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Abstract

The paper introduces a local cooperation pattern for repeated bimatrix games: the players
choose a mutually acceptable strategy pair in every next round. A mutually acceptable
strategy pair provides each player with a payoff no smaller than that expected, in average,
at a historical distribution of players’ actions recorded up to the latest round. It may
happen that at some points mutually acceptable strategy pairs do not exist. A game
round at such “still” points indicates that at least one player revises his/her payoffs and
switches from a normal behavior to abnormal. We consider payoff switches associated with
altruistic and aggressive behaviors, and define measures of all combinations of normal,
altruistic and aggressive behaviors on every game trajectory. These behavior measures
serve as criteria for the global analysis of game trajectories. Given a class of trajectories,
one can identify the measures of desirable and undesirable behaviors on each trajectory and
select optimal trajectories, which carry the minimum measure of undesirable behaviors.
In the paper, the behavior analysis of particular classes of trajectories in the repeated
Prisoner’s Dilemma is carried out.
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Normal Behavior, Altruism and Aggression

in Cooperative Game Dynamics

A. F. Kleimenov
A. V. Kryazhimskii

Introduction

Altruism and aggression are extreme modes of interaction. When two players find actions
profitable for both, one may view their behavior as desirable or normal. When they do
not find such actions (and are still forced to interact), at least one of them loses. If the
player 1 loses, the player 2 either wins, or loses, too. Player 2 wins if player 1 goes for a
compromise, i.e., adopts (temporarily) the interest of player 2 and acts so as to help this
player. Player 2 loses if player 1 acts against his/her interest (which may in particular be
driven by a desire to move to a “better” state where normal behavior is feasible again).
In the first case player 1 acts as an altruist with respect to player 2. In the second case
player 1 acts as an aggressor with respect to player 2. Certainly, player 2 may also adopt
altruism or aggression with respect to player 1. Accordingly, different combinations of
players’ behaviors may occur.

This informal classification of behaviors lies in the base of our study. We do not
pretend to give an explanation of players’ motives when they act normally, altruistically,
or aggressively (we slightly touch this issue when we consider a problem of designing
optimal behaviors in section 4). Our goal is to describe a game-theoretical method for
identifying players’ behaviors in one-round interactions and show how this method can be
used in the analysis of multi-round interactions.

Our model operates under the informational conditions of fictitious play. The fictitious
play dynamics proposed by Brown (1951) and Robinson (1951) is a round-by-round process
of updating strategies in a nonzero sum bimatrix game. In every round, each player chooses
a strategy, which gives him/her the largest expected payoff on the historical distribution
of the strategies of the other player. In our setting, the players update their actions basing
on the historical distributions of the strategies of both players.

The fictitious play dynamics was analyzed and generalized in different aspects. Fu-
denberg and Kreps (1993) viewed a (modified) Brown-Robinson procedure as a model
of rational behavior and proved its convergence for 2 × 2 bimatrix games with a unique
mixed Nash equilibrium. Kaniovski and Young (1995) gave an economic interpretation of
a stochastically perturbed fictitious play dynamics and showed its convergence to Nash
equilibria for general 2 × 2 bimatrix games; a further step in this direction was made in
Kaniovski, et. al. (1997). Gaunersdorfer and Hofbauer (1995) analyzed the asymptotics
of the fictitious play trajectories for a class of three-strategy bimatrix games and found
connections with the replicator game dynamics (see Hofbauer and Sigmund, 1988). Smale
(1980) considerably extended the frames of fictitious play by introducing (in the context
of the repeated Prisoner’s Dilemma game) a class of general strategy updating rules fed
back with the historical distributions of payoffs. This approach was generalized in Benaim
and Hirsch (1994).
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We define strategy updating rules through the comparison of the current payoffs with
those expected on the historical distributions of players’ strategies. Different preferences
in comparison are associated with different behaviors. The strategy updating rules are to
a certain extend close to that used in fictitious play. There are two essential differences,
however. First, all strategies, for which the payoffs are no smaller than the average payoffs
on the historical strategy distributions are viewed as acceptable (recall that fictitious play
admits strategies maximizing the average payoffs). Second, the proposed decisionmaking
pattern is cooperative: every new strategy pair must be acceptable for each player, in
other words, whenever an acceptable strategy pair is chosen, no one of the players loses
(in the fictitious play dynamics the players update their strategies independently).

If in some round the players find an acceptable strategy pair and act so that no one of
them loses, their behavior in this round is qualified as normal. Situations where at least
one player loses arise when normal behavior is changed due to a change of the acceptable
strategy pairs, or, equivalently, the payoff matricies. In this paper, we assume that player’s
payoff matrix can be changed to either the payoff matrix of the other player, or that taken
with the opposite sign. In the first case the player identifies himself/herself with his/her
rival and adopts altruism. In the second case the player identifies himself/herself with
his/her rival’s opponent and adopts aggression. It is important that every one-round
transition, which is not normal, can be identified as a combination of altruistic and/or
aggressive behaviors. In this context, our approach develops Kleimenov (1997, 1998) where
the idea of identifying behaviors through switches in payoffs was proposed for nonzero sum
differential games and population evolutionary games.

Our basic analytic tool is a measure of a given behavior on arbitrary game trajectory.
The measure is defined as, roughly, the number of rounds, in which the given behavior
is registered (as long as a one-round behavior is, generally, identified not uniquely, the
minimum and maximum measures are introduced). We use the behavior measures for
the estimation of the proportions of desirable and not desirable behaviors on the game
trajectories. Namely, we consider a problem of behavior assessment and a problem of
optimal behavior. Dealing with the problem of behavior assessment, we estimate the
measures of desirable and not desirable behaviors on the trajectories generated by a given
strategy updating rule. We focus, in particular, on the assessment of normal (desirable)
and aggressive (not desirable) behaviors on the trajectories driven by the fictitious play
dynamics. Dealing with the problem of optimal behavior, we minimize the measure of not
desirable behaviors over a given class of game trajectories. In particular, we focus on the
problem of minimizing the measure of abnormal behavior.

The paper is organized as follows. Our general method is presented in section 1. In
the rest of the paper we apply the method to the analysis of the repeated Prisoner’s
Dilemma, in which the players choose between cooperation and defection. This game
is often used for modeling socially desirable behaviors (see, e.g., Smale, 1980; Axelrod,
1984; Nowak and Sigmund, 1994). In section 2 we characterize the trajectories driven by
different combinations of players’ basic behaviors (normal, altruistic and aggressive) in the
repeated Prisoner’s Dilemma. In section 3 this characterization is used for the estimation
of the measures of normal and aggressive behaviors on the fictitious play trajectories (on
which the players never cooperate). We state that fictitious play may exhibit normal
behavior and exclude aggression if mutual defection has a relatively high payoff, namely,
two rounds of mutual defection provide a higher payoff than a round of cooperation versus
defection and a round of defection versus cooperation. In the opposite situation normal
behavior is eliminated and aggressive behavior dominates on many trajectories.

In section 4 we solve the problem of minimizing the measure of abnormal behavior on
the trajectories convergent to the point of mutual cooperation. All optimal trajectories
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(moving in the space of empirical frequencies of cooperation and defection) embark on a
“cooperation road” in a finite round and then develop cooperatively. In a neighborhood of
the “road” all other behaviors except altruism of a “more cooperative” player are admis-
sible. Beyond the neighborhood normal behavior is eliminated. Moreover, in this domain
mutual defection is (under some circumstances) admissible, whereas mutual cooperation
is not. An intuitive explanation is that it is “too early” to adopt mutual cooperation when
one of the players is much “less cooperative” in the past.

The technical material for sections 1, 2, 3 and 4 is presented in Appendix 1 (section 5),
Appendix 2 (section 6), Appendix 3 (section 7) and Appendix 4 (section 8), respectively.

1 Cooperative game dynamics

1.1 Cooperative repeated game

We consider a repeated two-player game. The player 1 has n strategies numbered 1, . . . , n,
and player 2 has m strategies numbered 1, . . . , m. The players choose their strategies
sequentially in rounds 1,2,... . The empirical frequency of a strategy i of player 1 in round
k is the ratio xik = nik/k where nik is the number of rounds r ≤ k, in which player 1
chooses i. Similarly, the empirical frequency of a strategy j of player 2 in round k is the
ratio yjk = mj

k/k where mj
k is the number of rounds r ≤ k, in which player 2 chooses j.

The empirical frequency vectors xk = (x1
k, . . . , x

n
k) and yk = (y1

k, . . . , y
m
k ) belong to the

n − 1-dimensional simplex Sn−1 and the m − 1-dimensional simplex Sm−1, respectively;
recall that the p − 1-dimensional simplex Sp−1 is the set of all p-dimensional vectors
x = (x1 . . . , xp) with nonnegative coordinates whose sum is equal to 1. We shall call
S = Sn−1 × Sm−1 the state space of the repeated game. Elements of S will be called
states. Note that all states (xk, yk) admissible in round k cover a finite subset of S.

Following the pattern of fictitious play, we assume that in each round k the players
observe the current state (xk, yk) and choose a strategy pair (ik+1, jk+1) for the next round.
The number of rounds r ≤ k + 1, in which player 1 chooses strategy i changes as follows:
nik+1 = ni + 1 if i = ik+1 and nik+1 = ni if i 6= ik+1. Hence, for the empirical frequency
vector of player 1 we have:

x
ik+1

k+1 =
n
ik+1

k + 1

k + 1
=
n
ik+1

k

k
− n

ik+1

k

k(k + 1)
+

1

k + 1
,

xik+1 =
nik
k + 1

=
nik
k
− nik
k(k + 1)

(i 6= ik+1),

or

x
ik+1

k+1 = x
ik+1

k − x
ik+1

k + 1

k + 1
, (1.1)

xik+1 = xik −
xik
k + 1

(i 6= ik+1). (1.2)

Similarly,

y
jk+1

k+1 = y
jk+1

k − y
jk+1

k + 1

k + 1
, (1.3)

yjk+1 = yjk −
yjk

k + 1
(j 6= jk+1). (1.4)

A finite or infinite sequence t = ((xk, yk)) in S (k = k0, k0+1 . . .) will be called a trajectory
if for all indecies k = k0, k0 + 1, . . . (except the final one provided t is finite) the equalities
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(1.1) – (1.4) hold with some strategy pairs (ik+1, jk+1); the indecies k are identified with
game rounds; the state (xk0, yk0) will be called the initial state of t; we shall also say that
(xk0 , yk0) gives rise to t in round k0, and t originates from (xk0, yk0) in round k0. We
define the length of a trajectory t to be the difference between its final and initial rounds
if t is finite and ∞ if t is infinite. A trajectory t = ((xk, yk)) (k = k0, . . .) will be called
stationary if (xk, yk) = (xk0, yk0) for all k ≥ k0.

We consider the following rule for updating strategies. In round k, each player identifies
a set of strategy pairs acceptable for him/her in round k+1. If the players find a strategy
pair acceptable for both, they choose it for (ik+1, jk+1). If the players’ acceptable sets do
not intersect, (xk, yk) is the final state on the trajectory.

Let us specify the structure of the acceptable sets and introduce the associated trajec-
tories. Let fij, and gij be payoffs to player 1 and player 2, respectively, for a strategy pair
(i, j). The expected payoffs (briefly, the payoffs) to players 1 and 2 at a state (xk, yk) are
defined by

f(xk, yk) =
n∑
i=1

m∑
j=1

xiky
j
kfij , (1.5)

g(xk, yk) =
n∑
i=1

m∑
j=1

xiky
j
kgij, (1.6)

respectively. In round k, a player views a strategy pair (ik+1, jk+1) as acceptable for round
k + 1 if his/her payoff at this strategy pair (i.e., fik+1,jk+1

for player 1 and gik+1,jk+1
for

player 2) is no smaller than his/her payoff at the state (xk, yk).
Later, we shall admit changes in the payoff functions (and associate them with switches

in players’ behavior). Therefore, we formally define the acceptability of strategy pairs
not only with respect to the original payoff functions f and g but also with respect to
arbitrary “surrogate” payoff functions. We understand a surrogate payoff function as a
scalar function ϕ on S, which has the same structure as f and g:

ϕ(xk, yk) =
n∑
i=1

m∑
j=1

xiky
j
kϕij.

Given a surrogate payoff function ϕ, we call a strategy pair (ik+1, jk+1) ϕ-acceptable if
ϕik+1,jk+1

≥ ϕ(xk, jk). The set of all strategy pairs ϕ-acceptable at the state (xk, yk) will
be denoted by Aϕ(xk, yk).

Given a pair of surrogate payoff functions, (ϕ, ψ), a trajectory t = ((xk, yk)) described
by (1.1) – (1.4) will be called a (ϕ, ψ)-trajectory if in every round k (except the final
one provided t is finite) the newly chosen strategy pair (ik+1, jk+1) is ϕ-acceptable and
ψ-acceptable at (xk, yk), i.e., (ik+1, jk+1) ∈ Aϕ(xk, yk) ∩Aψ(xk, yk).

The set of all states (xk, yk) such that the intersection Aϕ(xk, yk) ∩ Aψ(xk, yk) is
nonempty will be called the (ϕ, ψ)-active domain. Every state from the (ϕ, ψ)-active
domain will be called (ϕ, ψ)-active. By definition every (ϕ, ψ)-active state in every round
gives rise to a (ϕ, ψ)-trajectory whose length is no smaller than 1. Every (ϕ, ψ)-active
state, which gives rise to an infinite (ϕ, ψ)-trajectory in every round will be called (ϕ, ψ)-
kernel-active. The set of all (ϕ, ψ)-kernel-active states will be called the (ϕ, ψ)-kernel-
active domain. A state will be called stationary (ϕ, ψ)-kernel-active if in every round it
gives rise to a single infinite (ϕ, ψ)-trajectory, and the latter is stationary. The set of
all (ϕ, ψ)-kernel-active states, which are not stationary, will be called the nonstationary
(ϕ, ψ)-kernel-active domain. In every round treated as initial, every state beyond the
(ϕ, ψ)-active domain gives rise to a single (ϕ, ψ)-trajectory whose length is 0; we shall
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call such states (ϕ, ψ)-still. The set of all (ϕ, ψ)-still states will be called the (ϕ, ψ)-still
domain. A (ϕ, ψ)-trajectory will be called nonextendible if it is either infinite, or finite
and its final state is (ϕ, ψ)-still.

The next proposition describes a simple class of stationary (ϕ, ψ)-kernel-active states.
We shall call a strategy pair (i∗, j∗) (ϕ, ψ)-Pareto maximal if there does not exist a strategy
pair (i∗, j∗) such that ϕi∗j∗ ≥ ϕi∗j∗ , ψi∗j∗ ≥ ψi∗j∗ , and at least one of these inequalities is
strict.

Proposition 1.1 Let a strategy pair (i∗, j∗) be (ϕ, ψ)-Pareto maximal and there do not
exist a strategy pair (i∗, j∗) 6= (i∗, j∗) such that ϕi∗,j∗ = ϕi∗,j∗ and ψi∗,j∗ = ψi∗,j∗. Then a
state (x∗, y∗) defined by

xi∗∗ = 1, xi∗ = 0 (i 6= i∗), yj∗∗ = 1, yj∗ = 0 (j 6= j∗) (1.7)

is stationary (ϕ, ψ)-kernel-active.

A proof is given in Appendix 1.
Let us provide a characterization of the nonstationary (ϕ, ψ)-kernel-active states in a

special case where there is a strategy pair (ϕ, ψ)-acceptable at every (ϕ, ψ)-active state.

Proposition 1.2 Let there be a strategy pair (i∗, j∗) (ϕ, ψ)-acceptable at every nonsta-
tionary (ϕ, ψ)-active state, and a state (x∗, y∗) be defined by (1.7). Then a state (x, y) 6=
(x∗, y∗) is nonstationary (ϕ, ψ)-kernel active if and only if the closed segment with the end
points (x, y) and (x∗, y∗) is contained in the (ϕ, ψ)-active domain.

