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The Social Life of Automata

Karl Sigmund

1 Introduction

Some of the major transitions in evolution occured only once, and others several
times (cf. Maynard Smith and Szathmary, 1995). Eusocial colonies, for instance,
emerged repeatedly among bees, ants, termites, and aphids. This allows one to
compare the importance of different factors, for instance ecological opportunities,
life history traits, genetical structures etc. and even to predict where similar societies
are likely to be found (as Richard Alexander did in anticipating the sterile worker
caste of the naked mole-rat, see Sigmund, 1993). In contrast, no parallel to human
societies is known in the history of evolution; we seem to be unique in having achieved
a social structure distinguished (i) by the levelling of reproductive opportunities, (ii)
by the prevalence of division of labour, mutual help and economic exchange between
non-related individuals, (iii) by information transfer based on language and (iv) by
moral obligations both externally enforced through group sanctions and internaliced
through powerful emotions.

We can, of course, learn much about the cultural determinants of human societies
by comparing tribes, clans, states and gangs; but all these are manifestations of a
universal ‘human nature’ caused by a major biological transition which, apparently,
has occured once only. In order to analyse the mechanisms responsible for it, we
have to use thought experiments.

Game theory was devised explicitly as a tool for the social sciences. It was meant
to model the independent decision-making process of interacting individuals, each
bent upon the ‘selfish’ goal of maximizing his or her own payoff. Interpreting payoff
as reproductive fitness provides a good tool for studying individual selection based
on Darwinian competition. But for decades, game theory was handicapped by the
fiction of the ‘rational player’, despite the fact that many economists, and every
psychologist, knew better. Furthermore, it was only when biologists started to use
game theory that populations of individuals were considered (see Maynard Smith,
1982, Binmore, 1992, Weibull, 1995, Hofbauer and Sigmund, 1998).

The advent of evolutionary game theory has changed all this. Individual players
were no longer assumed to be rational, but to follow simple, knee-jerk rules. In
the spirit of Richard Dawkins (1976), who claims that we are mere robots, players
were therefore modelled by simple automata. Populations of such interacting au-
tomata, engaged in the massively parallel kind of problem-solving characteristic of
Darwinian evolution, were studied by means of computer simulations or mathemat-
ical analysis following their evolution for many generations. New strategic variants
(or programs) were introduced either by random processes or by hand, and tested
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against the current composition of the population. Nonlinear dynamics describing
the resulting adaptation or selection processes, were used to analyse the chronicles
of these artificial societies (see, e.g., Axelrod, 1997).

This program of evolutionary game theory has been applied to a wide variety of
biological and (more recently) economic topics. In this paper, we sketch some recent
developments in one particularly active field: the evolution of cooperation. More
precisely, we deal with one of the three factors currently recognized as essential,
namely with reciprocity. This is not meant to downplay the importance of the
other two factors, viz. relatedness (Hamilton, 1963) and group selection (Wilson
and Sober, 1994). Doubtlessly close kinship ties, the major basis of cooperation in
clones and bee colonies, did prevail in early hominid groups. Furthermore, group
selection – more precisely, the individual selective advantage due to belonging to a
successful group – was essential, because the major threats to survival were most
likely coming from rival groups. This being said, let us turn to the subject of
reciprocal altruism, originally introduced in a landmark paper by Trivers (1971)
which, to this day, serves as an inspiration to the field.

2 Reciprocal Altruism and the Prisoner’s Dilemma

Assume that in an encounter between two players, one is a potential donor and the
other a recipient. The donor can give help that the recipient needs. Giving help
costs −c to the donor and yields payoff b to the recipient (with the payoff interpreted
as Darwinian fitness, i.e. reproductive success, and assuming 0 < c < b). According
to Hamilton’s rule, it will pay to help if the degree of relatedness r between donor
and recipient (i.e. the probability that a randomly chosen gene from the donor also
belongs to the recipient’s genome) is larger than the cost-to-benefit ration, i.e.

r > c/b.

