rule, see e.g. Colman,
1995), although these players do not adhere to a deterministic win-stay, lose-shift
rule.

Furthermore, we have concentrated on deterministic updating. In general, updat-
ing strategies for repeated games are defined by algorithms specifying the aspiration
level as a (possibly stochastic) function of the initial level and the payoffs experi-
enced so far. We have only considered some extreme cases, which can be treated
analytically. We believe nevertheless that our results also carry over to more real-
istic situations. In particular, whereas almost every updating procedure works well
in deterministic games against nature, it offers no general recipe in dealing with
stochastic effects or the interdependence of several players.

In many cases (such as in the minimal social situation, or the iterated Prisoner’s
Dilemma), having the right aspiration level leads to a good outcome. But finding
this aspiration level through trial and error requires usually more insight into the
structure of the interaction than can be achieved by updating strategies implemented
by purely self-centered robots.

There is obviously no reason to assume that our parameterisation of the (S, 7T)-
plane reflects in any way the relative importance of the 12 different game-theoretic
situations. Some interactions, for instance Chicken games, are likely to occur in
most social groups, since they reflect whether to escalate a conflict or not; on the
other hand, it is hotly debated whether the Prisoner’s Dilemma game is often found
in real world situations. It seems plausible that for games which occur frequently,
selection leads to the evolution of specific strategies (which may or may not be of
win-stay, lose-shift type).

In the Prisoner’s Dilemma game, for instance, YESTERDAY obtains against
PAVLOV the same payoff as PAVLOV against itself, namely R (this can easily be
checked by the same method as in section 4). Since YESTERDAY obtains against
itself a lower payoff, it follows that PAVLOV dominates YESTERDAY. Having the
‘right’ aspiration level a priori turns out, not surprisingly, to be better than adapting
it from round to round. This contest is unfair, of course, if we assume that there is
no way of knowing in advance the payoff structure of the game encountered. But for
particularly relevant games, knowledge could be hard-wired into an innate response.

We note that for many games, FARAWAY leads to outcomes where the agents
switch their actions again and again as e.g. for the Prisoner’s Dilemma in the cases
b and c discussed above. This contrasts with the asymptotic results in Karandikar
et al (1999). These authors study a related win-stay, lose-shift rule, which however
is stochastic. Karandikar et al show that for all games with 7> S and S < 0 (i.e.
games 1,8, and 4), the players will obtain payoff R most of the time, in the limiting
case of infinitesimally slow updating. This is mainly due to the fact that players do
not always shift after a failure. In that case all regions in the (ar, arr) plane where
the aspiration levels change periodically are left in finite time. Thus, if trembles in
the aspirations are very rare, the process stays most of the time at the vicinity of
pure equilibria. However, simulations show that for small a the asymptotic results
of Karandikar et al have little predictive power for the dynamics in the ‘short’ run,
since aspirations can get stuck for hundreds of thousands of rounds close to equilibria
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where players switch actions again and again (see Posch, 1998).

We have emphasised the efficiency (or inefficiency) of learning rules. This issue
is distinct from the evolutionary stability of such rules (see Maynard Smith, 1982,
and for a notion more appropriate to repeated games, Leimar, 1997). Nevertheless
our results make it seem doubtful that deterministic learning rules which are valid
for a wide range of games will evolve. We believe that selection, in the realm of
social interactions, favours

(a) the ability to recognise very specific types of interaction, and to adopt strate-
gies which are hand-tailored for them, and

(b) the emergence of an understanding based on more than just registering the
own payoff sequence.

Let us explain this last point. We have seen, for instance, that YESTERDAY
excels only for a rather restricted range of games. This is in stark contrast with
the strategy YESTERMAX, where players use as aspiration level in round n the
maximum of their own and their co-player’s payoff in round n — 1. If both players
use YESTERMAX, they always have the same aspiration level (clearly), and it can
easily be shown that they always end up obtaining payoff R, except in case 9, a
coordination game, in which case they obtain the maximin P. (Using the same
method as in section 4, one can easily show that here are only two attractors for
the transition chains, namely r and p, and that mistakes both in r and in p always
lead to 7, with the odd exception of case 9, when they always lead to p.) This is
a remarkable performance, showing that, oddly enough, envy is often an efficient
impulse. Indeed, YESTERMAX is just a trite instance of the principle of ‘keeping
up with Jones’. But clearly YESTERMAX requires a substantial cognitive ability;
to monitor the co-player’s payoff and to compare it with one’s own implies a high
degree of emphaty.

The view that even the simplest repeated games require a strategic understanding
agrees well with the currently favoured opinion that the major selective stimulus for
the evolution of intelligence comes, not from games against nature (like optimal
foraging or anti-predator behaviour), but from the demands of social interactions
(cf. Alexander, 1987, or de Waal, 1996).
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