A proof is given in Appendix 1.

1.2 Normal behavior

By definition the surrogate payoffs ϕ and ψ do not decrease along the (ϕ, ψ)-trajectories.
In particular, the actual payoffs f and g do not decrease along the (f, g)-trajectories. In
this sense, the (f, g)-trajectories represent normal behavior beneficial for both players. We
identify every (f, g)-trajectory as normal. We also identify the active domain of normal
behavior, G00, the kernel-active domain of normal behavior, G00

∞, the nonstationary kernel-
active domain of normal behavior, G00

∞ , and the still domain of normal behavior, G00
∅ , with

the (f, g)-active domain, the (f, g)-kernel-active domain, the nonstationary (f, g)-kernel-
active domain, and the (f, g)-still domain, respectively. Stationary (f, g)-kernel-active
states will be called stationary for normal behavior.

1.3 Basic behaviors

When a state of the game is in the still domain of normal behavior, G00
∅ , the players are

unable to make a new round via normal behavior. In order to make a new round, at
least one player must change the behavior. We shall understand a change in behavior as a
switch from the original payoff function to a surrogate one. Player’s switch to a surrogate
payoff function means that this player replaces the strategy pairs acceptable with respect
to his/her original payoff function by those acceptable with respect to the surrogate one.

We shall consider altruistic and aggressive behaviors. When switching to altruistic
behavior a player identifies his/her interest with his/her partner’s. In this situation, the
player replaces his/her original payoff function by his/her partner’s. When switching to
aggressive behavior, the player views himself/herself as partner’s opponent and changes
his/her payoff function for his/her partner’s taken with the opposite sign. Combina-
tions of individual behaviors generate joint behaviors; we will qualify them as 1-altruistic,
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2-altruistic, 1-altruistic-2-aggressive, 1-aggressive-2-altruistic, and aggressive. These be-
haviors, together with normal behavior, will be called basic.

The 1-altruistic behavior implies that player 1 acts altruistically and player 2 acts
normally. This behavior is modeled by the (g, g)-trajectories. We call the (g, g)-trajectories
1-altruistic. We define the active domain of 1-altruistic behavior G+0, the kernel-active
domain of 1-altruistic behavior, G+0

∞ , the nonstationary kernel-active domain of 1-altruistic
behavior, G+0

∞ , and the still domain of 1-altruistic behavior, G+0
∅ , to be the (g, g)-active

domain, the (g, g)-kernel-active domain, the nonstationary (g, g)-kernel-active domain and
the (g, g)-still domain, respectively. Stationary (g, g)-kernel-active states will be called
stationary for 1-altruistic behavior.

Symmetrically, the 2-altruistic behavior implies that player 1 acts normally and player
2 acts altruistically. We call the (f, f)-trajectories 2-altruistic and define the active do-
main of 2-altruistic behavior, G0+, the kernel-active domain of 2-altruistic behavior, G0+

∞ ,
the kernel-active domain of 2-altruistic behavior, G0+

∞ , and the still domain of 2-altruistic
behavior, G0+

∅ , to be the (f, f)-active domain, the (f, f)-kernel-active domain and the
(f, f)-still domain, respectively. Stationary (f, f)-kernel-active states will be called sta-
tionary for 2-altruistic behavior.

The 1-altruistic-2-aggressive behavior implies that player 1 acts altruistically and player
2 acts aggressively. This behavior is modeled by the (g,−f)-trajectories. We call the
(g,−f)-trajectories 1-altruistic-2-aggressive and define the active domain of 1-altruistic-
2-aggressive behavior, G+−, the kernel-active domain of 1-altruistic-2-aggressive behavior,
G+−
∞ , the nonstationary kernel-active domain of 1-altruistic-2-aggressive behavior, G+−

∞ ,
and the still domain of 1-altruistic-2-aggressive behavior, G+−

∅ , to be the (g,−f)-active
domain, the (g,−f)-kernel-active domain, the nonstationary (g,−f)-kernel-active domain
and the (g,−f)-still domain, respectively. Stationary (g,−f)-kernel-active states will be
called stationary for 1-altruistic-2-aggressive behavior.

The 1-aggressive-2-altruistic behavior implies that player 1 acts aggressively and and
player 2 acts altruistically. This behavior is modeled by the (−g, f)-trajectories. We
call the (−g, f)-trajectories 1-aggressive-2-altruistic and define the active domain of 1-
aggressive-2-altruistic behavior, G−+, the kernel-active domain of 1-aggressive-2-altruistic
behavior, G−+

∞ , the nonstationary kernel-active domain of 1-aggressive-2-altruistic behav-
ior, G−+

∞ , and the still domain of 1-aggressive-2-altruistic behavior, G−+
∅ , to be the (−g, f)-

active domain, the (−g, f)-kernel-active domain, the nonstationary (−g, f)-kernel-active
domain and the (−g, f)-still domain, respectively. Stationary (g,−f)-kernel-active states
will be called stationary for 1-aggressive-2-altruistic behavior.

The aggressive behavior implies that both players act aggressively. This behavior
is modeled by the (−g,−f)-trajectories. We call the (−g,−f)-trajectories aggressive.
We define the active domain of aggressive behavior, G−−, the kernel-active domain of
aggressive behavior, G−−∞ , the nonstationary kernel-active domain of aggressive behavior,
G−−∞ , and the still domain of aggressive behavior, G−−∅ , to be the (−g,−f)-active domain,
the (−g,−f)-kernel-active domain, the nonstationary (−g,−f)-kernel-active domain and
the (−g,−f)-still domain, respectively. Stationary (−g,−f)-kernel-active states will be
called stationary for aggressive behavior.

The normal trajectories, the 1-altruistic trajectories, the 2-altruistic trajectories, the
1-altruistic-2-aggressive trajectories, the 1-aggressive-2-altruistic trajectories, and the ag-
gressive trajectories will further be called basic.

In a similar manner, one may introduce 1-aggressive-2-normal and 1-normal-2- ag-
gressive behaviors. These behaviors imply that the players act as antagonists and have
extremely narrow active domains. For example, a state (xk, yk) belongs to the active do-
main of the 1-aggressive-2-normal behavior if and only if there is a strategy pair (ik+1, jk+1)
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such that g(xk, yk) = gik+1,jk+1
. Generally, such states fill exceptional manifolds in the

state space. By this reason we exclude the antagonistic behaviors from our considerations.

1.4 Universality of basic trajectories

The next observation follows straightforwardly from the definition of the ϕ-acceptable
strategy pairs. A strategy pair (ik+1, jk+1), which is not ϕ-acceptable at (xk, yk), is −ϕ-
acceptable at (xk, yk). This observation allows to state the “universality” of the basic
trajectories: each trajectory is represented as a chain of basic subtrajectories.

Let us give relevant definitions. A trajectory t = ((xk, yk)) (k = k0, k0 + 1, . . .) will
be said to be a subtrajectory of a trajectory t̄ = ((x̄k, ȳk)) (k = k̄0, k̄0 + 1, . . .) if k0 ≥ k̄0

and (xk, yk) = (x̄k, ȳk) (k = k0, k0 + 1, . . .). A finite or infinite sequence of trajectories,
(ts) (s = 1, 2, . . .), will be called a chain of subtrajectories of a trajectory t̄ = ((x̄k, ȳk))
(k = k̄0, k̄0 + 1, . . .) if every ts is a subtrajectory of t̄, and the subtrajectories t1, t2, . . .
cover t̄; a more accurate formulation of the latter requirement is as follows:

(i) the initial round of t1 is k̄0,
(ii) if ts is finite and not final, the final round of ts coincides with the initial round of

ts+1, and
(iii) the sum of the lengths of the subtrajectories t1, t2, . . . is equal to the length of t̄.

Proposition 1.3 For every trajectory there is a chain of its basic subtrajectories.

The proof is given in Appendix 1. In fact we state that every trajectory is “chained”
into subtrajectories of three types: 2-altruistic, 1-altruistic-2-aggressive, and aggressive.
Other combinations of “chaining” behavior types can easily be identified. In particular,
the following trajectory types “chain” every trajectory: normal, 1-altruistic-2-aggressive,
1-aggressive-2-altruistic, and aggressive.

1.5 Measures of basic behaviors

Basing on Proposition 1.3, we shall introduce measures of basic behaviors on a given
trajectory. Let t be a trajectory and (ts) be its chain of basic subtrajectories. We define
the (ts)-measure of normal behavior on t to be the sum of the lengths of all normal
subtrajectories ts; this sum may in particular be infinite. We define the maximum and
minimum measures of normal behavior on t as, respectively, the maximum and minimum
of the (ts)-measures of normal behavior on t over all chains (ts) of basic subtrajectories
of t. Similarly, we define the (ts)-measures, the maximum measures and the minimum
measures of other basic behaviors on t.

Let us define the maximum and minimum measures of a class of basic behaviors on
a trajectory t. Let B be a subclass of basic behaviors and (ts) (s = 1, 2 . . .) be a chain
of basic subtrajectories of t. If there is no subtrajectory ts whose basic behavior belongs
to B, we define the (ts)-measure of B on t as zero. Let there be ts whose basic behavior
belongs to B. Let F be the set of all subtrajectories ts from the chain (ts) such that some
basic behavior on ts belongs to B. We define the (ts)-measure of B on t to be the sum
of the lengths of all ts ∈ F . The maximum measure of B on t is the supremum of the
(ts)-measures of B on t over all chains (ts) of basic subtrajectories of t, and the minimum
measure of B on t is the infimum of the (ts)-measures of B on t over all chains (ts) of basic
subtrajectories of t.
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1.6 Behavior assessment

The maximum and minimum measures of classes of basic behaviors provide natural criteria
for the estimation of the actual proportions of desired and undesired behaviors arising
under a chosen strategy updating rule. We suggest the next general formulation of a
problem of behavior assessment.

Problem of behavior assessment. Given a class of trajectories, T , and a class of
basic behavior types, B, find the maximum (minimum) measure of B on every trajectory
from T .

The problem may take various specific forms depending on the classes T and B. Recall
that when the players exhibit normal behavior, neither of them loses in average payoff, and
when they exhibit aggressive behavior, neither of them wins in average payoff. Therefore,
normal behavior is mostly desirable and aggressive behavior is mostly undesirable. The
assessment of these behaviors is of special interest. Let us formulate problems of the
assessment of normal and aggressive behaviors on the fictitious play trajectories.

Following Brown (1951) and Robinson (1951), we shall say that a trajectory ((xk, yk))
is a fictitious play trajectory if in each round k strategies ik+1 and jk+1 for round k + 1
are chosen as best replies of players 1 and 2 to partner’s empirical frequencies, i.e., ik+1

is a maximizer to f i(yk) =
∑m
j=1 fijy

j
k over all i = 1, 2, . . . , n and jk+1 is a maximizer

to gj(xk) =
∑n
i=1 gijx

i
k over all j = 1, 2, . . . , m. Letting T to be the set of all infinite

fictitious play trajectories and B = {normal}, we arrive at the next specification of the
general problem of behavior assessment.

Problem of the assessment of normal behavior on the fictitious play trajec-
tories. Find the maximum measure of normal behavior on every infinite fictitious play
trajectory.

Setting B = {aggressive}, we get the next formulation.

Problem of assessment of aggressive behavior on the fictitious play trajec-
tories. Find the minimum measure of aggressive behavior on every infinite fictitious play
trajectory.

In section 3 we shall solve these problems for the repeated Prisoner’s Dilemma.

1.7 Behavior optimization

The behavior assessment is intended to reconstruct the structure of given trajectories; in
this sense, the problem of behavior assessment falls in the category of inverse problems.
A primary problem, in this context, will be a problem of the design of trajectories. Let
us consider such a problem, in which the measures of basic behaviors serve as optimality
criteria.

Let the players start from a state (x∗, y∗) in round k0, and let there be a set of
trajectories originating from (x∗, y∗) in round k0, which are viewed by each player as
favorable in the long run; we shall call these trajectories desired. For example, the players
may treat as desirable all trajectories convergent to a Pareto point in the original static
game. Let B be a class of basic behaviors viewed as undesirable. Let µ(t) denote the
minimum measure of B on a trajectory t. We shall treat µ(t) as t’s index of optimality.
The less is µ(t), the less rounds with undesirable behaviors are on t. A problem of designing
an optimal desired trajectory arises.

Let us give its accurate formulation. Denote by µmin the minimum of µ(t) over all
trajectories from T . We call µmin the minimum measure of B on T . A trajectory t from
T such that µ00(t) = µmin will be called B-optimal in T .
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Problem of optimal behavior. Given B, a class of undesirable basic behaviors, and
T , a class of desired trajectories, find the minimum measure of B on T and describe all
trajectories B-optimal in T .

Let us consider a special case where B = {all behaviors except normal}. In this case
µ(t) is the minimum measure of abnormal behavior on a trajectory t, and µmin is the
minimum measure of abnormal behavior on T . Briefly, we shall call trajectories, which
are B-optimal in T , optimal. The problem of optimal behavior is specified then into a
problem of minimizing the measure of abnormal behavior.

Problem of minimizing the measure of abnormal behavior. Given T , a class
of desired trajectories, find the minimum measure of abnormal behavior on T and describe
all optimal trajectories from T .

In section 4 we shall solve this problem for a class of desired trajectories in the repeated
Prisoner’s Dilemma.

2 Cooperative dynamics in repeated Prisoner’s Dilemma

2.1 Preliminaries

In the Prisoner’s Dilemma, the players choose between cooperation, C, and defection, D.
We identify C as strategy 1 and D as strategy 2. Indicies 1 and 2 in the notation of the
payoffs, fij and gij (i, j = 1, 2), will be, accordingly, replaced by C and D. The game is
symmetric:

fCC = gCC , fDD = gDD, fCD = gDC, fDC = gCD,

and the next relations hold:

fDC > fCC > fDD > fCD , 2fCC > fCD + fDC . (2.1)

In the repeated Prisoner’s Dilemma, every empirical frequency vector (z1
k, z

2
k) ∈ S1

is uniquely determined by its z1
k component (z2

k = 1 − z1
k). We shall operate with these

components only. Thus, a pair (xk, yk) = (x1
k, y

1
k) ∈ [0, 1]× [0, 1] will always be understood

as ((x1
k, x

2
k), (y1

k, y
2
k)) ∈ S1 × S1. In this sense, the state space S1 × S1 will be identified

with the square [0, 1]× [0, 1]. We keep calling [0, 1]× [0, 1] the state space; as earlier, we
denote it by S; and call its elements states.

The payoffs to players 1 and 2 at a state (x, y) are given by (see (1.5), (1.6))

f(x, y) = cxy − c1x− c2y + fDD,

g(x, y) = cxy − c2x− c1y + fDD,

where

c = fCC − fCD − fDC + fDD , c1 = fDD − fCD , c2 = fDD − fDC . (2.2)

Note that (2.1) implies
c1 > 0, c2 < 0, c2 < c < c1. (2.3)

For a strategy pair (i, j) ∈ {(C, C), (C,D), (D,C), (D,D)} and a surrogate payoff
function ϕ we denote by Hij(ϕ) the set of all states, for which (i, j) is ϕ-acceptable. We
describe Hij(ϕ) using functions

hCC (x) =
fCC − fDD + c1x

cx− c2
, (2.4)
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hDD(x) =
c1x

cx− c2
(2.5)

defined on [0, 1] (note that for x ∈ [0, 1] the denominator in (2.4) and (2.5) is positive due
to (2.3)). The next lemma proved in Appendix 2 lists properties of hCC and hDD, which
are used in our analysis.