(Since r ≤ 1/2 under normal circumstances – barring identical twins or high in-
breeding – this condition requires c < b/2). Does this imply that one should never
help an unrelated individual? Not so, according to Trivers, if there is a reasonable
chance that the recipient is able to return the help. This is the principle of recipro-
cal altruism – in Trivers’ definition, ‘the trading of altruistic acts in which benefit
is larger than cost, so that over a period of time both enjoy a net gain’ (Trivers,
1985, p. 361). Accordingly, ‘reciprocal altruism is expected to evolve when two indi-
viduals associate long enough to exchange roles frequently as potential altruist and
recipient’.

This, however, opens the door to unilateral defection. Suppose that in two
consecutive rounds, the players exchange the roles of donor and recipient. If both
help each other, both obtain b− c. This is higher than the payoff 0 obtained if both
refrain from helping. But is one helps and the other does not, then the helper is
left with the costs of his act, −c, and the recipient gets away with b points. This
is just the rank ordering of the payoff values for the Prisoner’s Dilemma, which
had been studied for many years by game theorists and experimental psychologists.
The difference is merely that both players have to decide simultaneously whether to
cooperate (play C) or to defect (play D). If both play C, both receive the reward R
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for mutual cooperation; if both play D, both receive the punishment P ; and if one
defects unilaterally, he receives the temptation T whereas the other player is left
with the sucker’s payoff S. For the Prisoner’s Dilemma game, it is assumed that

T > R > P > S and 2R > T + S.

The first condition implies that the dominant option is to play D: it yields a higher
payoff, no matter what the other player is choosing. In the donor-recipient game
(with two rounds in alternating roles), one has T = b, R = b− c, P = 0 and S = −c,
so that these inequalities are trivially satisfied.

The conclusion seems inescapable that if the interaction is not repeated, co-
operation cannot emerge. It turns out, rather surprisingly, that this conclusion is
premature. But we will return to this point only in the concluding discussion –
our aim here is rather to follow Trivers in assuming that individuals experience, on
average, several interactions.

Let us suppose, then, that the game is repeated with a constant probability w.
The number of rounds is a random variable with expected value (1 − w)−1. The
total payoff is given by

∑
Anw

n, with An as payoff in the n-th round and wn the
probability for the n-th round to occur. In the limiting case w = 1 (the infinitely
iterated game) one uses as payoff the limit in the mean, i.e. (A1 + ... + An)/n
(provided it exists). If w is sufficiently large, there exists (in contrast to the one-
shot game) no strategy which is best against all comers (see Axelrod, 1984). For
w > (T − R)/(T − P ), for instance, the best reply against AlwaysC is to always
defect, whereas against Grim (the strategy that cooperates up to the first time that
it is been exploited, and from then onwards always defects) it is best to always
cooperate.

In a series of round robin tournaments, Axelrod found that the simplest strategy
submitted, namely TFT, finished first. Furthermore, Axelrod and Hamilton (1981)
explored the emergence of cooperation in evolving populations of players. In par-
ticular, they showed that the two strategies AlwaysD and TFT (the Tit For Tat
strategy that cooperates in the first round and from then on always repeats the
previous move of the co-player) are in bistable equilibrium: none of them can invade
the other. But as soon as the frequency of TFT players exceeds a certain threshold
(given by c(1−w)/w(b− c) in the donors-recipient game), keeps growing. For large
values of w, this threshold is very small. This means that a small cluster of TFT
players can invade a population of defectors: the few interactions with their like
more than compensate their loss against the resident majority of defectors.

One may not conclude, however, that a population dominated by TFT can resist
invasion by all comers. This becomes particularly obvious if we take into account
the possiblity for errors, which must always be present in realistic situations. In
fact, the interaction between two TFT players is particularly sensitive to noise. One
wrong move causes a whole chain of alternating defections. One further mistake can
lead back to mutual cooperation, but just as well to mutual defection. The average
payoff decreases drastically. Obviously, the two players should be able to forgive
occasionally – not according to a regular pattern, for this could be exploited, but
rather on a random basis.

This leads to stochastic strategies. We often do not use hard and fast rules in
our everyday interactions, but are guided by factors which are difficult to predict,
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and which result in a stronger or weaker propensity to opt for this move or that
(May, 1987). With TFT, this propensity is 100 percent or 0 percent, depending on
whether the co-player cooperated in the previous round or not. With an error rate
of 1 percent, TFT cooperates with 99 or with 1 percent probability.

3 Evolutionary Chronicles

Let us consider this in a more general setting. In each round, there are 4 possible
outcomes, leading to 4 different payoff values. If we assume that each outcome
determines the next move of the player, this yields 16 different strategies (32 if we
include the first move). If we allow in addition stochastic strategies with a larger or
smaller propensity to cooperate, we obtain a 4-dimensional space of strategies given
by quadruples (pR, pS , pT , pP ) where pi is the probabilty to play C after outcome
i. We can use a computer to find the most successful strategy, by introducing
occasionally a small minority of a new, randomly chosen strategy into the population
and watching how its frequency develops under the influence of selection. If we run
this for a sufficiently long time, we can test a large sample of strategies.

Such mutation-selection chronicles depend on contingencies, and can take very
different paths, but they frequently lead to a population dominated by the so-called
Pavlov strategy (1, 0, 0, 1) – the strategy that cooperates if and only if, in the previ-
ous round, the co-player used the same move as oneself (Nowak and Sigmund, 1993).
This strategy embodies a simple win-stay, lose-shift rule: it repeats the former move
if the payoff was high (T or R) and switches to the alternative move if the payoff
was low (i.e. P or S). Arguably, this is the simplest learning rule. Pavlov seems a
hopeless strategy for invading an AlwaysD population, since it gets suckered every
second round. In fact, it needs a retaliatory strategy like TFT or Grim (the strat-
egy that cooperates until suckered, and from then on never cooperates). Once such
‘nice’ strategies (strategies that are not the first to defect) have taken over, Pavlov
can invade, because it is tolerant to errors. If two Pavlov players are engaged in a
repeated PD game, and one of them commits a mistake and defects, then both play-
ers will defect in the next round – the ‘sinner’ because he is happy with his T and
repeats the former move, the ‘sucker’ because he shifts to the other option. As a re-
sult, both players obtain the low payoff P , switch again and thereby resume mutual
cooperation. In addition to being tolerant to errors, Pavlov has also the advantage
of being intolerant to AlwaysC players. After a mistaken defection against such a
player, Pavlov keeps defecting. Therefore, indiscriminate altruists cannot spread in
a Pavlov population (whereas they could spread by neutral drift in an TFT popu-
lation). As a result, defectors find no easy victims. They only find Pavlov-players,
whom they can exploit in every second round (obtaining (T + P )/2 in the mean),
whereas Pavlov players obtain R against each other. As long as 2R > T + P – or,
in the case of the donor-recipient game, as long as c < b/2 – a Pavlov population is
stable against invasion.
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4 Social Norms

How can one formulate this kind of stability? The usual approach would be to
test for evolutionarily stability (cf. Maynard Smith, 1982). It can easily be shown,
however, that in the context of repeated games, such strategies do not exist. In
particular, neither TFT nor AlwaysD are evolutionarily stable, although this has
occasionally been claimed. Possibly the most appropriate notion in this context is
that of a limit evolutionarily stable strategy. This was originally formulated in terms
of extensive games (Selten, 1975), but for repeated games, it is more appropriate to
formulate it in terms of strategies implemented by finite automata (Leimar, 1997).
In each round, such an automaton can be in one of m internal states. Depending on
the state, it plays C or D; and depending on the outcome of this round, it switches
to the next state. In order to test whether such a strategy is a limit ESS, one
assumes that it plays against a copy of itself, and looks at what happens at every
outcome. If the sequence of moves prescribed by the strategy is better than any
alternative, then the strategy is a limit ESS: it is always disadvantageous to deviate
from it. In fact, a limit ESS is a social norm: if everybody adheres to it, it wouldn’t
do not to do.

Let us consider this for TFT. We may view the internal state as defined by the
outcome R, S, T or P of the previous round. The action rule is to play C after R
and T . Fig. 1 shows a graph whose vertices are the four states (the move on top
is that by the player, the move below that by the coplayer). The full arrow shows
the transition to the next state, if the player uses the move precribed by TFT; the
broken arrow shows the transition if the player uses the alternative move. This
holds under the assumption that the other player sticks to TFT. We see that in
the state S, it would be better to follow the broken arrow: the payoff for the next
two moves is 2R, which is larger than T + S. We should note that in principle, the
state S should never be reached in a game between two TFT players. But according
to the trembling hand doctrine of Selten (1975), it can be reached if one player
misimplements his move, a mistake which may happen with a small, but positive
probability.