Lemma 2.1 The functions hCC and hDD are strictly convex if c < 0, linear if c = 0 and
strictly concave if c > 0, and the following relations hold:

hCC(1) = 1, hCC(0) > 0, hDD(0) = 0, , (2.6)

hCC(x) > hDD(x) ≥ 0, hDD(x) > 0 (x > 0), (2.7)

hDD(x) < x (x ∈ (0, 1]) if c1 + c2 ≤ 0, , (2.8)

hDD(x) ≥ x (x ∈ (0, (c1 + c2)/c]),

hDD(x) < x (x ∈ ((c1 + c2)/c, 1]) if c1 + c2 > 0,

h′CC(x) > 0, h′DD(x) > 0,

h′CC (1) =
c1 − c
c− c2

=
fDC − fCC
fCC − fCD

< 1, (2.9)

h′DD(0) = −c1

c2
.

The next equalities hold:

HCC(f) = {(x, y) ∈ S : y ≤ hCC (x)}, (2.10)

HDD(f) = {(x, y) ∈ S : y ≤ hDD(x)}, (2.11)

HCD(f) = {(C,D)}, (2.12)

HDC(f) = S. (2.13)

Indeed, by definition (C, C) is acceptable at (x, y) if f(x, y) ≤ fCC , which is equivalent to
y ≤ hCC(x) (here we refer to (2.4) and take into account that cx−c2 > 0, see (2.3)). Thus
we arrive at (2.10). Similarly we obtain (2.11). By (2.1) f(x, y) > fCD for (x, y) 6= (C,D)
and f(C,D) = fCD ; similarly, f(x, y) < fDC for (x, y) 6= (D,C) and f(D,C) = fDC.
Hence we get (2.12) and (2.13). Similar arguments give

HCC(g) = {(x, y) ∈ S : x ≤ hCC(y)}, (2.14)

HDD(g) = {(x, y) ∈ S : x ≤ hDD(y)}, (2.15)

HCD(g) = S, (2.16)

HDC(f) = {(D,C)}. (2.17)

For every E ⊂ S we denote by Ē the closure of S \ E. Obviously,

Hij(−f) = H̄ij(f), Hij(−f) = H̄ij(f) ((i, j) = (C, C), (C,D), (D,C), (D,D)).
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c ≤ 0 c > 0

Figure 2.1: the bordering curves, which may separate active and still domains for the
basic behaviors. The curves have the equations y = hCC(x) (curve 1), x = hCC(y) (curve
2), y = hDD(x) (curve 3), x = hDD(y) (curve 4). In all figures given below neither
the bordering curves, nor the corner points (C, C), (C,D), (D,C), (D,D) are indicated
specially.

2.2 Characterization of basic trajectories

The relations given in the previous subsection imply that for all basic behaviors the borders
between the active and still domains (if these are nonempty) go along the curves y =
hCC (x), y = hDD(x), x = hCC(y) and x = hDD(y); the curves are schematically shown in
Figure 2.1.

Moreover, an accurate analysis of the sets Hij(f) and Hij(g) ((i, j) = (C, C), (C,D),
(D,C), (D,D)) and Lemma 2.1 yields a description of all characteristic domains (active,
kernel-active, etc.) for all basic behaviors. The analysis is given in in Appendix 2. The
structure of basic trajectories is described in Propositions 6.4, 6.5, 6.6 (normal trajecto-
ries), 6.8 (2-altruistic trajectories), 6.10. (1-altruistic trajectories) 6.12 (1-aggressive-2-
altruistic trajectories), 6.14. (1-altruistic-2-aggressive trajectories) and 6.18, 6.19, 6.20.
(aggressive trajectories).

The structure of basic trajectories is shown schematically in Figures 2.2 - 2.7.
Let us comment Figures 2.2 – 2.7.
Figure 2.2: normal trajectories. In case of c ≤ 0 the nonstationary kernel-active

domain, G00
∞ , is essentially smaller than the active domain; G00

∞ lies between the straight
lines tangent to the two bordering curves at the “north-east” corner point, (C, C). In case
of c > 0 and c1 + c2 ≤ 0, G−−∞ , coincides with the active domain minus the corner points.
The arrows originating from states in the active and kernel-active domains point to the
strategy pairs (corner points) admissible in these states for the players acting normally.
The normal trajectories move towards these corner points in every round. The “south-
west” corner point, (D,D), is “half-stationary”. A trajectory originating from (D,D) can
either stay in this point forever, or abandon it in some round; in the latter case the rest
of the trajectory is nonstationary.

Figure 2.3: 2-altruistic trajectories. The nonstationary kernel-active domain, G0+
∞ ,

covers the whole state space except of its “north-east” corner point, (D,C), which is
stationary. The arrows originating from states point to the strategy pairs (corner points)
admissible in these states when player 1 acts normally and player 2 altruistically. The
2-altruistic trajectories move towards these corner points in every round.
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c ≤ 0 c > 0, c1 + c2 ≤ 0

c > 0, c1 + c2 > 0

nonstationary kernel-active domain, G00
∞

active domain, G00 \ G00
∞

still domain, G00
∅

stationary points

half-stationary points

Figure 2.2: normal trajectories
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nonstationary kernel-active domain, G0+
∞

stationary point

Figure 2.3: 2-altruistic trajectories

nonstationary kernel-active domain, G+0
∞

stationary point

Figure 2.4: 1-altruistic trajectories
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nonstationary kernel-active domain, G−+
∞

stationary points

Figure 2.5: 1-aggressive-2-altruistic trajectories

nonstationary kernel-active domain, G+−
∞

stationary points

Figure 2.6: 1-altruistic-2-aggressive trajectories
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c ≤ 0 c > 0, c1 + c2 ≤ 0

c > 0, c1 + c2 > 0

nonstationary kernel-active domain, G−−∞

active domain, G−− \ G−−∞

still domain, G−−∅

stationary points

Figure 2.7: aggressive trajectories
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Figure 2.4: 1-altruistic trajectories. The nonstationary kernel-active domain, G+0
∞ ,

covers the whole state space except of its “south-east” corner point, (C,D), which is
stationary. The arrows originating from states point to the strategy pairs (corner points)
admissible in these states when player 1 acts altruistically and player 2 normally. The
1-altruistic trajectories move towards these corner points in every round.

Figure 2.5: 1-aggressive-2-altruistic trajectories. The nonstationary kernel-active do-
main, G−+

∞ , covers the whole state space except of the three corner points, (D,D), (D,C)
and (C, C), which are stationary. The arrows originating from states point to the strategy
pairs (corner points) admissible in these states when player 1 acts aggressively and player
2 altruistically. The 1-aggressive-2-altruistic trajectories move towards these corner points
in every round.

Figure 2.6: 1-altruistic-2-aggressive trajectories. The nonstationary kernel-active do-
main, G+−

∞ , covers the whole state space except of the three corner points, (D,D), (C,D)
and (C, C), which are stationary. The arrows originating from states point to the strategy
pairs (corner points) admissible in these states when player 1 acts altruistically and player
2 aggressively. The 1-altruistic-2-aggressive trajectories move towards these corner points
in every round.

Figure 2.7: aggressive trajectories. In case of c ≤ 0 the nonstationary kernel-active
domain, G−−∞ , coincides with the active domain minus the three stationary points. In case
of c ≤ 0 and c1 + c2 ≤ 0, G−−∞ lies between the straight lines tangent to the two bordering
curves at the “south-west” corner point, (D,D). In case of c ≤ 0 and c1 + c2 > 0, G−−∞ is
empty. The arrows originating from states in the active and kernel-active domains point
to the strategy pairs (corner points) admissible for the aggressive players in these states.
The aggressive trajectories move towards these corner points in every round. In the first
two cases all nonextendable aggressive trajectories are infinite and in the last case all of
them are finite.

3 Behavior assessment of fictitious play trajectories

3.1 Fictitious play

In this section we give a behavior assessment of the fictitious play trajectories (see subsec-
tion 1.6) in the repeated Prisoner’s Dilemma. The argument refers to the characterizations
of basic trajectories, given in section 2.

Recall that the fictitious play dynamics arises when each player chooses the best replies
to the empirical frequencies of partner’s strategies. In the repeated Prisoner’s Dilemma,
the average payoff to player 1 in round k is fC(yk) = fCCyk + fCD(1 − yk) if player 1
chooses C, and fD(yk) = fDCyk + fDD(1 − yk) if he/she chooses D. A best reply of
player 1 to yk provides a greater average payoff. Using (2.2) and (2.3), we easily find that
fD(yk) > fC(yk). Hence, D is a single best reply of player 1 at (xk, yk). Similarly, D
is a single best reply of player 2 at (xk, yk). Therefore, a nonextendable fictitious play
trajectory originating from (x∗, y∗) 6= (D,D) is infinite and moves towards (D,D) in each
round. A nonextendable fictitious play trajectory originating from (D,D) is infinite and
stationary.

3.2 Assessment of normal and aggressive behaviors

Introduce the sets

E1 =

{
(x, y) ∈ S : y ≤ −c1

c2
x

}
,
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E2 =

{
(x, y) ∈ S : x ≤ −c1

c2
y

}
,

E = HDD(f) ∩HDD(g).

Note that if c1 + c2 > 0, then ∅ 6= E ⊂ E1 ∩E2 (see Proposition 6.3, 3).
The next propositions present a solution of the problem of the assessment of normal

and aggressive behaviors on the fictitious play trajectories.

Proposition 3.1 The following statements hold true:

1) if c1 + c2 ≤ 0, then the maximum measure of normal behavior is zero on every
nonstationary infinite fictitious play trajectory,

2) if c1 + c2 > 0, then
(i) all infinite fictitious play trajectories originating from S \ (E1 ∪ E2) have the zero

maximum measure of normal behavior,
(ii) all infinite fictitious play trajectories originating from E1 ∪ E2 have the infinite

maximum measure of normal behavior, and
(iii) all infinite fictitious play trajectories originating from E ⊂ E1 ∪E2 are normal.

Proposition 3.2 The following statements hold true:

1) if c ≤ 0, then
(i) all infinite fictitious play trajectories originating from G−− are aggressive,
(ii) all infinite fictitious play trajectories originating from [Ē1 ∩ Ē2] \ G−− have the

infinite minimum measure of aggressive behavior, and
(iii) all infinite fictitious play trajectories originating from E1 ∪E2 have the zero min-

imum measure of aggressive behavior,

2) if c > 0 and c1 + c2 ≤ 0, then
(i) all infinite fictitious play trajectories originating from Ē1 ∩ Ē2 are aggressive,
(ii) all infinite fictitious play trajectories originating from G−− \ [Ē1 ∩ Ē2] have finite

nonzero minimum measures of aggressive behavior, and
(iii) all infinite fictitious play trajectories originating from S \G−− have the zero min-

imum measure of aggressive behavior,

3) if c > 0 and c1 + c2 > 0, then
(i) all infinite fictitious play trajectories originating from G−− have finite nonzero

minimum measures of aggressive behavior, and
(ii) all infinite fictitious play trajectories originating from S \G−− have the zero min-

imum measure of aggressive behavior.

The analysis of fictitious play trajectories, which leads to Propositions 3.1 and 3.2 is
based on Propositions 6.1 – 6.3, 6.9, 6.7, 6.11, 6.13 and 6.15 – 6.17. The results of this
analysis are schematically shown in Figure 3.1. Exact formulations are given in Appendix
3 in Propositions 7.1, 7.2, 7.3, and 7.4.

Let us comment Figure 3.1. Infinite fictitious play trajectories go along straight lines
and converge to (D,D).

In case (a) five trajectories illustrate the typical situations described in statements 1 –
5 of Proposition 7.1; the numbers of the trajectories are those of the associated statements.
Trajectory 1 is aggressive. Trajectory 2 (respectively, 4) starts with a finite number of 2-
altruistic or 1-aggressive-2-altruistic (respectively, 1-altruistic or 1-altruistic-2-aggressive)
rounds and then develops aggressively. Trajectory 3 (respectively, 5) are 2-altruistic and
1-aggressive-2-altruistic (respectively, 1-altruistic and 1-altruistic-2-aggressive).
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1-altruistic-2-aggressive, 1-altruistic

1-aggressive-2-altruistic, 2-altruistic

all except aggressive

Figure 3.1: infinite fictitious play trajectories
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In case (b) five trajectories illustrate the typical situations described in statements 1 –
5 of Proposition 7.2. Trajectory 1 is aggressive. Trajectory 2 (respectively, 3) starts with
a finite number of aggressive rounds and then develops 2-altruistically or 1-aggressively-2-
altruistically (respectively, 1-altruistically or 1-altruistically-2-aggressively). Trajectory 4
(respectively, 5) are 2-altruistic and 1-aggressive-2-altruistic (respectively, 1-altruistic and
1-altruistic-2-aggressive).

In case (c) ten trajectories illustrate the typical situations described in statements 1
– 10 of Proposition 7.3. Trajectory 1, which starts on the diagonal, is aggressive. Tra-
jectory 2 (respectively, 3) starts with a finite number of aggressive rounds, few rounds
goes 2-altruistically or 1-aggressively-2-altruistically (respectively, 1-altruistically or 1-
altruistically-2-aggressively), enters the white “linse” adjoining the “south-west” corner
point and exhibits there every basic behavior except aggressive. Trajectory 4 (respec-
tively, 5) starts with a finite number of aggressive rounds and switches to 2-altruistic
or 1-aggressive-2-altruistic (respectively, 1-altruistic or 1-altruistic-2-aggressive) behavior.
Trajectory 6 (respectively, 7) is 2-altruistic or 1-aggressive-2-altruistic (respectively, 1-
altruistic or 1-altruistic-2-aggressive). Trajectory 8 (respectively, 9) starts with a finite
number of 2-altruistic or 1-aggressive-2-altruistic (respectively, 1-altruistic or 1-altruistic-
2-aggressive) rounds, enters the white “linse” and exhibits there every basic behavior
except aggressive. Trajectory 10, which starts in the white “linse”, exhibits every basic
behavior except aggressive.

In case (d) eight trajectories illustrate the typical situations described in statements
1 – 8 of Proposition 7.4. Trajectory 1 starts on the diagonal; it is aggressive. Tra-
jectory 2 (respectively, 3) starts with a finite number of aggressive rounds, few rounds
goes 2-altruistically or 1-aggressively-2-altruistically (respectively, 1-altruistically or 1-
altruistically-2-aggressively), and exhibits every basic behavior except aggressive within
the white “linse”. Trajectory 4 (respectively, 5) is 2-altruistic or 1-aggressive-2-altruistic
(respectively, 1-altruistic or 1-altruistic-2-aggressive). Trajectory 6 (respectively, 7) starts
with a finite number of 2-altruistic or 1-aggressive-2-altruistic (respectively, 1-altruistic
or 1-altruistic-2-aggressive) rounds and exhibits every basic behavior except aggressive
within the white “linse”. Trajectory 8 starts in the white “linse” and exhibits every basic
behavior except aggressive.

Statement 1) of Proposition 3.1 follows from Propositions 7.1 and 7.2 (see Figure 3.1,
(a) and (b)) and statement 2) from Propositions 7.3 and 7.4. (see Figure 3.1, (c) and
(d)). Statement 1) of Proposition 3.2 follows from Proposition 7.1 (see Figure 3.1, (a))
and statement 2) from Propositions 7.2, 7.3 and 7.4. (see Figure 3.1, (b), (c) and (d)).

Propositions 3.1 and 3.2 indicate that the lower is the sum c1 + c2 = 2fDD − fCD −
fDC (see (2.2)), the less fictitious play trajectories exhibit normal behavior and the more
fictitious play trajectories exhibit aggressive behavior.

4 Optimal paths to cooperation

4.1 Problem of optimal behavior

The more frequently the strategy pair (C, C) is chosen in the repeated Prisoner’s Dilemma,
the less conflict are the interactions between the players. The trajectories, along which
the frequency of (C, C) grows to infinity and dominates those of other strategy pairs, are
mostly favorable for the players. We shall view such trajectories, which are obviously
convergent to (C, C), as desirable.