If we study the same situation for Pavlov, we obtain the graph of Fig. 2 (again
assuming the co-player to use Pavlov). If 2R > T + P it is best to follow the full
arrows, i.e. Pavlov is a limit ESS. If 2R < T + P , it is better, when in state P , to
deviate from the Pavlov rule and play D. In this case, Pavlov is not a limit ESS.

It is easy to find automata that are always norms and lead to cooperation. Let
us consider the following example, which has three states and starts in state 1. In
state 1 or 2, it plays C, and in state 3 it plays D. The transition table is given by
Table 1. Again, it is easy to check that it is best to always follow the full arrow.

R S T P
1 1 2 3 1
2 1 2 1 2
3 1 1 3 3

Table 1
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Figure 3: cTFT is a norm

This strategy becomes very transparent if one interprets it as Contrite Tit For
Tat (cTFT, originally introduced by Sugden, 1986). It is based on the notion of a
standing associated to each player, which can be g (good) or b (bad). In each round,
the player acts (i.e. opts for C or D) and obtains a new standing which depends on
that action and on the previous standing of both players. The rules for updating
the standing are the following: if the co-player has been in good standing, or if both
have been in bad standing, one receives a good standing if one cooperates, and a
bad standing otherwise. If one has been in good standing and the co-player in bad
standing, one receives a good standing no matter what one does.

Thus if one cooperates in a given round, one will always obtain a good standing:
but if one defects, one will be in good standing only if the defection has been
‘provoked’ – i.e. if one has been in good standing and the opponent in bad standing.

cTFT is the strategy which cooperates except if the player is in good standing
and the co-player is not. This means that the player defects when provoked, but not
otherwise. A player who defects by mistake knows that he lost his good standing,
and meekly accepts punishment, i.e. keeps cooperating even if the other player uses
D on him.

In other words, cTFT begins with a cooperative move, and cooperates except
if provoked (or by mistake). If two players using this strategy engage in a re-
peated Prisoner’s Dilemma, and one player defects by mistake, then he loses his
good standing. In the next round, he will cooperate, whereas the other player will
defect without losing his good standing. From then on both players will be in good
standing again and resume their mutual cooperation in the following round.

This is exactly the strategy implemented by the previously described automaton:
the state 1 corresponds to both player being in the same standing, the state 2 occurs
when the player is in good standing and the co-player not, and state 3 is just the
mirror image of 2. Hence cTFT is a norm, and therefore uninvadable. Moreover,
it is itself as adept at invading a population of defectors as TFT: it can only be
suckered in the first round, and retaliates from then on. Moreover, it is immune
against mistakes of implementation.

However, in contrast to Pavlov, cTFT is vulnerable to errors in perception. A
player erroneously believing to have been suckered will play D. From then on, both
cTFT players will remain in state 2 and keep punishing their co-player in good
faith. Another weak point of cTFT is that it does not exploit AlwaysC-players,
who therefore can spread by neutral drift and thereby open the door to defectors.
In Sigmund et al (1998) it is argued that the investigation of strategies implemented
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by automata should take account of mistakes in perception just as well as of mistakes
in implementation. Given that the number of norms is extremely large (see Lindgren,
1991, and Leimar, 1997), it is difficult to predict which strategies will eventually be
selected.

5 Indirect Reciprocity

So far, we have described direct reciprocation. Alexander has suggested that an-
other, indirect reciprocation is also operating in human societies, and that it is the
basis of all moral systems. In fact, indirect reciprocity was mentioned by Trivers
(1971) as ‘generalised altruism’: the return of an altruistic act is directed towards a
third party. ‘Individuals ... may respond to an altruistic act that benefits themselves
by acting altruistically toward a third individual uninvolved in the initial interac-
tion... In a system of strong multiparty interactions, it is possible that in some
situations individuals are selected to demonstrate generalised altruistic tendencies.’
This possibility is further stressed in Trivers (1985), who explores the possibility
that a sense of fairness may evolve ‘in species such as ours in which a system of
multi-party altruism may operate such that an individual does not necessarily re-
ceive reciprocal benefit from the individual aided but may receive the return from
third parties.’

Richard Alexander extended this idea under the heading of ‘indirect reciprocity’
(see Alexander, 1979 and 1986). With indirect reciprocity, one does not expect a
return from the recipient (as with direct reciprocity), but from someone else. Co-
operation is thereby channeled towards the cooperative members of the community.
A donor provides help if the recipient is likely to help others, or at least if he has
not been observed withholding help. According to Richard Alexander (1986), in-
direct reciprocity, which ‘involves reputation and status, and results in everyone in
the group continually being assessed and reassessed’, plays an essential role in hu-
man societies. Alexander argues that systems of indirect reciprocity are the basis of
moral systems. ( For a dissenting opinion, see the message from the Pope, 1997).

Such scenarios have been considered by game theorists. In Boyd and Richerson
(1989) it is assumed that individuals interact in loops such that a cooperative action
can be returned, after several steps, to the original donor. According to Boyd and
Richerson their model is unlikely to lead to a cooperative outcome, as it requires the
loops to be relatively small, closed, and long-lasting. In Binmore’s Fun and Games’
(1992), the principle of indirect reciprocity is pithily resuméd as ‘I won’t scratch your
back if you won’t scratch their backs’. Binmore models this by imagining a world
in which there are only two people alive at any stage, a mother and her daughter,
with the daughter able to provide support to her mother.

The model considered by Nowak and Sigmund (1998a) is more in the tradition of
evolutionary game theory. Consider a population of individuals having the options
of helping another or not. In each generation, a number of potential donor-recipient
pairs are chosen randomly: as before, this implies a cost c to the donor, if the help
is actually provided, and a benefit b to the recipient. Furthermore, providing help
increases the donor’s score by one, whereas the score of a player refusing to help is
decreased by one. (Note that the score has nothing to do with the payoff.) Initially
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all scores are zero. We consider strategies given by integers k; a player with such
a strategy helps if and only if the score of the potential recipient is at least k. We
can follow the frequencies of the strategies from generation to generation, allowing
for occasional mutations.

A remarkably small number of interactions can lead to the emergence of coop-
erative populations where most members use k = 0 or k = −1 (for b = 10 and
c = 1, an average of two interactions per lifetime suffices). If the simulation is
continued, strategies which are less discriminating spread: players with k = −5, for
instance, will rarely ever refuse to help, their score will therefore increase faster than
average, and hence they will in turn be helped more often. But if the frequency of
less discriminating players reaches a certain threshold, then defectors (players with
k = 5, for instance, who practically never provide help) take over, so that cooper-
ation disappears in the population. Once this happens, the average k-values will
drop again, leading eventually back to a cooperative regime of players with maximal
discrimination (i.e. k = 0).

To summarize, random drift can subvert populations of discriminate altruists
by indiscriminate altruists; once their frequency is large, defectors can invade; but
as soon as the defectors have reduced the proportion of indiscriminate altruists,
the discriminate altruists can fight back and eliminate the defectors. This leads
again to a cooperative population which is proof against defectors, but not against
indiscriminate altruists, etc.

6 The Good, The Bad, and The Discriminating

In order to obtain an analytic understanding, we can further simplify the model
(see Nowak and Sigmund, 1998b), so that only two scores are possible, namely g
(for ‘good’) and b (for ‘bad’). Each player has two interactions per round, one as
a donor and one as a recipient, against randomly chosen co-players. These two
interactions are not with the same co-player. In fact, we may neglect the possiblility
that two players are ever paired twice. A player has score g if (and only if) he has
provided help in the last round. Let us consider a population with three types of
strategies only: type 1, the indiscriminate altruists (with frequency x1); type 2, the
defectors (with frequency x2) and type 3, the discriminate altruists (with frequency
x3 = 1− x1 − x2). Furthermore, we assume that in the first round, discriminators
assume that the co-player has score g. It is easy to see that Pi(1), the payoff for
type i in the first round, is given by

P1(1) = −c+ b(x1 + x3),

P2(1) = b(x1 + x3),

and
P3(1) = −c+ b(x1 + x3).