Let us be more specific. Assume that the players start the repeated Prisoner’s Dilemma
from a fixed state (x∗, y∗) in round k0. Referring to subsection 2.7, we define the desired



– 20 –

trajectories as all those, which originate from (x∗, y∗) in round k0 and converge to (C, C);
T will denote the set of all desirable trajectories. In this section we shall solve the problem
of minimizing the measure of abnormal behavior (see subsection 2.7). Namely, we shall
find µmin, the minimum measure of abnormal behavior on T , and describe all optimal
trajectories from T .

Let us give a preliminary argument. If the initial state lies in the kernel-active domain
of normal behavior, (x∗, y∗) ∈ G00

∞ , then by Proposition 6.4, 4), 5), there exists an infinite
normal trajectory, t, moving towards (C, C) in every round. This trajectory is desirable,
and the minimum measure of abnormal behavior on t is zero. Therefore t is optimal.
Moreover, any other desirable trajectory has a nonzero measure of abnormal behavior on
it and is therefore not optimal. If (x∗, y∗) 6∈ G00

∞ , a solution is less obvious. If (x∗, y∗) does
not belong to the active domain of normal behavior, G00, then every desirable trajectory
starts with abnormal behavior. Which abnormal behavior should be in the start of an
optimal trajectory? If (x∗, y∗) lies in the active but not kernel-active domain of normal
behavior, (x∗, y∗) ∈ G00 \ G00

∞ , then a desirable trajectory may start with several basic
behaviors – including normal. Should the players start with normal behavior? One can
hardly give immediate intuitive answers to these questions.

4.2 Assumptions

In our analysis, we restrict ourselves to the case where c ≤ 0. In the previous subsection
we noted that if (x∗, y∗) ∈ G00

∞ , then an infinite normal trajectory t ∈ T moving towards
(C, C) in every round is a unique optimal trajectory and the minimum measure of abnormal
behavior on it is zero. We leave aside this trivial situation and assume that (x∗, y∗) 6∈ G00

∞ .
We also assume that (x∗, y∗) is above the diagonal, x∗ < y∗ (a symmetric situation is
treated similarly), and is not among the edge points (C, C), (D,D), (D,C), ((x∗, y∗) 6=
(C,D) is implied by the previous assumption). Finally, we assume that the initial round,
k0, is large enough.

Let us specify the latter assumption. By Proposition 6.1, 4), the kernel-active domain
of normal behavior, G00

∞ , is the set of all (x, y) ∈ S \ {(C, C), (D,C), (C,D)} satisfying
the inequalities (6.10) with β and γ given by (6.11). On the square S, G00

∞ looks like a
diagonal-symmetric “road” towards (C, C); the “road” is bordered by the straight lines
y = βx + γ and x = βy + γ, which cross at (C, C) and represent the “north-west” and
“south-east” boundaries of the “road”. Let us consider a trajectory t∗, which originates
from (x∗, y∗) in round k0 and moves towards (C,D) in every round. The trajectory t∗

moves “south-east” and crosses the “road”. We require that t∗ visits the “road”. More
accurately, we assume the next condition to be satisfied.

Crossing condition. The trajectory t∗ = ((x∗k, y
∗
k)), which originates from (x∗, y∗) in

round k0 and moves towards (C,D) in every round, visits G00
∞ , i.e., (x∗k, y

∗
k) ∈ G00

∞ in some
round k.

The Crossing Condition is satisfied if the initial round, k0, is sufficiently large. Indeed,
all states on the trajectory t∗ lie on the segment I∗ with the end points (x∗, y∗) and (C,D).
The segment I∗ has evidently a solid intersection with the “road” G00

∞ ; more accurately,
G00
∞ contains a subinterval I ⊂ I∗ of nonzero length. The distance between the states

(xk, yk) and (xk+1, yk+1) on t is obviously no greater than 21/2/(k+1). Setting k0 so large
that 21/2/(k0 + 1) is smaller than the length of I , we get that some state on t∗ lies in I ;
hence, the Crossing Condition is satisfied.
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4.3 Optimal trajectories

We shall say that a trajectory t = ((xk, yk)) moves normally (1-altruistically, etc.) in round
k if its one-round subtrajectory ((xk, yk), (xk+1, yk+1)) is normal (1-altruistic, etc.). Let F
denote the class of all desirable trajectories t = ((xk, yk)), which visit G00

∞ in some round
s, i.e., (xs, ys) ∈ G00

∞ , and move normally (towards (C, C)) in every round k ≥ s. Crossing
Condition implies that F is nonempty. The minimal measure of abnormal behavior on
every t ∈ F is obviously finite. The next lemma is proved in Appendix 4.

Lemma 4.1 All optimal trajectories lie in F .

For every trajectory t ∈ F , we denote by νk(t) the number of all rounds r = k0, . . . , k−
1, in which t moves not normally; we set νk0(t) = 0. We shall use the Bellman approach
to characterize the optimal trajectories and the minimum measure of abnormal behavior,
µmin. A function V : (k, xk, yk) 7→ V (k, xk, yk) : {k0, k0 + 1, . . .} × S 7→ {0, 1, . . .} will be
called a Bellman function if

(i) V (k, xk, yk) = 0 provided (xk, yk) ∈ G00
∞ ,

(ii) for every trajectory t = ((xk, yk)) ∈ F

νk+1(t) + V (k + 1, xk+1, yk+1) ≥ νk(t) + V (k, xk, yk) (k = k0, . . . , sV (t)− 1)

where
sV (t) = min{r = k0, k0 + 1, . . . : V (r, xr, yr) = 0}

((i) implies that the definition of sV (t) is correct), and
(iii) the set FV of all t = ((xk, yk)) ∈ F such that

νk(t) + V (k, xk, yk) = V (k0, xk0, yk0) (k = k0, . . . , sV (t))

and (xsV (t), ysV (t)) ∈ G00
∞ is nonempty.

Proposition 4.1 Let V be a Bellman function. Then µmin = V (k0, x∗, y∗) and FV is the
set of all optimal trajectories.

The proposition is proved in Appendix 4.
Now our goal will be to find a Bellman function, V . Observing the definition of V , one

may find it reasonable to identify V (k, xk, yk) with the first round, in which an abnormal
trajectory, τ , originating from (xk, yk) in round k can reach G00

∞ . We shall, generally,
follow this intuition. Let us make two simplifying assumptions. First, we consider only
the states (xk, yk) located above the diagonal. Second, we replace the requirement that τ
visits G00

∞ by a weaker requirement that it crosses the “north-west” border of G00
∞ denoted

further by L0; recall that L0 is described by the equation y = βx+ γ. For (xk, yk) located
above the diagonal a trajectory τ , which crosses L0 within a minimum number of rounds,
should most likely move in the direction “maximally orthogonal” to L0. This happens
when τ moves towards (C,D), the “south-east” corner of the square S.

Basing on this informal judgement, for every state (xk, yk) above the diagonal (xk < yk)
and every round number k ≥ k0, we introduce the infinite trajectory τ = τ(k, xk, yk) =
((ξr, ηr)) originating from (xk, yk) in round k and moving towards (C,D), and define
p(k, xk, yk) to be the minimum round r, in which (ξr, ηr) lies “below” L0, more accurately,

p(k, xk, yk) = min{r ≥ k : ηr ≤ βξr + γ}.

The length of τ before crossing L0 is p(k, xk, yk)− k. Therefore, our guess is

V (k, xk, yk) = p(k, xk, yk)− k. (4.1)
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From the definition of p(k, xk, yk) it follows straightforwardly that the function V given
by (4.1) satisfies condition (i) from the definition of a Bellman function. Let us consider a
trajectory ω ∈ F , which moves towards (C,D) in rounds k0, . . . , p(k0, x∗, y∗)− 1 (until L0

is crossed) and moves normally in rounds p(k0, x∗, y∗), p(k0, x∗, y∗) + 1, . . .; we shall call
ω the reference trajectory. Obviously, the reference trajectory lies in the set FV . We see
that the function V given by (4.1) satisfies condition (iii) with t = ω. Let us fix these
observations.

Lemma 4.2 The function V given by (4.1) satisfies conditions (i) and (iii) from the
definition of a Bellman function; in particular, FV contains the reference trajectory ω.

In order to state that V given by (4.1) satisfies condition (ii), we study the index
p(k, xk, yk) in more detail. The next lemma, which is proved in Appendix 4, gives an
explicit formula for this index. Below, for a real z, [z]+ denotes the minimal nonnegative
integer no smaller than z:

[z]+ = min{q = 0, 1, . . . : q ≥ z}.

Lemma 4.3
p(k, xk, yk) = [(β(1− xk) + yk)k]+. (4.2)

The analysis of the formula (4.2) allows to estimate changes of p(k, xk, yk) in all one-
round transitions.

Lemma 4.4 Let t = ((xk, yk)) be a trajectory, pk = p(k, xk, yk), and in some round k the
state (xk, yk) lie “above” L0, the “north-west” boundary of G00

∞ , i.e., yk ≥ βxk + γ. The
next statements hold true:

(i) if t moves towards (C,D) in round k, then pk+1 = pk,
(ii) if t moves towards (C, C) in round k, then pk+1 = pk + 1,
(iii) if t moves towards (D,C) in round k, then pk+1 ∈ {pk + 1, pk + 2},
(iv) if t moves towards (D,D) in round k and

[zk + β]+ = [zk]+ (4.3)

where
zk = (β(1− xk) + yk)k, (4.4)

then pk+1 = pk,
(v) if t moves towards (D,D) in round k and

[zk + β]+ > [zk]+, (4.5)

then pk+1 = pk + 1.

The lemma is proved in Appendix 4.
Lemmas 4.2 and 4.4 easily imply the next key statement.

Proposition 4.2 The function V given by (4.1) is a Bellman function.

The proof is given in Appendix 4.
Proposition 4.2, 4.1 and Lemma 4.2 imply that the reference trajectory, ω, is optimal.

Now our goal will be to describe all optimal trajectories.
Combining Propositions 4.2, 4.1 and Lemma 4.4, we easily select trajectories, which

are not optimal. Namely, the following statement is proved in Appendix 4.
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Corollary 4.1 Let a trajectory t = ((xk, yk)) ∈ F satisfy one of the next conditions in
round k ≤ sV (t):

(i) t moves not normally towards (C, C) or towards (D,C),
(ii) t moves not normally towards (D,D) and for zk given by (4.4) the inequality (4.5)

holds.
Then t is not optimal.

Let us denote by F 0 the set of all trajectories t ∈ F that do not satisfy the nonop-
timality conditions of Corollary 4.1. More accurately, F 0 is the set of all trajectories
t = ((xk, yk)) ∈ F such that in every round k one of the next conditions is satisfied:

(i) t moves normally (towards (C, C)),
(ii) t moves (not normally) towards (C,D),
(iii) t moves (not normally) towards (D,D) provided the equality (4.3) holds for zk

given by (4.4).
Our final statement is as follows.

Proposition 4.3 The class of all optimal trajectories is F 0.

A proof given in Appendix 4 is based on Proposition 4.2, Lemma 4.4 and the next technical
lemma, which is also proved in Appendix 4.

Lemma 4.5 For every t = ((xk, yk)) ∈ F 0 and every round k ≥ k0 such that k < sV (t),
the trajectory τ(k, xk, yk) = ((ξkr , η

k
r )) originating from (xk, yk) in round k and moving

towards (C,D) visits G00
∞ in round pk = p(k, xk, yk), i.e., (ξkpk , η

k
pk

) ∈ G00
∞ .

4.4 Optimal behavior

Let us specify, how must the players behave when driving an optimal trajectory t =
((xk, yk)) ∈ F 0 (see Proposition 4.3), given that the initial state (x∗, y∗) is located to the
“north-west” of the “cooperation road” G00

∞ and the initial round k0 is sufficiently large
(Crossing Condition is satisfied).

The players must behave normally in every round k, in which the state (xk, yk) lies
on the “road” G00

∞ . In every round k, in which (xk, yk) 6∈ G00
∞ , the players must choose

between modes (i), (ii) and (iii) described in the definition of F 0. In mode (i) the players
behave normally. This mode is admissible if the state (xk, yk) lies in the active domain
of normal behavior, G00 (see Proposition 6.4 and Figure 3.2, case c ≤ 0). In mode
(ii) the players act (C,D). This mode is compatible with 1-altruistic behavior (player 1
behaves altruistically and player 2 normally) and 1-altruistic-2-aggressive behavior (player
1 behaves altruistically and player 2 aggressively). Mode (ii) is admissible for every location
of (xk, yk) 6∈ G00

∞ (see Propositions 6.10 and 6.14 and Figures 3.4 and 3.6). In mode (iii) the
players act (D,D). This mode is compatible with 1-altruistic behavior and 1-altruistic-2-
aggressive behavior if (xk, yk) lies in the domain HDD(g) (see Propositions 6.10 and 6.14
and Figures 3.4 and 3.6), and it is compatible with aggressive behavior if (xk, yk) lies in
the active domain of aggressive behavior, G−− (see Proposition 6.18 and Figure 3.7, case
c ≤ 0). The interiors of the domains HDD(g) and G−− do not intersect, and the union of
these domains covers the whole space “above” the “north-west” border of the “road” G00

∞ .
Therefore, mode (iii) is admissible for every location of the state (xk, yk) 6∈ G00

∞ subject to
the constraint that the value zk (4.4) satisfies the equality (4.3). If the latter constraint is
not satisfied, the choice of mode (iii) brings the players away from an optimal trajectory.
The players must “look one round forward” (verify the constraint (4.3) before choosing
mode (iii). A geometric characterization of the optimal behaviors is schematically shown
in Figure 4.1.
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1-altruistic-2-aggressive, 1-altruistic

aggressive

? subject to constraint (4.3)

Figure 4.1: a geometric characterization of the optimal behaviors

We conclude with a comment to Figure 4.1. Due to Crossing Condition, the optimal
trajectories never enter the area below the “cooperation road” bordered by the two straight
lines. The whole square S without this unessential area is split into five domains. The
arrows originating from each of these domains point to the strategy pairs admissible on
the optimal trajectories. Domain 1 is the “road”. The part of the active domain of normal
behavior, which is located above the “road” and below the bordering curve crossing the
“north-east” corner of the square (see Figure 2.1), is split into domains 2 and 3 by the
bordering curve crossing the “south-west” corner of the square. In a similar manner the
part of the still domain of normal behavior, which is located above the active domain of
normal behavior, is split into domains 4 and 5. In domains 2 – 5 the arrows pointing
to mutual defection, (D,D), are marked with “?”, which reminds us that beyond the
“road” the optimal behavior admits mutual defection only if the constraint (4.3) is fulfilled.
In domains 2 and 4 mutual defection represents 1-altruistic and 1-altruistic-2-aggressive
behaviors, and in domains 3 and 5 aggressive behavior. Everywhere above the “road”
“maximum” altruism of player 1 (player 1 cooperates and player 2 defects) is admissible,
and in domains 2 and 3, which adjoin the “road”, mutual cooperation, (C, C), is admissible.
It is interesting that in domains 4 and 5, which are far away from the “road”, mutual
cooperation is not admissible. An intuitive explanation is that in these domains it is “too
early” to adopt mutual cooperation because the empirical frequency of cooperation of
player 1 is too low compared to player 2 (player 1 was too less cooperative than player 2
in the past). Less intuitively clear is the fact that in these domains the optimal behavior
(under some circumstances) is compatible with mutual defection.
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5 Appendix 1. Cooperative game dynamics

5.1 Proof of Proposition 1.1

Clearly, (i∗, j∗) is a single strategy pair (ϕ, ψ)-acceptable at (x∗, y∗). Let t = ((xk, yk))
be an arbitrary nonextendable (ϕ, ψ)-trajectory originating from (x∗, y∗) in some round
k0. As long as (i∗, j∗) is a single strategy pair (ϕ, ψ)-acceptable at (x∗, y∗), the latter is
(ϕ, ψ)-active and (xk0+1, yk0+1) = (x∗, y∗). Now we easily show by induction that t is
infinite and stationary. Thus, (x∗, y∗) is stationary (ϕ, ψ)-kernel-active. The proposition
is proved.