In the n-th round (with n > 1) it is

P1(n) = −c+ b(x1 + x3),

P2(n) = bx1,
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and
P3(n) = (b− c)(x1 + xn−1

3 x2)/(x1 + x2).

If there is only one round per generation, then defectors win, obviously. This is
no longer the case if there are N rounds, with N > 1. The total payoffs P̂i :=
Pi(1) + ...+ Pi(N) are given by

P̂1 = N [−c+ b(x1 + x3)],

P̂2 = Nbx1 + bx3,

P̂3 = N(b− c) + x2[−b+
b− c

1− x3
(1 + x1 + ...+ xN−1

3 −N)].

Let us now assume that the frequencies xi of the three strategies evolve under the
action of selection, with growth rates given by the difference between their payoff
P̂i and the average P̂ =

∑
xiP̂i. This yields the replicator equation

ẋi = xi(P̂i − P̂ )

on the unit simplex spanned by the three unit vectors ei of the standard base.
This equation has no fixed point with all xi > 0, hence the three types cannot
co-exist in the long run. The fixed points are the point F23 with x1 = 0 and
x3 + ...+ xN−1

3 = c/(b− c), as well as all the points on the edge e1e3. Hence in the
absence of defectors, all mixtures of discriminate and indiscriminate altruists are
fixed points.

The overall dynamics can be most easily described in the case N = 2 (see Fig.
4). The parallel to the edge e1e2 through F23 is invariant. It consists of an orbit
with ω-limit F23 and α-limit F13. This orbit l acts as a separatrix. All orbits on
one side of l converge to e2. This means that if there are too few discriminating
altruists, i.e. if x3 < c/(b − c), then defectors take over. On the other side of l, all
orbits converge to the edge e1e3. The limit point lies somewhere between e3 and F,
the point with x3 = 2c/b. In this case, the defectors are eliminated, and a mixture
of altruists gets established.

This leads to an interesting behaviour. Suppose that the society consists entirely
of altruists. Depending on the frequency x3 of discriminators, the state is given by
a point on the fixed point edge e1e3. We may expect that random drift makes the
state fluctuate along this edge and that from time to time, mutation introduces a
small quantity x2 of defectors. What happens? If the state is between F13 and
e1, the defectors will take over. If the state is between e3 and F, they will im-
mediately be selected against, and promptly vanish. But if a minority of defectors
invades while the state is between F and F13, something strange happens. At first,
the defectors thrive on the indiscriminate altruists and increase in frequency. But
thereby, they deplete their resource, the indiscriminate altruists. After some time,
the discriminate altruists take over and eliminate the defectors. The population
returns to the edge e1e3, but now somewhere between e1 and F, where the ratio
of discriminate to indiscriminate altruists is so large that defectors can no longer
invade. The defectors have experienced a Pyrrhic victory. Their only hope is that
fluctuations will eventually decrease the frequency of discriminators again. They
have to wait until the state is between F13 and e1. For this, the fluctuations have to
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Figure 4: The population dynamics of discriminate and indiscriminate altruists and
defectors (see text)

cross the gap between F and F13. This takes some time. If defectors try too often
to invade, they will never succeed.

This behaviour corresponds precisely to the oscillations observed in the numerical
simulations with the more sophisticated model (where the score k can take any
integer value). Long periods of cooperation are terminated when the frequency of
indiscriminate altruists becomes too large; this is immediately followed by a sharp
increase in the number of defectors. Next, these defectors are eliminated by the
discriminators, and then another long period of cooperation begins.

7 Know Your Partner

So far we have assumed that all players know each other’s score. This is not realistic,
of course. Even in small groups, where all members know each other well, there
must be many interactions that are not watched by everyone. We must assume that
players can have different scores in the eyes of different co-players. If we consider
numerical simulations where an interaction between two individuals is observed by a
random subset of the other individuals, and assume that only these ‘on-lookers’ have
the possibility to update their perception of the donor’s image score, the information
is contained in a matrix whose elements sij denote the image score of player i as
seen by player j. In a donor-recipient interaction between j and i, player j will
cooperate if sij ≥ kj . If j has no information on i then sij = 0.