5.2 Proof of Proposition 1.2

Necessity. Let (x, y) 6= (x∗, y∗) be nonstationary (ϕ, ψ)-kernel active. Let E be the
closed segment with the end points (x, y) and (x∗, y∗) and A stand for the (ϕ, ψ)-active
domain. Suppose E 6⊂ A. Since A is, obviously, closed, there is a point in E whose open
neighborhood V (in S) does not intersect A. Taking into account that the state (x, y) is
(ϕ, ψ)-kernel active and by assumption (i∗, j∗) is (ϕ, ψ)-acceptable at every (ϕ, ψ)-active
state, we conclude that for every natural k0 there is an infinite trajectory t = ((xk, yk))
originating from (x, y) in round k0 and such that in each round k a strategy pair (ik+1, jk+1)
in the state adjustment rule (1.1) – (1.4) is (i∗, j∗). By assumption (see (1.7)) xi∗∗ = 1,
xi∗ = 0 (i 6= i∗), and yj∗ = 1, yj = 0 (j 6= j∗). Hence, (1.1) – (1.4) imply

xk+1 =

(
1− 1

k + 1

)
xk +

1

k + 1
x∗, yk+1 =

(
1− 1

k + 1

)
yk +

1

k + 1
y∗, (5.1)

i.e., (xk+1, yk+1) lies on the segment with the end points (xk, yk) and (x∗, y∗). Now we
easily state by induction that in every round k the state (xk, yk) lies on the segment E
with the end points (x, y) and (x∗, y∗). Obviously,

|xk+1 − xk| =
1

k + 1
|x∗ − xk| ≤

1

k0 + 1
|x∗ − xk0 |, (5.2)

|yk+1 − yk| =
1

k + 1
|x∗ − yk| ≤

1

k0 + 1
|y∗ − yk0 |. (5.3)

Thus, (xk0, yk0) coincides with the E’s end point (x, y), the points (xk, yk) ∈ E converge to
the E’s end point (x∗, y∗), and the distance between (xk, yk) and (xk+1, yk+1) is arbitrarily
small if k0 is sufficiently large. Then, for a sufficiently large k0, (xk, yk) is in the open
interval E ∩V in some round k. By the definition of the neighborhood V , this state is not
(ϕ, ψ)-active, i.e., (ϕ, ψ)-still. Consequently, (xk, yk) is the final state of the trajectory t.
We obtained that t is finite, whereas by assumption t is infinite. The contradiction proves
that the segment E is contained in the (ϕ, ψ)-active domain A.

Sufficiency. Let E ⊂ A. For arbitrary natural k0, let an infinite trajectory t =
((xk, yk)) (k = k0, . . .) originating from (x, y) 6= (x∗, y∗) be defined by (1.1) – (1.4) where
(ik+1, jk+1) = (i∗, j∗). As in the previous argument, we easily arrive at (5.1), which shows
that (xk, yk) ∈ E for every k ≥ k0. Then for every k ≥ k0 (xk, yk) lies in the (ϕ, ψ)-active
domain A. By assumption (i∗, j∗) is (ϕ, ψ)-acceptable at every (ϕ, ψ)-active state. Hence,
(i∗, j∗) is (ϕ, ψ)-acceptable at (xk, yk). We obtained that t is an infinite (ϕ, ψ)-trajectory.
Moreover, (5.1) and the fact that (x, y) 6= (x∗, y∗) show that t is nonstationary. Thus,
(x, y) is nonstationary (ϕ, ψ)-kernel-active. The proposition is proved.



– 26 –

5.3 Proof of Proposition 1.3

Let us consider arbitrary state (xk, yk) and arbitrary strategy pair (ik+1, jk+1). It is
sufficient to show that (ik+1, jk+1) is (ϕ, ψ)-acceptable at (xk, yk) for some (ϕ, ψ) ∈
{(f, g), (g, g), (f, f), (g,−f), (−g, f), (−g,−f)} (we shall see that in fact (ϕ, ψ) can be
restricted to {(f, f), (g,−f)(−g,−f)}). If (ik+1, jk+1) is f -acceptable at (xk, yk) then
(ik+1, jk+1) is (f, f)-acceptable (we shall no longer mention (xk, yk) in this proof). Let
(ik+1, jk+1) be not f -acceptable. Then (ik+1, jk+1) is −f -acceptable. If (ik+1, jk+1) is
g-acceptable, then (ik+1, jk+1) is (g,−f)-acceptable. If (ik+1, jk+1) is not g-acceptable
then (ik+1, jk+1) is −g-acceptable; consequently, (ik+1, jk+1) is (−f,−g)-acceptable. The
proposition is proved.

6 Appendix 2. Cooperative dynamics in repeated Pris-
oner’s Dilemma

6.1 Proof of Lemma 2.1

Using (2.2), we get
hCC(1) = 1. (6.1)

Obviously
hCC(0) > 0, hDD(0) = 0 (6.2)

By (2.1) and (2.3) the numerator in (2.4) is greater than the numerator in (2.5), and the
latter numerator is positive everywhere except 0. Hence,

hCC(x) > hDD(x) ≥ 0, hDD(x) > 0 (x > 0).

We have

h′CC (x) =
c1(cx− c2)− c(fCC − fDD + c1x)

(cx− c2)2
.

The numerator is transformed as follows:

c1(cx− c2)− c(fCC − fDD + c1x) = −c1c2 − c(fCC − fDD)

= −c1c2 − c(c− c1 − c2)

= (c1 − c)(c− c2) > 0;

the inequality follows from (2.3). Hence,

h′CC(x) =
(c1 − c)(c− c2)

(cx− c2)2
> 0, (6.3)

in particular,

h′CC (1) =
c1 − c
c− c2

=
fDC − fCC
fCC − fCD

< 1; (6.4)

the inequality follows from (2.1). From (6.3) and (6.1) we get

hCC(x) < 1 (x ∈ [0, 1)). (6.5)

Furthermore,

h′′CC (x) = −2c
(c1 − c)(c− c2)

(cx− c2)3
.
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The ratio on the right is positive, i.e., h′′CC (x) has the sign of −c. Hence, hCC is strictly
convex if c < 0, linear if c = 0 and strictly concave if c > 0.

If c < 0, then (6.4) and the convexity of hCC imply h′CC (x) < 1 for all x ∈ [0, 1].
Hence, in view of (6.1),

hCC(x) > x (x ∈ [0, 1)). (6.6)

If c ≥ 0, then (6.4) the inequality hCC (0) > 0 (see (6.2)) and the concavity of hCC again
imply (6.6). Thus, (6.6) always holds true.

Let us turn to the function hDD. We have

h′DD(x) =
c1(cx− c2)− cc1x

(cx− c2)2
=

−c1c2

(cx− c2)2
> 0,

h′′DD(x) = 2c
c1c2

(cx− c2)3
.

The ratio on the right is negative (see (2.2)), i.e., h′′DD(x) has the sign of −c. Hence, hDD
is strictly convex if c < 0, linear if c = 0 and strictly concave if c > 0.

Let us identify points x > 0 such that x ≤ hDD(x). The latter inequality is equivalent
to

x ≤ c1x

cx− c2

(see (2.5)) or
cx ≤ c2 + c1. (6.7)

Note that by (2.1) and (2.3)
c > c1 + c2. (6.8)

Let c1 + c2 ≤ 0. If c ≤ 0, then cx ≥ c > c1 + c2, and (6.7) does not hold. If c > 0, then
cx > 0 ≥ c1 + c2, and (6.7) does not hold either. Let c1 + c2 > 0. Then (6.7) is equivalent
to x ≤ (c2 + c1)/c. By (6.8) the right hand side is smaller than 1. We summarize as
follows:

hDD(x) < x (x ∈ (0, 1]) if c1 + c2 ≤ 0,

hDD(x) ≥ x (x ∈ (0, (c1 + c2)/c]),

hDD(x) < x (x ∈ ((c1 + c2)/c, 1]) if c1 + c2 > 0.

6.2 Characterization of normal trajectories

The segment {(x, y) ∈ S : x = y} will further be called the diagonal.

Proposition 6.1 Let c < 0. The next statements hold true:

1) G00, the active domain of normal behavior, is given by

G00 = [HCC(f) ∩HCC(g)]∪ {(C, C), (D,D), (C,D), (D,C)}, (6.9)

2) (C, C) and (D,D) are acceptable for normal behavior ((f, g)-acceptable) at (D,D),
and for every (x, y) ∈ G00 \ {(D,D), (D,C), (C,D)}, (C, C) is a single strategy pair ac-
ceptable for normal behavior at (x, y),

3) the states (C, C), (D,C) and (C,D) are stationary for normal behavior,

4) G00
∞ , the nonstationary kernel-active domain of normal behavior, is the set of all

(x, y) ∈ S \ {(C, C), (D,C), (C,D)} satisfying

y ≤ βx+ γ, x ≤ βy + γ (6.10)
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where

β = h′CC(1) =
fDC − fCC
fCC − fCD

∈ (0, 1), γ = 1− β =
2fCC − fCD − fDC

fCC − fCD
∈ (0, 1), (6.11)

5) G00
∞∪{(C, C)} contains the diagonal and is strictly contained in G00\{(D,C), (C,D)},

6) G00
∞, the kernel-active domain of normal behavior, is given by

G00
∞ = G00

∞ ∪ {(C, C), (D,C), (C,D)} (6.12)

and is strictly contained in G00.

Proof. 1. Obviously,

G00 = [HCC(f)∩HCC(g)]∪[HDD(f)∩HDD(g)]∪[HDC(f)∩HDC(g)]∪[HCD(f)∩HCD(g)]

Since hCC(x) > hDD(x) (see (2.7)), by (2.10), (2.11), (2.14), (2.15) we have HDD(f) ⊂
HCC(f) and HDD(g) ⊂ HCC(g). Hence,

HDD(f) ∩HDD(g) ⊂ HCC(f) ∩HCC(g).

In view of (2.7)
{(D,D), (C,C)} ⊂ HCC(f) ∩HCC(g).

By (2.13), (2.17), (2.12), (2.16)

HDC(f) ∩HDC(g) = {(D,C)}, HCD(f) ∩HCD(g) = {(C,D)}. (6.13)

The observed relations yield

G00 = HCC(f) ∩HCC(g)∩ {(C, C), (D,D), (C,D), (D,C)}.

Statement 1 is proved.

2. Since hCC (0) ≥ 0 and hDD(0) = 0 (see (2.7) and (2.6)), (C, C) and (D,D)
are acceptable for normal behavior ((f, g)-acceptable) at (D,D). Let (x, y) ∈ G00 \
{(D,D), (D,C), (C,D)}. By statement 1 (C, C) is (f, g)-acceptable at (x, y). The re-
lations (6.13) imply that (D,C) and (C,D) are not (f, g)-acceptable at (x, y). Suppose
(D,D) is (f, g)-acceptable at (x, y). We have c1 + c2 < 0, since c1 + c2 < c and c ≤ 0
by assumption. Then, taking into account that (x, y) 6= (D,D) = (0, 0), and referring
to (2.8), we get that hDD(x) ≤ x, and hDD(y) ≤ y, and at least one of these inequali-
ties holds strictly. As long as (D,D) is (f, g)-acceptable at (x, y), we have y ≤ hDD(x)
and x ≤ hDD(y). Hence, y ≤ x and x ≤ y, and one of these inequalities holds strictly,
which is not possible. A contradiction shows that (D,D) is not (f, g)-acceptable at (x, y).
Statement 2 is proved.

3. The states (C, C), (D,C) and (C,D) are obviously (f, g)-Pareto maximal. By
Proposition 1.1 they are stationary for normal behavior.

4. By statement 1 (C, C) is (f, g)-acceptable at every state from G00
∞ . Then by Propo-

sition 1.2 a state (x, y) 6= (C, C) belongs to G00
∞ if and only if the closed segment F with

the end points (x, y) and (C, C) is contained in G00, or, equivalently (see statement 1) in
HCC(f) ∩HCC(g). Recall that the function hCC is strictly concave. Therefore, F is con-
tained in HCC(f) if and only if (x, y) is located below the line L which runs through (C, C)
and has a slope determined by h′CC(1) (see (2.9)). An accurate condition is y ≤ βx + γ



– 29 –

where β and γ are given by (6.11). Similarly, we get that F is contained in HCC(g) if and
only if x ≤ βy + γ. Thus F ⊂ HCC(f) ∩HCC(g) if and only if (6.10) holds. Statement 4
is proved.

5. By definition, the line L runs through (C, C), and due to (2.9) the slope of L
is lower than that of daig(S), the diagonal of S. Consequently, L lies above daig(S);
equivalently, daig(S) ⊂ HCC(f). Similarly, we obtain that daig(S) ⊂ HCC(g). Hence G00

∞
∩{(C, C)} (see statement 1). Since hCC is strictly concave, the line L (restricted to S) lies
strictly below the graph of hCC everywhere except the point (C, C) (see (2.6)). The states
located strictly between the line L and the graph of hCC do not belong to HCC(f), and,
consequently, G00

∞ . Therefore G00
∞ is strictly contained in G00 \ ∩{(C, C), (D,C), (C,D)}.

Statement 5 is proved.

6. Statement 6 follows from statements 5 and 3. The proof is completed.

Proposition 6.2 Let c ≥ 0 and c1 + c2 ≤ 0. The next statements hold true:

1) G00, the active domain of normal behavior, is given by (6.9),

2) (C, C) and (D,D) are acceptable for normal behavior ((f, g)-acceptable) at (D,D),
and for every (x, y) ∈ G00 \ {(D,D), (D,C), (C,D)}, (C, C) is a single strategy pair ac-
ceptable for normal behavior at (x, y),

3) the states (C, C), (D,C) and (C,D) are stationary for normal behavior,

4) G00
∞ , the nonstationary kernel-active domain of normal behavior, is given by

G00
∞ = G00 \ {(C, C), (D,D), (D,C), (C,D)}. (6.14)

5) G00
∞ ∪ {(C, C)} coincides with G00 \ {(D,C), (C,D)} and contains the diagonal,

6) G00
∞, the kernel-active domain of normal behavior, coincides with G00.

Proof. 1. Statement 1 is proved identically with statement 1 of Proposition 6.1

2. The (f, g)-acceptability of (C, C) and (D,D) at (D,D) is proved like in the previous
subsection. Let (x, y) ∈ G00\ {(D,D), (D,C), (C,D)}. Like in the previous subsection we
state that (C, C) is (f, g)-acceptable and (D,C) and (C,D) are not (f, g)-acceptable at
(x, y). Suppose (D,D) is (f, g)-acceptable at (x, y). We have c1 + c2 ≤ 0 by assumption.
Then, taking into account that (x, y) 6= (D,D) = (0, 0), and referring to (2.8), we get
hDD(x) ≤ x, and hDD(y) ≤ y; moreover, at least one of these inequalities holds strictly.
Arguing as in the previous subsection, we arrive at a contradiction.

3. Statement 3 is proved identically with statement 3 of Proposition 6.1.

4. By statement 1 (C, C) is (f, g)-acceptable at every state from G00
∞ . Then by Propo-

sition 1.2 a state (x, y) 6= {(C, C) belongs to G00
∞ if and only if the closed segment F with

the end points (x, y) and (C, C) is contained in G00, or, equivalently (see statement 1) in
HCC(f)∩HCC(g) Recall that the function hCC is convex. Therefore F ⊂ HCC(f)∩HCC(g)
for arbitrary (x, y) ∈ G00\ {(C, C), (D,D), (D,C), (C,D)}. Statement 4 is proved.

5. Let B = G00
∞ ∩ {(C, C)}. The equality B = G00 \ {(C, C), (D,C), (C,D)} follows

from statement 4. The fact that B contains the diagonal is proved like in the previous
subsection.