The model now depends on the probability that a given individual observes an
interaction between two other individuals. We find again that cooperation can easily
be established and dominate the population, but a larger number of interactions per
generation is needed. For larger groups, it is more difficult to establish cooperation,
because the fraction of individuals that obtain information about any particular
interaction will be smaller. Therefore, more interactions are required (relative to
group size) in order to discriminate against defectors.
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We can investigate this analytically by extending the previous two-score model.
Let us assume that in each round, a player can be donor or recipient with the same
probability 1 / 2, and that q is the probability that a given individual knows the
score of a randomly chosen opponent. A discriminator who does not know the score
of the co-player will assume with probability 1 that this score is g. If gn denotes the
frequency of g-scorers in the population in round n, and x1g(n), x2g(n) and x3g(n)
are the frequencies of g-scoring indiscriminate altruists, unconditional defectors resp.
discriminators in round n, then clearly x1g(n) = x1 and x2g(n) = (1/2)x2g(n − 1),
since a defector is with probability 1/2 in the role of a donor and then unmasks
himself. Therefore

x2,gG(n) =
x2

2n−1
.

The score of a discriminator remains unchanged if he is a recipient. If he is a
potential donor, he will either know the co-player (with probability q) and help if
the co-player has score g (as happens with probability gn−1), or else he will not know
the co-players score, and help. Since this latter alternative holds with probability
1− q, this yields

x3g(n) = (1/2)x3g(n− 1) + (1/2)x3(1− q + qgn−1).

Since gn = x1g(n) + x2g(n) + x3g(n), it follows that

gn = sgn−1 +
1

2
(x1 + (1− q)x3)

with s = (1 + qx3)/2. This recurrence relation implies (together with g1 = 1) that

gn = (
1 + qx3

2
)n−1 x2

1− qx3
+
x1 + (1− q)x3

1− qx3
.

The payoff for the indiscriminate altruists in round n is

P1(n) = −(c/2) + (b/2)(x1 + x3).

The payoff P2(n) for the unconditional defectors depends on their score. Those with
score b receive b(x1 + (1− q)x3)/2 and those with score g in addition qbx3/2, so that

P2(n) = (b/2)[x1 + (1− q)x3 + x3q(x2g(n)/x2)] .

Finally, a discriminator receives [−c(qgn + 1 − q) + bx1 + (1 − q)bx3)]/2 if he has
score b, and in addition bqx3/2 if he has score g, so that we obtain

P3(n) = −(c/2)(qgn + 1− q) + (b/2)(x1 + x3)− (b/2)qx3[1− (x3g(n)/x3)].

Instead of assuming a fixed number of rounds per generation, let us suppose that
it is a random variable. If we assume for instance that w < 1 is the probability
for a further round, then the total payoff for type i is given by P̂i =

∑
Piw

n. A
straightforward computation shows that the phase portrait of the corresponding
replicator equation ẋi = xi(P̂i−P ) looks as before. The separatix l is now given by
x3 = c(2−w)/bwq. In one region, all orbits converge to e2, i.e. defectors take over.
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In the other region, all orbits converge to a point on the edge e1e3 which depends
on the initial value. In particular, altruism can only get established if

q > c/b,

which looks exactly like Hamilton’s rule, except that the coefficient of relatedness is
replaced by what we may call a coefficient of acquaintanceship, i.e. the probability
that a player knows the score of the co-player. If this condition holds, then the
average number of rounds per generation, i.e. 1/(1−w), must exceed (bq+c)/(bq−c).
It is only in this case that in a population consisting of defectors and discriminators,
the discriminating strategy is stable.

8 Discussion

It should also be mentioned that this discriminator strategy is related to, but dif-
ferent from the T1-strategy proposed by Sugden (1986). In Sugden’s model, in each
round a randomly chosen player needs help, and each of the other players can pro-
vide some help (thus the needy player can get as payoff (m − 1)b, where m is the
group size). Sugden’s T1- strategy is based on the concept of good standing, just as
in the case of direct reciprocation. Players are born with a good standing, and keep
it long as they help all needy players with good standing. If not, they lose their good
standing. Sugden argues that such a strategy can work as a basis for an insurance
principle within the population. We stress that a player can keep his good standing
by refusing to help someone of bad standing, whereas in our model, he would lose
his g-score whenever he refuses help, even if the potential recipient is a b-scorer.
Sugden’s T1 strategy is more sophisticated, but like cTFT, it is vulnerable to errors
in perception (see Boerlijst et al, 1997). If information is incomplete, then a player
observed while witholding his help may be misunderstood; he may have defected on
a player with good standing, or punished someone with bad standing. An eventual
error can spread. The discriminator rule is less demanding on the player’s mental
capabilitites.