6. Statement 6 follows from statements 4 and 3.

Proposition 6.3 Let c ≥ 0 and c1 + c2 > 0. The next statements hold true:

1) G00, the active domain of normal behavior, is given by (6.9),
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2) (C, C) and (D,D) are acceptable for normal behavior ((f, g)-acceptable) at every
(x, y) ∈ E = HDD(f)∩HDD(g), and for every (x, y) ∈ G00 \ [{(D,C), (C,D)}∪E], (C, C)
is a single strategy pair acceptable for normal behavior at (x, y),

3) the set E \ {(D,D)} is nonempty and is strictly contained in G00
∞ \ {(D,D)},

4) the states (C, C), (D,C) and (C,D) are stationary for normal behavior,

5) G00
∞ , the nonstationary kernel-active domain of normal behavior, is given by (6.14),

6) G00
∞∩{(C, C)} coincides with G00\{(C, C), (D,C), (C,D)} and contains the diagonal,

7) G00
∞, the kernel-active domain of normal behavior, coincides with G00.

Proof. All statements except statement 2 are proved identically with those of Proposition
6.1 Let us prove statement 2. Since hDD(x) < hCC(x) (see (2.7)), E = HDD(f)∩HDD(g)
is a subset of HCC(f) ∩HCC(g). Therefore (and due to statement 1) (C, C) and (D,D)
are (f, g)-acceptable at every (x, y) ∈ E. Let (x, y) ∈ G00\ [{(D,C), (C,D)} ∪ E]. Like
in the previous subsection we state that (C, C) is (f, g)-acceptable and (D,C) and (C,D)
are not (f, g)-acceptable at (x, y). Finally, (D,D) is not (f, g)-acceptable at (x, y), since
(x, y) 6∈ E.

Propositions 6.1, 6.2 and 6.3 easily lead to the next characterizations of the nonex-
tendable normal trajectories. We shall say that a trajectory t = ((xk, yk)) moves towards
a point (x̄, ȳ) ∈ S in round k if, first, k is not the final round of t, and, second, (xk+1, yk+1)
lies on the segment with the end points (xk, yk) and (x̄, ȳ), and does not coincide with
(xk, yk).

Proposition 6.4 Let c < 0 and t = ((xk, yk)) (k = k0, . . .) be a nonextendable normal
trajectory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) 6∈ G00, then (x∗, y∗) is in the still domain of normal behavior, and t has
the length 0,

2) if (x∗, y∗) ∈ {(C, C), (D,C), (C,D)}, then t is infinite and stationary,

3) if (x∗, y∗) ∈ G00 \ [{(C, C), (D,C), (C,D)}∪G00
∞], then t has a finite length greater

than 0 and moves towards (C, C) in every round,

4) if (x∗, y∗) ∈ G00
∞ \ {(D,D)}, then t is infinite and moves towards (C, C) in every

round,

5) if (x∗, y∗) = (D,D), then either
(i) t is infinite, and stationary, or
(ii) t is infinite, its initial finite subtrajectory t∗ is stationary, and t moves towards

(C, C) in every round k ≥ k∗ where k∗ is the final round of t∗.

Proposition 6.5 Let c ≥ 0, c1+c2 ≤ 0 and t = ((xk, yk)) (k = k0, . . .) be a nonextendable
normal trajectory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) 6∈ G00, then (x∗, y∗) is in the still domain of normal behavior, and t has
the length 0,

2) if (x∗, y∗) ∈ {(C, C), (D,C), (C,D)}, then t is infinite and stationary,

3) if (x∗, y∗) ∈ G00 \ {(C, C), (D,D), (D,C), (C,D)}, then t is infinite and moves
towards (C, C) in every round,

4) if (x∗, y∗) = (D,D), then either
(i) t is infinite, and stationary, or
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(ii) t is infinite, its initial finite subtrajectory t∗ is stationary, and t moves towards
(C, C) in every round k ≥ k∗ where k∗ is the final round of t∗.

Proposition 6.6 Let c ≥ 0, c1+c2 > 0 and t = ((xk, yk)) (k = k0, . . .) be a nonextendable
normal trajectory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) 6∈ G00, then (x∗, y∗) is in the still domain of normal behavior, and t has
the length 1,

2) if (x∗, y∗) ∈ {(C, C), (D,C), (C,D)}, then t is infinite and stationary,

3) if (x∗, y∗) ∈ G00 \ {(C, C), (D,D), (D,C), (C,D)}, then t is infinite, moves towards
either (C, C) or (D,D) in every round k such that (xk, yk) ∈ E = HDD(f)∩HDD(g), and
moves towards (C, C) in every round k such that (xk, yk) 6∈ E.

6.3 Characterization of 2-altruistic and 1-altruistic trajectories

In the next subsections we characterize the abnormal basic trajectories. We omit proofs,
which are similar with those in the previous subsection.

Proposition 6.7 The next statements hold true:

1) G0+, the active domain of 2-altruistic behavior, and G0+
∞ , the kernel-active domain

of 2-altruistic behavior, coincide with the state space S,

2) at every (x, y) 6∈ HCC(f), (D,C) is a single strategy pair acceptable for 2-altruistic
behavior ((f, f)-acceptable), at every (x, y) ∈ HCC(f) \HDD(f), the strategy pairs accept-
able for 2-altruistic behavior are (D,C) and (C, C), at every (x, y) ∈ HDD(f) \{(C,D)}
the strategy pairs acceptable for 2-altruistic behavior are (D,C), (C, C) and (D,D), and
at (C,D) the strategy pairs acceptable for 2-altruistic behavior are (D,C), (C, C), (D,D),
and (C,D),

3) the state (D,C) is stationary for 2-altruistic behavior,

4) G0+
∞ , the nonstationary kernel-active domain of 2-altruistic behavior, is S\{(D,C)}.

Proposition 6.7 leads to the next characterization of the nonextendable 2-altruistic trajec-
tories.

Proposition 6.8 Let t = ((xk, yk)) (k = k0, . . .) be a nonextendable 2-altruistic trajectory
originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) = (D,C), then t is infinite and stationary,

2) if (x∗, y∗) 6∈ {(D,C), (C,D)}, then t is infinite and nonstationary, moreover in each
round k

(i) t moves towards (D,C) if (xk, yk) 6∈ HCC(f),
(ii) t moves towards (D,C) or (C, C) if (xk, yk) ∈ HCC(f) \HDD(f),
(iii) t moves towards (D,C), (C, C) or (D,D) if (xk, yk) ∈ HDD(f) \ {(C,D)},
3) if (x∗, y∗) = (C,D), then either
(i) t is infinite and stationary, or
(ii) t is infinite, its initial finite subtrajectory t∗ is stationary, and in every round

k ≥ k∗, where k∗ is the final round of t∗, conditions (i) – (iii) of statement 2 are satisfied.

Let us provide symmetric assertions on 1-altruistic behavior.
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Proposition 6.9 The next statements hold true:

1) G+0, the active domain of 1-altruistic behavior, and G+0
∞ , the kernel-active domain

of 1-altruistic behavior, coincide with the state space S,

2) at every (x, y) 6∈ HCC(g), (C,D) is a single strategy pair acceptable for 1-altruistic
behavior ((g, g)-acceptable), at every (x, y) ∈ HCC(g) \HDD(g), the strategy pairs accept-
able for 2-altruistic behavior are (C,D) and (C, C), at every (x, y) ∈ HDD(g) \ {(D,C)}
the strategy pairs acceptable for 1-altruistic behavior are (C,D), (C, C) and (D,D), and
at (D,C) the strategy pairs acceptable for 1-altruistic behavior are (C,D), (C, C), (D,D),
and (D,C),

3) the state (C,D) is stationary for 1-altruistic behavior,

4) G+0
∞ , the nonstationary kernel-active domain of 1-altruistic behavior, is S\{(C,D)}.

Proposition 6.10 Let t = ((xk, yk)) (k = k0, . . .) be a nonextendable 1-altruistic trajec-
tory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) = (C,D), then t is infinite and stationary,

2) if (x∗, y∗) 6∈ {(D,C), (C,D)}, then t is infinite and nonstationary, moreover in each
round k

(i) t moves towards (C,D) if (xk, yk) 6∈ HCC(g),
(ii) t moves towards (C,D) or (C, C) if (xk, yk) ∈ HCC(g) \HDD(g),
(iii) t moves towards (C,D), (C, C) or (D,D) if (xk, yk) ∈ HDD(f) \ {(D,C)},
3) if (x∗, y∗) = (D,C), then either
(i) t is infinite and stationary, or
(ii) t is infinite, its initial finite subtrajectory t∗ is stationary, and in every round

k ≥ k∗, where k∗ is the final round of t∗, conditions (i) – (iii) of statement 2 are satisfied.

6.4 Characterization of 1-aggressive-2-altruistic and 1-altruistic-
2-aggressive trajectories

Proposition 6.11 The next statements hold true:

1) G−+, the active domain of 1-aggressive-2-altruistic behavior, and G−+
∞ , the kernel-

active domain of 1-aggressive-2-altruistic behavior, coincide with the state space S,

2) at every (x, y) ∈ H̄DD(f) ∩HCC(g), (D,C) is a single strategy pair acceptable for
1-aggressive-2-altruistic behavior ((−g, f)-acceptable), at every (x, y) ∈ HDD(f)\HCC(g),
the strategy pairs acceptable for 1-aggressive-2-altruistic behavior are (D,C) and (D,D),
at every (x, y) ∈ HCC(g)\HDD(f) the strategy pairs acceptable for 1-aggressive-2-altruistic
behavior are (D,C) and (C, C), at every (x, y) ∈ [H̄CC(g)∩HDD(f)]\{(C,D} the strategy
pairs acceptable for 1-aggressive-2-altruistic behavior are (D,C), (C, C) and (D,D), and
at (C,D) the strategy pairs acceptable for 1-aggressive-2-altruistic behavior are (D,C),
(C, C) and (D,D) and (C,D),

3) the states (D,C), (C, C) and (D,D) are stationary for 1-aggressive-2-altruistic
behavior,

4) G−+
∞ , the nonstationary kernel-active domain of 1-aggressive-2-altruistic behavior,

is S \ {(D,C), (C, C), (D,D)}.
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Proposition 6.11 leads to the next characterization of the nonextendable 1-aggressive-2-
altruistic trajectories.

Proposition 6.12 Let t = ((xk, yk)) (k = k0, . . .) be a nonextendable 1-aggressive-2-
altruistic trajectory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) ∈ {(D,C), (C, C), (D,D)}, then t is infinite and stationary,

2) if (x∗, y∗) 6∈ {(D,C), (C, C), (D,D)}, then t is infinite and nonstationary, moreover,
in each round k

(i) t moves towards (D,C) if (xk, yk) ∈ H̄DD(f) ∩HCC(g),
(ii) t moves towards (D,C) or (D,D) if (xk, yk) ∈ HDD(f) \HCC(g),
(iii) t moves towards (D,C) or (C, C) if (xk, yk) ∈ HCC(g) \HDD(f), and
(iv) t moves towards (D,C), (C, C) of (D,D) if
(xk, yk) ∈ [H̄CC(g) ∩HDD(f)] \ {(D,C},
3) if (x∗, y∗) = (C,D), then either
(i) t is infinite and stationary, or
(ii) t is infinite, its initial finite subtrajectory t∗ is stationary, and in every round

k ≥ k∗, where k∗ is the final round of t∗, conditions (i) – (iv) of statement 2 are satisfied.

Now we provide symmetric assertions on 1-altruistic-2-aggressive behavior.

Proposition 6.13 The next statements hold true:

1) G+−, the active domain of 1-altruistic-2-aggressive behavior, and G+−
∞ , the kernel-

active domain of 1-altruistic-2-aggressive behavior, coincide with the state space S,

2) at every (x, y) ∈ H̄DD(g) ∩ HCC(f), (C,D) is a single strategy pair acceptable for
1-altruistic-2-aggressive behavior ((f,−g)-acceptable), at every (x, y) ∈ HDD(g)\HCC(f),
the strategy pairs acceptable for 1-altruistic-2-aggressive behavior are (C,D) and (D,D),
at every (x, y) ∈ HCC(f)\HDD(g) the strategy pairs acceptable for 1-altruistic-2-aggressive
behavior are (C,D) and (C, C), at every (x, y) ∈ [H̄CC(f)∩HDD(g)]\{(D,C)} the strategy
pairs acceptable for 1-altruistic-2-aggressive behavior are (C,D), (C, C) and (D,D), and
at (D,C) the strategy pairs acceptable for 1-altruistic-2-aggressive behavior are (C,D),
(C, C) and (D,D) and (D,C),

3) the states (C,D) (C, C) and (D,D) are stationary for 1-altruistic-2-aggressive be-
havior,

4) G+−
∞ , the nonstationary kernel-active domain of 1-altruistic-2-aggressive behavior,

is S \ {(C,D), (C,C), (D,D)}.

Proposition 6.13 leads to the next characterization of the nonextendable 1-altruistic-2-
aggressive trajectories.

Proposition 6.14 Let t = ((xk, yk)) (k = k0, . . .) be a nonextendable 1-altruistic-2-
aggressive trajectory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) ∈ {(C,D), (C,C), (D,D)}, then t is infinite and stationary,

2) if (x∗, y∗) 6∈ {(C,D), (C, C), (D,D)}, then t is infinite and nonstationary, moreover
in each round k

(i) t moves towards (C,D) if (xk, yk) ∈ H̄DD(g) ∩HCC(f),
(ii) t moves towards (C,D) or (D,D) if (xk, yk) ∈ HDD(g) \HCC(f),
(iii) t moves towards (C,D) or (C, C) if (xk, yk) ∈ HCC(f) \HDD(g), and
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(iv) t moves towards (C,D), (C, C) of (D,D) if (xk, yk) ∈ [HCC(f) ∩ HDD(g)] \
{(C,D)},

3) if (x∗, y∗) = (D,C), then either
(i) t is infinite and stationary, or
(ii) t is infinite, its initial finite subtrajectory t∗ is stationary, and in every round

k ≥ k∗, where k∗ is the final index of t∗, conditions (i) – (iv) of statement 2 are satisfied.

6.5 Characterization of aggressive trajectories

Proposition 6.15 Let c ≤ 0. The next statements hold true:

1) G−−, the active domain of aggressive behavior, and G−−∞ , the kernel-active domain
of aggressive behavior, coincide, are nonempty and given by

G−− = G−−∞ = H̄DD(f) ∩ H̄DD(g),

2) at every (x, y) ∈ G−−, (D,D) is a single strategy pair acceptable for aggressive
behavior ((−g,−f)-acceptable),

3) the states (D,D), (D,C) and (C,D) are stationary for aggressive behavior,

4) G−−∞ , the nonstationary kernel-active domain of aggressive behavior, is G−−\{(D,D)}.

Proposition 6.16 Let c > 0 and c1 + c2 ≤ 0. The next statements hold true:

1) G−−, the active domain of aggressive behavior, is nonempty and given by

G−− = H̄DD(f) ∩ H̄DD(g), (6.15)

2) at every (x, y) ∈ G−−, (D,D) is a single strategy pair acceptable for aggressive
behavior,

3) the states (D,D), (D,C) and (C,D) are stationary for aggressive behavior,

4) G−−∞ , the nonstationary kernel-active domain of aggressive behavior, is nonempty
and described as the set of all states (x, y) 6= (D,D) such that

y ≥ −c1

c2
x, x ≥ −c1

c2
y,

5) G−−∞ , the kernel-active domain of aggressive behavior, is given by G−−∞ = G−−∞ ∪
{(D,D), (C,D), (D,C)}.

Proposition 6.17 Let c > 0 and c1 + c2 > 0. The next statements hold true:

1) G−−, the active domain of aggressive behavior, is nonempty and given by (6.15),

2) at every (x, y) ∈ G−−, (D,D) is a single strategy pair acceptable for aggressive
behavior,

3) the states (D,D), (D,C) and (C,D) are stationary for aggressive behavior,

4) G−−∞ , the kernel-active domain of aggressive behavior, is {(D,D), (D,C), (C,D)},
5) G−−∞ , the nonstationary kernel-active domain of aggressive behavior, is empty.

Propositions 6.15 – 6.17 lead to the next characterizations of the nonextendable aggressive
trajectories.
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Proposition 6.18 Let c ≤ 0 and t = (xk, yk)) (k = k0, . . .) be a nonextendable aggressive
trajectory originating from a state (x∗, y∗). The next statements hold true:

1) if (x∗, y∗) 6∈ G−−, then t has the length 0,

2) if (x∗, y∗) ∈ {(D,D), (D,C), (C,D)}, then t is infinite and stationary,

3) if (x∗, y∗) ∈ G−− \ {(D,D), (D,C), (C,D)}, then t is infinite, nonstationary, and
in each round moves towards (D,D).

Proposition 6.19 Let c > 0, c1 + c2 ≤ 0 and t = ((xk, yk)) (k = k0, . . .) be a nonex-
tendable aggressive trajectory originating from a state (x∗, y∗). The next statements hold
true:

1) if (x∗, y∗) 6∈ G−−, then t has the length 0,

2) if (x∗, y∗) ∈ {(D,D), (D,C), (C,D)}, then t is infinite and stationary,

3) if (x∗, y∗) ∈ G−− \ [G−−∞ ∪ {(D,D), (D,C), (C,D)}], then t is finite, nonstationary,
and in each round moves towards (D,D).

4) if (x∗, y∗) ∈ G−−∞ then t is infinite, nonstationary, and in each round moves towards
(D,D).

Proposition 6.20 Let c > 0, c1 + c2 > 0 and t = ((xk, yk)) (k = k0, . . .) be a nonex-
tendable aggressive trajectory originating from a state (x∗, y∗). The next statements hold
true:

1) if (x∗, y∗) 6∈ G−−, then t has the length 0,

2) if (x∗, y∗) ∈ {(D,D), (D,C), (C,D)}, then t is infinite and stationary,

3) if (x∗, y∗) ∈ G−− \ {(D,D), (D,C), (C,D)}, then t is finite, nonstationary, and in
each round moves towards (D,D).

7 Appendix 3. Behavior assessment of fictitious play tra-
jectories

7.1 Analysis of fictitious play trajectories

The next statements follow from Propositions 6.1 – 6.3, 6.9, 6.7, 6.11, 6.13 and 6.15 – 6.17.
The proofs are elementary. Note in advance that in all propositions given below, the sets
mentioned in statements 1, 2, ... are nonempty; we do not repeat this in the formulations.
The sets E1, E2 and E are defined in subsection 3.2.

Proposition 7.1 Let c ≤ 0 and t = ((xk, yk)) (k = k0, . . .) be the infinite fictitious play
trajectory originating from a state (x∗, y∗) 6= (D,D). The next statements hold true:

1) if (x∗, y∗) ∈ G−− (see Proposition 6.15, 1)), then the trajectory t is aggressive and
every basic behavior except aggressive has the zero maximum measure on t,

2) if (x∗, y∗) ∈ HDD(f) \ E1, then
(i) the trajectory t is not basic,
(ii) the minimum measure of aggressive behavior on t is infinite,
(iii) every basic behavior except aggressive, 2-altruistic and 1-aggressive-2-altruistic has

the zero minimum measure on t, and the maximum and minimum measures on t of each
of the latter two basic behaviors is nonzero and finite,
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3) if (x∗, y∗) ∈ HDD(f) ∩ E1, then the trajectory t is 2-altruistic and 1-aggressive-2-
altruistic, and every other basic behavior has the zero maximum measure on t,

4) if (x∗, y∗) ∈ HDD(g) \ E2, then
(i) the trajectory t is not basic,
(ii) the minimum measure of aggressive behavior on t is infinite,
(iii) every basic behavior except aggressive, 1-altruistic and 1-altruistic-2-aggressive has

the zero maximum measure on t, and the maximum and minimum measures on t of each
of the latter two basic behaviors is nonzero and finite,

5) if (x∗, y∗) ∈ HDD(g) ∩ E2, then the trajectory t is 1-altruistic and 1-altruistic-2-
aggressive, and every other basic behavior has the zero maximum measure on t.

Proposition 7.2 Let c > 0, c1 + c2 ≤ 0 and t = ((xk, yk)) (k = k0, . . .) be the infinite
fictitious play trajectory originating from a state (x∗, y∗) 6= (D,D). The next statements
hold true:

1) if (x∗, y∗) ∈ G−−∞ = Ē1 ∩ Ē2 (see Proposition 6.16, 4)), then the trajectory t is
aggressive and every basic behavior except aggressive has the zero maximum measure on t,

2) if (x∗, y∗) ∈ G−− ∩ E1, then
(i) the trajectory t is not basic,
(ii) every basic behavior except aggressive, 2-altruistic and 1-aggressive-2-altruistic has

the zero maximum measure on t,
(iii) the minimum and maximum measures on t of aggressive behavior are nonzero,

finite and identical,
(iv) the minimum and maximum measures on t of 2-altruistic behavior are, respectively,

zero and infinity,
(v) the minimum and maximum measures on t of 1-aggressive-2-altruistic behavior are,

respectively, zero and infinity,

3) if (x∗, y∗) ∈ G−− ∩ E2, then
(i) the trajectory t is not basic,
(ii) every basic behavior except aggressive, 1-altruistic and 1-altruistic-2-aggressive has

the zero maximum measure on t,
(iii) the minimum and maximum measures on t of aggressive behavior are nonzero,

finite and identical,
(iv) the minimum and maximum measures on t of 1-altruistic behavior are, respectively,

zero and infinity,
(v) the minimum and maximum measures on t of 1-altruistic-2-aggressive behavior are,

respectively, zero and infinity,

4) if (x∗, y∗) ∈ HDD(f), then
(i) the trajectory t is 2-altruistic and 1-aggressive-2-altruistic,
(ii) every basic behavior except 2-altruistic and 1-aggressive-2-altruistic has the zero

maximum measure on t,
(iii) the minimum measures on t of 2-altruistic and 1-aggressive-2-altruistic behaviors

are zero,

5) if (x∗, y∗) ∈ HDD(g), then
(i) the trajectory t is 1-altruistic and 1-altruistic-2-aggressive,
(ii) every basic behavior except 1-altruistic and 1-altruistic-2-aggressive has the zero

maximum measure on t,
(iii) the minimum measures on t of 1-altruistic and 1-altruistic-2-aggressive behaviors

are zero.
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Proposition 7.3 Let c > 0, c1 + c2 > 0, c2(c2− c) ≥ c2
1 and t = ((xk, yk)) (k = k0, . . .) be

a nonextendable fictitious play trajectory originating from a state (x∗, y∗) 6= (D,D). The
next statements hold true:

1) if (x∗, y∗) ∈ G−− ∩ E1 ∩ E2 and x∗ = y∗, then
(i) the trajectory t is not basic,
(ii) the minimum and maximum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) for every basic behavior except aggressive, its maximum measure on t is infinite

and its minimum measure on t is zero,

2) if (x∗, y∗) ∈ G−− ∩ E1 ∩ E2 and x∗ > y∗, then
(i) the trajectory t is not basic,
(ii) the maximum and minimum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) the maximum measures on t of 2-altruistic and 1-aggressive-2-altruistic behaviors

are infinite, and the minimum measures on t of these behaviors are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

3) if (x∗, y∗) ∈ G−− ∩ E1 ∩ E2 and x∗ < y∗, then
(i) the trajectory t is not basic,
(ii) the maximum and minimum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) the maximum measures on t of 1-altruistic and 1-altruistic-2-aggressive behaviors

are infinite, and the minimum measures of these behaviors on t are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

4) if (x∗, y∗) ∈ G−− \ E1, then
(i) the trajectory t is not basic,
(ii) the maximum and minimum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) the minimum measures on t of 2-altruistic and 1-aggressive-2-altruistic behaviors

are infinite,
(iv) the maximum measure on t of normal behavior is zero,

5) if (x∗, y∗) ∈ G−− \ E2, then
(i) the trajectory t is not basic,
(ii) the maximum and minimum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) the minimum measures on t of 1-altruistic and 1-altruistic-2-aggressive behaviors

are infinite,
(iv) the maximum measure on t of normal behavior is zero,

6) if (x∗, y∗) ∈ S \ [E1 ∪G−−], then
(i) the trajectory t is 2-altruistic and 1-aggressive-2-altruistic,
(ii) the maximum measure on t of every basic behavior except 2-altruistic and 1-

aggressive-2-altruistic is zero,

7) if (x∗, y∗) ∈ S \ [E2 ∪G−−], then
(i) the trajectory t is 1-altruistic and 1-altruistic-2-aggressive,
(ii) the maximum measure on t of every basic behavior except 1-altruistic and 1-

altruistic-2-aggressive is zero,
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8) if (x∗, y∗) ∈ E1 \ [G−− ∪ E], then
(i) the trajectory t is not basic,
(ii) the maximum measure on t of aggressive behavior is zero,
(iii) the maximum measures on t of 2-altruistic and 1-aggressive-2-altruistic behaviors

are infinite, and the minimum measures on t of these behaviors are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

9) if (x∗, y∗) ∈ E2 \ [G−− ∪ E], then
(i) the trajectory t is not basic,
(ii) the maximum measure on t of aggressive behavior is zero,
(iii) the maximum measures on t of 1-altruistic and 1-altruistic-2-aggressive behaviors

are infinite, and the minimum measures on t of these behaviors are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

10) if (x∗, y∗) ∈ E, then
(i) the trajectory t is normal, 2-altruistic, 1-aggressive-2-altruistic, 1-altruistic and

1-altruistic-2-aggressive,
(ii) the minimum measure on t of every basic behavior is zero,
(iii) the maximum measure on t of aggressive behavior is zero.

Proposition 7.4 Let c > 0, c1 + c2 > 0, c2(c2− c) < c2
1 and t = ((xk, yk)) (k = k0, . . .) be

the infinite fictitious play trajectory originating from a state (x∗, y∗) 6= (D,D). The next
statements hold true:

1) if (x∗, y∗) ∈ G−− and x∗ = y∗, then
(i) the trajectory t is not basic,
(ii) the minimum and maximum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) for every basic behavior except aggressive, its maximum measure on t is infinite

and its minimum measure on t is zero,

2) if (x∗, y∗) ∈ G−− and x∗ > y∗, then
(i) the trajectory t is not basic,
(ii) the maximum and minimum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) the maximum measures on t of 2-altruistic and 1-aggressive-2-altruistic behaviors

are infinite, and the minimum measures on t of these behaviors are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

3) if (x∗, y∗) ∈ G−− and x∗ < y∗, then
(i) the trajectory t is not basic,
(ii) the maximum and minimum measures on t of aggressive behavior are nonzero,

finite and identical,
(iii) the maximum measures on t of 1-altruistic and 1-altruistic-2-aggressive behaviors

are infinite, and the minimum measures of these behaviors on t are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

4) if (x∗, y∗) ∈ S \ [E1 ∪G−−], then
(i) the trajectory t is 2-altruistic and 1-aggressive-2-altruistic,
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(ii) the maximum measure on t of every basic behavior except 2-altruistic and 1-
aggressive-2-altruistic is zero,

5) if (x∗, y∗) ∈ S \ [E2 ∪G−−], then
(i) the trajectory t is 1-altruistic and 1-altruistic-2-aggressive,
(ii) the maximum measure on t of every basic behavior except 1-altruistic and 1-

altruistic-2-aggressive is zero,

6) if (x∗, y∗) ∈ E1 \ [G−− ∪ E], then
(i) the trajectory t is not basic,
(ii) the maximum measure on t of aggressive behavior is zero,
(iii) the maximum measures on t of 2-altruistic and 1-aggressive-2-altruistic behaviors

are infinite, and the minimum measures on t of these behaviors are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

7) if (x∗, y∗) ∈ E2 \ [G−− ∪ E], then
(i) the trajectory t is not basic,
(ii) the maximum measure on t of aggressive behavior is zero,
(iii) the maximum measures on t of 1-altruistic and 1-altruistic-2-aggressive behaviors

are infinite, and the minimum measures on t of these behaviors are finite and identical,
(iv) the maximum and minimum measures on t of normal behavior are, respectively,

infinite and zero,

8) if (x∗, y∗) ∈ E, then
(i) the trajectory t is normal, 2-altruistic, 1-aggressive-2-altruistic, 1-altruistic and

1-altruistic-2-aggressive,
(ii) the minimum measure on t of every basic behavior is zero,
(iii) the maximum measure on t of aggressive behavior is zero.

8 Appendix 4. Optimal paths to cooperation

8.1 Proof of Lemma 4.1

Let t 6∈ F . Then t either never visits G00
∞ , or visits G00

∞ in round s and moves not normally
in some round k ≥ s. Let us prove that t is not optimal.

Assume, first, that t never visits G00
∞ . Then the minimum measure of abnormal behavior

on t, i.e., the number of rounds, in which t moves not normally, is infinite. Indeed, if it is
finite, then t moves normally in all rounds after some round r. Hence, the subtrajectory of
t, which starts in round r, is infinite and normal. The starting state for this subtrajectory
is necessarily in the kernel-active domain of normal behavior, G00

∞ . Therefore, t visits G00
∞

in round r, which contradicts the assumption. The contradiction proves that the minimum
measure of abnormal behavior on t is infinite; t is not optimal since every trajectory from
F has a finite minimum measure of abnormal behavior.

Now let t visit G00
∞ in round s and move not normally in some round k ≥ s. The

trajectory, which follows t in rounds k0, . . . , s and moves normally in all rounds k ≥ s,
lies in F and obviously has a smaller minimum measure of abnormal behavior than t.
Therefore, t is not optimal.

8.2 Proof of Proposition 4.1

We shall make use of conditions (ii) and (iii) from the definition of a Bellman function
V . Given a trajectory t = ((xk, yk)) ∈ F , we shall use simplified notations νk = νk(t),
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Vk = V (k, xk, yk) and s = sV (t). For arbitrary t ∈ F by (ii)

νs = νs + Vs ≥ νk0 + Vk0 = Vk0,

By definition µ = µ(t) is the number of rounds, in which t moves not normally. Obviously,
µ ≥ νs. Consequently, µ ≥ Vk0.

For t ∈ FV by (iii) we have νs = Vk0 and (xs, ys) ∈ G00
∞ . By the definition of F , t moves

normally in all rounds k ≥ s. Hence, µ = νs = V0. Therefore, t is optimal.
Let t ∈ F \ FV . Then either νs > Vk0, or νs = Vk0 and (xs, ys) 6∈ G00

∞ . If νs > Vk0,
then t is obviously not optimal. Let νs = Vk0 and (xs, ys) 6∈ G00

∞ . Consider the infinite
subtrajectory τ of t, which starts in round s. Since (xs, ys) 6∈ G00

∞ , τ is not normal, hence,
t moves not normally in some round k ≥ s. Consequently, µ ≥ νs + 1 = Vk0 + 1, which
implies that t is not optimal.

8.3 Proof of Lemma 4.3

Recall that the straight line L0 serving for the “north-west” boundary of G00
∞ is described

by the equation y = βx+ γ (see Proposition L0 6.1, 4)). Let (xk, yk) lie “below” L0, i.e.,
yk ≤ βxk+γ. Then p(k, xk, yk) = 0 by definition. The right hand side in (4.2) is obviously
zero. Hence, (4.2) holds.

Let (xk, yk) lie “above” L0, i.e., yk > βxk+γ. Consider the trajectory τ = τ(k, yk, yk) =
((ξr, ηr)). Recall that τ is infinite, originates from (xk, yk) in round k and moves (“south-
east”) towards (C,D). All states on the trajectory τ lie on the straight line L1 running
through the points (xk, yk) and (C,D) = (1, 0). The line L1 has the equation

y =
yk

1− xk
(1− x).