Moralistic aggression, social norms and feelings of fairness and solidarity have
evolved in hominid groups in order to manage the complex social relations within
their familes, bands and tribes (Ridley, 1996). Human decisions and activities are
not only guided by economic considerations, but to a large extent by a complex
household of emotions. These emotions and passions are themselves the outcome of
biological necessities, in particular the need for division of labor and for cooperation.
The way of life of the first hominids entering the savannah did not allow for autarchy,
but required a highly adapted social life based on reciprocation and an internalized
system of norms – a natural law in the fullest sense.

The importance of trading acts of mutual assistance has been recognised for a
very long time – we may find it, for instance, in David Hume’s book on Human
Nature (1740): ‘I learn to do service to another, without bearing him any real
kindness: because I foresee that he will return my service, in expectation of another
of the same kind. I foresee that he will return my service, in expectation of another
of the same kind, and in order to maintain the same correspondence of good offices
with me and others [italics added]. And accordingly, after I have served him and he
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is in possession of the advantage arising from my action, he is induced to perform
his part, as foreseeing the consequences of his refusal.’

An even older formulation of the principle of indirect reciprocation can be found
in the biblical injunction ‘Give and to you it shall be given’.

It may well be that indirect reciprocation works in other species. A hopeful
candidate is the Arabian babbler. Zahavi (1995) mentions that individuals often
compete with each other, jostling for the role of a donor. They interfere with the
helping of others in feeding the nestlings, in allofeeding between adults, in sentinel
activities, in mobbing and in the defence of the common territory. As Zahavi notes,
this is difficult to interpret in terms of kin selection, group selection or (direct)
reciprocation. If the beneficiary gets help from someone else, so much for the better,
it would seem. But if helping is a means for raising one’s score, competition for being
the one who gives help makes perfect sense.

We cannot expect that direct and indirect reciprocation are always well sepa-
rated. Alexander (1987) views indirect reciprocity ‘as a consequence of direct reci-
procity occurring in the presence of interested audiences – groups of individuals who
continually evaluate the members of their society as possible future interactants’.
The smooth transition from direct to indirect reciprocity is neatly captured in Pol-
lock and Dugatkin (1992), who studied direct reciprocation in the usual context of
the repeated Prisoner’s Dilemma and allowed the players to occasionally observe a
co-player before starting the repeated interaction. They analysed a strategy called
Observer Tit For Tat (oTFT). If the future co-player was seen defecting in his last
interaction, then oTFT prescribes to defect in the first round. Pollock and Dugatkin
were mostly interesting in comparing this strategy with the usual TFT, and showed
that it is not always advantageous. This seems surprising at a first glance – why
should additional information be a handicap? The reason is that the conclusion
drawn by oTFT is not always appropriate. A player last seen defecting can be a
defector, but could also be a TFT player punishing a defector, in which case the new
interaction starts with the wrong move. But Pollock and Dugatkin also remarked
that oTFT may be better able to invade a resident population of defectors (viz.
with a smaller initial cluster), and that it can be stable against defectors when TFT
is not. They also stressed that the probability of future encounters among specific
players engaged in an iterated Prisoner’s Dilemma game may in principle decline
to zero, i.e. that oTFT can hold its own against defectors when no degree of future
interaction with the current partner was presumed. In this case, oTFT reduces pre-
cisely to the discriminator strategy. This shows that a gradual transition from direct
to indirect reciprocation can lead to the establishment of a discriminating strategy
based image scores.

The simple thought experiments performed by means of automata show that
self-assembly can lead to norms enforcing cooperation, both through internalisation
of fair and tolerant rules by means of inner states and through social pressure based
on one’s standing within the community.
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