Let (a, b) be the point, in which the lines L0 and L1 intersect. Obviously,

s = p(k, xk, yk)

is the first round, in which τ visits the stripe E = {(x, y) ∈ S : y ≤ b}. Let us compute s.
We have

ηk+1 = yk −
yk

k + 1
=

k

k + 1
yk,

ηk+2 =
k + 1

k + 2
ηk+1 =

k

k + 2
yk.

Continuing in this manner, we get

ηk+q =
k

k + q
yk.

By definition s is the minimum of all r such that ηr ≤ b, or

k

r
yk ≤ b.

Obviously,

s =

[
yk
b
k

]
+
.

Since (a, b) ∈ L1, we have

b =
yk

1− xk
(1− a).
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Hence,

s =

[
1− xk
1− a k

]
+
. (8.1)

The next computations give an expression for 1− a:

b =
yk

1− xk
(1− a) = βa+ γ,

yk
1− xk

− γ =

(
yk

1− xk
+ β

)
a,

a =

yk
1−xk − γ
yk

1−xk + β
,

1− a =

yk
1−xk + β − yk

1−xk + γ
yk

1−xk + β
=

(β + γ)(1− xk)
β(1− xk) + yk

=
1− xk

β(1− xk) + yk

(recall that β + γ = 1; see (6.11)). Substituting into (8.1), we get

s = [(β(1− xk) + yk)k]+. (8.2)

The formula (4.2) is proved.

8.4 Proof of Lemma 4.4

1. Let t move towards (C,D) = (1, 0) in round k. Then

xk+1 =
k

k + 1
xk +

1

k + 1
,

yk+1 =
k

k + 1
yk,

The first equality implies

1− xk+1 =
k

k + 1
(1− xk). (8.3)

Then

zk+1 = (β(1− xk+1) + yk+1)(k + 1)

=

(
β

k

k + 1
(1− xk) +

k

k + 1
yk

)
(k + 1) = zk;

here and in what follows zk is defined by (4.4). Therefore, referring to (4.2), we get

pk+1 = [zk+1]+ = [zk]+ = pk.

Statement (i) is proved.
2. Let t move towards (C, C) = (1, 1) in round k. Then

xk+1 =
k

k + 1
xk +

1

k + 1
,

yk+1 =
k

k + 1
yk +

1

k + 1
.

Again we have (8.3). Then

zk+1 = (β(1− xk+1) + yk+1)(k+ 1)

=

(
β

k

k + 1
(1− xk) +

k

k + 1
yk +

1

k + 1

)
(k + 1) = zk + 1.
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By (4.2)
pk+1 = [zk+1]+ = [zk]+ + 1 = pk + 1.

Statement (ii) is proved.
3. Let t move towards (D,C) = (0, 1) in round k. Then

xk+1 =
k

k + 1
xk,

yk+1 =
k

k + 1
yk +

1

k + 1
.

The first equality implies

1− xk+1 =
k

k + 1
(1− xk) +

1

k + 1
. (8.4)

Then

zk+1 = (β(1− xk+1) + yk+1)(k + 1)

=

(
β

k

k + 1
(1− xk) +

k

k + 1
yk +

β + 1

k + 1

)
(k + 1) = zk + β + 1.

By (4.2)
pk+1 = [zk+1]+ ∈ {[zk]+ + 1, [zk]+ + 2} = {pk + 1, pk + 2}.

Statement (iii) is proved.
4. Let t move towards (D,D) = (0, 0) in round k. Then

xk+1 =
k

k + 1
xk,

yk+1 =
k

k + 1
yk.

Again we have (8.4) Then

zk+1 = (β(1− xk+1) + yk+1)(k+ 1)

=

(
β

k

k + 1
(1− xk) +

k

k + 1
yk +

β

k + 1

)
(k + 1) = zk + β.

If [zk + β]+ = [zk]+, then by (4.2)

pk+1 = [zk+1]+ = [zk + β]+ = pk.

If [zk + β]+ > [zk]+, then, obviously, [zk + β]+ = [zk]+ + 1, and by (4.2)

pk+1 = [zk+1]+ = [zk + β]+ = pk + 1.

Statements (iv) and (v) are proved.

8.5 Proof of Proposition 4.2

In view of Lemma 4.2, it is sufficient to prove that V satisfies condition (ii) in the definition
of a Bellman function. Take a trajectory t = ((xk, yk)) ∈ F and set νk = νk(t), Vk =
V (k, xk, yk), pk = p(k, xk, yk) and s = sV (t). We must show that

νk+1 + Vk+1 ≥ νk + Vk (8.5)
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for all k = k0, . . . , s−1. Assume that t moves normally in round k. Then νk+1 = νk. Since
t moves necessarily towards (C, C) in round k, by Lemma 4.4, (ii) we have pk+1 = pk + 1.
Hence,

νk+1 + Vk+1 = νk+1 + pk+1 − (k + 1) = νk + pk − k = νk + Vk,

and (8.5) is satisfied. Now assume that t moves not normally in round k. Then νk+1 =
νk + 1. By Lemma 4.4, (i) – (v), pk+1 ≥ pk. Hence,

νk+1 + Vk+1 = νk+1 + pk+1 − (k + 1) ≥ νk + 1 + pk − (k+ 1) = νk + Vk.

Again, (8.5) is satisfied.

8.6 Proof of Corollary 4.1

Let V be a Bellman function given by (4.1). For the trajectory t = ((xk, yk)) we set
pk = p(k, xk, yk), νk = νk(t), Vk = V (k, xk, yk). Since k ≤ sV (t), the state (xk, yk)
lies “above” the “north-west” boundary of G00

∞ ; hence, the conditions of Lemma 4.4 are
satisfied. By Lemma 4.4 we conclude that if t moves in round k towards one of the points
(C, C), (D,C), or towards (D,D) and in the latter case the inequality (4.5) holds, then
pk+1 ≥ pk + 1. If, besides, t moves not normally in this round, we have νk+1 = νk + 1.
Hence,

νk+1 + Vk+1 = νk+1 + pk+1 − (k + 1)

≥ νk + 1 + pk + 1− (k + 1) = νk + pk − k + 1 > νk + Vk.

Therefore, t 6∈ FV (see condition (iii) in the definition of a Bellman function). By Propo-
sition 4.1 FV is the set of all optimal trajectories. Consequently, t is not optimal.

8.7 Proof of Proposition 4.3

Let V be a Bellman function given by (4.1) (see Proposition 4.2). Due to Proposition 4.1
it is sufficient to show that F 0 = FV . By Corollary 4.1 all trajectories from F \F 0 are not
optimal. All desirable trajectories beyond F are not optimal by Lemma 4.1. Therefore,
for stating the equality F 0 = FV we must prove the inclusion F 0 ⊂ FV . Take arbitrary
t = ((xk, yk)) ∈ F 0. We shall use notations pk = p(k, xk, yk), νk = νk(t), Vk = V (k, xk, yk),
s = sV (t). Let us prove that

νk+1 + Vk+1 = νk + Vk (8.6)

for k = k0, . . . , s, and
(xs, ys) ∈ G00

∞ . (8.7)

These relations yield that t ∈ FV . Take a round number k ≤ s. By the definition of F 0 in
round k one of the next conditions is satisfied:

(i) t moves normally (towards (C, C)),
(ii) t moves (not normally) towards (C,D),
(iii) t moves (not normally) towards (D,D) provided the equality (4.3) holds for zk

given by (4.4).
Since t ∈ F , the state (xk, yk) lies “above” L0, the “north-west” boundary of G00

∞ ;
hence, the conditions of Lemma 4.4 are satisfied. If (i) holds, then νk+1 = νk (t moves
normally in round k) and by Lemma 4.4 pk+1 = pk + 1. In this case

νk+1 + Vk+1 = νk+1 + pk+1 − (k + 1)

= νk + pk + 1− (k + 1) = νk + pk − k = νk + Vk,
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and (8.6) holds. If (ii) or (iii) hold, then νk+1 = νk + 1 (t moves not normally in round k)
and by Lemma 4.4 pk+1 = pk. In this case we have

νk+1 + Vk+1 = νk+1 + pk+1 − (k + 1)

= νk + 1 + pk − (k + 1) = νk + pk − k = νk + Vk,

and (8.6) holds again.
A proof of (8.7) is based on Lemma 4.5. If s = k0, then (8.7) holds due to Crossing

Condition. Let s > k0. By the definition of s we have Vs−1 = ps−1 − (s − 1) > 0.
Hence, by the definition of pk we conclude that, first, the state (xs−1, ys−1) lies “above”
L0 (ys−1 > βxs−1 + γ), and, second, ps−1 = s. In round s − 1 cases (i), (ii) and (iii)
are admissible. In case (i) (xs, ys) cannot lie “below” L0, therefore, this case cannot take
place.

Let (ii) take place. Then (xs, ys) follows (xs−1, ys−1) on the trajectory τ , which orig-
inates from (xs−1, ys−1) in round s − 1 and moves towards (C,D). By Lemma 4.5 the
trajectory τ visits G00

∞ in round ps−1 = s, which is equivalent to (8.7).
Let (iii) take place. Then (xs, ys) follows (xs−1, ys−1) on the trajectory τ , which

originates from (xs−1, ys−1) in round s − 1 and moves towards (D,D). This trajectory
never abandons G00

∞ after crossing L0. Hence, we have (8.7) again. The proposition is
proved.

8.8 Proof of Lemma 4.5

We use induction in the round number, k. For k = k0 the statement follows from Crossing
Condition. Assume that the statement is true for some k ≥ k0, i.e., for every trajectory
t = ((xq, yq)) ∈ F 0 and every round q ≤ k such that q < sV (t) the trajectory τ(q, xq, yq) =
((ξqr , η

q
r)) visits G00

∞ in round pq = p(q, xq, yq), i.e., (ξqpq , η
q
pq) ∈ G00

∞ .

Fix arbitrary trajectory t = ((xq, yq)) ∈ F 0 such that k + 1 < sV (t). To complete the
proof, we must show that the trajectory τ(k+ 1, xk+1, yk+1) = ((ξk+1

r , ηk+1
r )) visits G00

∞ in
round pk+1 = p(k+ 1, xk+1, yk+1), i.e.,

(ξk+1
pk+1

, ηk+1
pk+1

) ∈ G00
∞ . (8.8)

By the definition of F 0, in round k the trajectory t moves towards (C,D), towards (C, C),
or towards (D,D).

Let t move towards (C,D) in round k. Then the trajectory τ(k+ 1, xk+1, yk+1) is the
subtrajectory of τ(k, xk, yk), which starts in round k + 1, and pk+1 = pk. By assumption
τ(k, xk, yk) visits G00

∞ in round pk. Hence, τ(k+1, xk+1, yk+1) visits G00
∞ in round pk = pk+1.

Let t move towards (C, C) in round k. By assumption the trajectory τ(k, xk, yk) =
((ξkr , η

k
r )) visits G00

∞ in round pk, i.e.,

(ξkpk, η
k
pk

) ∈ G00
∞ . (8.9)

Let a one-round trajectory σ∗ originate from ((ξkpk, η
k
pk

)) in round pk and move (normally)
towards (C, C). Let (ξ∗, η∗) be the state on σ∗ in round pk + 1. Due to (8.9)

(ξ∗, η∗) ∈ G00
∞ . (8.10)

We shall show that the trajectory τ(k + 1, xk+1, yk+1) = ((ξk+1
r , ηk+1

r )) meets (ξ∗, η∗) in
round pk + 1:

(ξk+1
pk+1, η

k+1
pk+1) = (ξ∗, η∗). (8.11)
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This fact implies pk+1 ≤ pk. Hence, taking into account the definition of pk+1 = p(k +
1, xk+1, yk+1), we easily deduce that the point (ξk+1

pk+1
, ηk+1
pk+1

) lies on a segment between

(ξ∗, η∗) ∈ G00
∞ and some point on L0, the “north-west” boundary of G00

∞ . Since G00
∞ is

convex, we get (8.8), which finalizes the proof.
Let us show (8.11). For each r = k + 1, . . . , pk introduce a one-round trajectory σ∗r

originating from (ξkr , η
k
r) in round r and moving towards (C, C). Obviously, σ∗pk = σ∗. Let

(ξ∗r+1, η
∗
r+1) be the state on σ∗r in round r + 1. We shall prove that

(ξk+1
r+1 , η

k+1
r+1) = (ξ∗r+1, η

∗
r+1) (8.12)

for all r = k + 1, . . . , pk. For r = pk (8.12) gives (8.11). We use induction in r. Let
r = k + 1. Our goal is to state the equality

(ξk+1
k+2 , η

k+1
k+2) = (ξ∗k+2, η

∗
k+2). (8.13)

We have

xk+1 =
k

k + 1
xk +

1

k + 1
,

yk+1 =
k

k + 1
yk +

1

k + 1
,

ξk+1
k+2 =

k + 1

k + 2
xk+1 +

1

k + 2
,

ηk+1
k+2 =

k + 1

k + 2
yk+1,

ξkk+1 =
k

k + 1
xk +

1

k + 1
,

ηkk+1 =
k

k + 1
yk,

ξ∗k+2 =
k + 1

k + 2
ξkk+1 +

1

k + 2
,

η∗k+2 =
k + 1

k + 2
ηkk+1 +

1

k + 2
.

Obviously, ξk+1
k+2 = ξ∗k+2. Furthermore,

ηk+1
k+2 =

k + 1

k + 2
ηk+1
k+1

=
k + 1

k + 2

(
k

k + 1
yk +

1

k + 1

)
=

k

k + 2
yk +

1

k + 2
,

and

η∗k+2 =
k + 1

k + 2
ηkk+1 +

1

k + 2

=
k + 1

k + 2

k

k + 1
yk +

1

k + 2
=

k

k + 2
yk +

1

k + 2
= ηk+1

k+2 .

The equality (8.13) is proved. Now we assume that (8.12) holds for some r < pk and
prove that (ξk+1

r+2 , η
k+1
r+2) = (ξ∗r+2, η

∗
r+2). The proof is identical to that given for the equality

(8.13).
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Let, finally, t move towards (D,D) in round k. By assumption we have (8.9) Consider
a one-round trajectory σ∗ originating from (ξkpk , η

k
pk

) in round pk and moving towards
(D,D). Let (ξ∗, η∗) be the state on σ∗ in round pk + 1. The point (ξ∗, η∗) lies on the
segment with the endpoints (ξkpk , η

k
pk

) and (D,D). Both of them belong to G00
∞ . Since G00

∞
is convex, we have (8.10). The rest of the proof is identical to that given previously for
the case where t moves towards (C, C) in round k. The lemma is proved.

9 Conclusion

We showed how a cooperative interpretation of strategy updating in repeated games leads
to a clear classification of players’ behaviors in round-to-round transitions. The players
are behaving normally as long as each of them is winning, i.e., getting no less than what
is being expected at the latest historical distribution of players’ strategies. As soon as at
least one of the players loses, altruistic and aggressive behaviors come in. The numbers
of rounds, in which different combinations of players’ behaviors are registered, serve as
behavior measures for every game trajectory. A problem of behavior assessment and a
problem of optimal behavior show how these measures work in the global analysis of game
trajectories.

A global behavior analysis of the repeated Prisoner’s Dilemma revealed several non-
trivial phenomena. We observed that the players who defect in each round may in fact
exhibit different behaviors at different stages of the repeated game. For such players, the
domain of normal behavior is very often empty, whereas the domain of mutually aggressive
behavior may be large or small but never vanishes.

For the players who minimize the measure of abnormal behavior on the trajectories
approaching mutual cooperation, mutual cooperation is allowed only if the players are
historically “nearly identical”, i.e., their historical frequencies of cooperation lie close to
each other (this happens in a neighborhood of the diagonal of the state square). It is
not so surprising that in situations where the payers’ historical frequencies are strongly
disbalanced (locations far away from the diagonal) the “less cooperative” player should,
typically, behave altruistically and cooperate versus his/her rival’s defection. More strik-
ing is the observation that in the “disbalanced” situations both optimizing players may
sometimes behave as mutually aggressive defectors, whereas mutual cooperation is not
acceptable for them.
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