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ABSTRACT

van den Bosch, F., Metz, J. A. J., and Zadoks, J. C. 1999. Pandemics of
focal plant disease, a model. Phytopathology 89:495-505.

An analytical model of a pandemic, initiated by a single focus and
spreading over a continent, is developed using foci as the smallest units
of disease and fields as the smallest units of host. A few generalizing
assumptions lead to a parameter-sparse model that may answer general
questions on pandemics in a qualitative manner. For pandemic spread of
disease during one season, a ‘within-season velocity of pandemic spread,’
C, is expressed as a set of integral equations. Reduction of inoculum
during the off-season is expressed by a ‘survival ratio’ of inoculum, ε.
The effect of the off-season is a ‘push-back’ of the pandemic front over a
distance ∆h. It will be shown how ∆h is related to C and ε. The mean

pandemic spread over successive years is calculated as the ‘polyetic ve-
locity of pandemic spread,’ V, which depends on C and the push-back
distance. The concept of ‘pandemic effectiveness’ is parameterized. Rela-
tions between the two velocities of pandemic spread and several model
parameters are studied. Somewhat unexpectedly, velocities of pandemic
spread depend only in a very limited way on field density represented by
the ‘cropping ratio’ ζ. This implies that our model and methods will also
apply to situations with inhomogeneous field distributions. The effect of
parameter values on rates of severity increase are analyzed. Finally, gen-
eralizations of the model are developed and their applications discussed.

Additional keywords: disease spread, overseasoning, sanitation, seasonality.

An epidemic expanding over a continent is called a pandemic (9).
A well-documented example is that of tobacco blue mold (Perono-
spora tabacina). The fungus, known from Australia in the 19th cen-
tury (4), was reported in the United States in 1921. Between 1931
and 1950, a pandemic took place in North America. The velocity
of pandemic spread was about 50 km per year (35). The disease
appeared in England in 1959 and spread within 5 years over con-
tinental Europe and the Mediterranean countries (21) at a rate of
about 130 km per year (35).

McGregor (15), discussing emigrant pests, stated that estimation
of the relative danger posed by a quarantine pest and the design of
emergency measures for containment and eradication would profit
from models of pandemics with at least some predictive value (11).
No model of pandemic spread has been formulated and analyzed
to date.

The modeling of population expansion in space has a tradition
in ecology and population genetics (8,27). Kendall (12) was the
first to model the spatial spread of diseases. A general model for
the spatial expansion of age-structured populations (5,6,28) was
operationalized and applied to inter alia spatial expansions of ver-
tebrate species on a continental scale (16,30). Analytically tractable
models were applied to the local expansion of a plant disease in one-
dimensional and two-dimensional plantings (17,18,29–33). Local
epidemic spread was also described by means of spatially struc-
tured simulators (35,38).

Here, we consider the step from small-scale spatial disease ex-
pansion to large-scale pandemics of focus-forming plant diseases.
Focus formation is a short-time and small-scale phenomenon in

which time and space are assumed to be continuous. For pandemic
expansion, this assumption no longer holds. Epidemic progress
within a field, consisting of both expansion of existing foci and
initiation of new foci, is essentially different from the epidemic
development in an assemblage of distant fields. Moreover, pan-
demics usually need several successive cropping seasons. We can-
not ignore the discontinuity of time for pandemic expansion due to
periods, often winters, in which disease development and spread
is not possible. Furthermore, the discontinuity in space, a mixture
of fields and nonfield areas, has to be incorporated in the model.
In this paper, we combine the various ingredients to calculate the
polyetic (36) or mean velocity during successive cropping seasons.

MATERIALS AND METHODS

Model. In this section, a model is derived for the spatial expan-
sion of a focal plant disease. We limit the discussion to polycyclic
(36) fungal disease propagated by airborne spores. We introduce
some definitions to be used in the model derivation.

Continent. A pandemic spreads over a continent. A continent is
considered to be an infinitely large, two-dimensional space. Posi-
tion in space will be given in the usual Cartesian coordinate sys-
tem (x1,x2). We will often use a shorthand notation 

r
x  = (x1,x2).

Crop. A crop is the agronomic entity grown continent-wide and
susceptible to the disease under consideration. A crop occupies
fields.

Field. A field is the geographical entity carrying a crop, with a
position (x1,x2). All fields are assumed to be equal in accessibility
(36) to incoming spores, disease susceptibility, escapability of out-
going spores, climatic conditions, and cropping season.

Target area. The target area is the part of the continent covered
by fields planted with the crop; the nontarget area is the part not
covered by that crop. The ratio of target area to total area will be
called the ‘cropping ratio,’ ζ. Fields are assumed to be homogene-

Corresponding author: F. van den Bosch
E-mail address: Frank.vandenbosch@ZTW.WK.WAU.NL

Publication no. P-1999-0419-01R
© 1999 The American Phytopathological Society



496  PHYTOPATHOLOGY

ously distributed over the continent. The assumption of homogeneity
allows us to analytically calculate velocities and rates of disease
increase. It will be shown that, due to the only slight dependence
of velocities on the cropping ratio, inhomogeneous field distribu-
tions will not affect our results much (discussed below under Gen-
eralizations).

Season. The year consists of a cropping season and an off-season.
The cropping season, ‘season’ for short, is the part of the year when
fields are covered by the crop so that the epidemic can proceed. The
off-season is the part of the year when there is no crop available.

Spatial spread within one cropping season. Individual. In
modeling the dynamics of an infectious disease, one usually takes
the (biological) individual as the conceptual unit. For plant dis-
ease, such an individual can be a fungal spore, a lesion, an in-
fected leaf, or an infected plant. For modeling a pandemic, such a
definition of individual is not suitable. The methods to calculate
the velocity of spatial population expansion make use of the fact
that density dependence in the far front of the epidemic is negligible
(5,30). In focal plant diseases, a nonnegligible depletion of sus-
ceptibles inside a focus will certainly occur, even in the far front

of the epidemic. We circumvent this problem by taking the focus
as our conceptual unit of modeling. The so-called ‘linear conjecture’
(16,19,30) then allows us to neglect further density-dependent ef-
fects when calculating the rate of continental-scale disease spread.

Fate of a spore. We concentrate on diseases transmitted by air-
borne spores. Spores dispersed inside the canopy contribute to the
development of the focus from which they originate, but they do
not contribute to the initiation of new foci. We only consider spores
that temporarily leave the canopy so that they can initiate new foci
when they land elsewhere. Table 1 gives parameter definitions.

Consider a focus initiated time a ago. We will loosely speak of
a as the ‘age of the focus.’ The number of spores leaving the can-
opy depends on focal age, a. By g(a), we denote the number of
spores (per unit of time) produced by a focus of age a that leave
the canopy. A spore leaving the canopy can be redeposited in the
field where it originated with a probability, κ. These spores will
loosely be called ‘within-field spores.’ With probability 1 – κ, a
spore becomes subject to between-field dispersal so that it can
initiate a new focus in another, maybe distant, field. Such spores
are called ‘between-field spores.’ Thus, we distinguish within-field
dynamics and between-field pandemic spread of the disease.

To describe the between-field dispersal of spores, we introduce
the ‘spore-dispersal density,’ D(

r
x ,

r

ϕ ). This probability density is
the probability that a spore originating from a source field at posi-
tion 

r

ϕ  is deposited in a target field at position 
r
x . We assume that

dispersal has no preferred direction and that dispersal is the same
in every position on the continent. This implies that the dispersal
probability only depends on the distance between the positions of
source and target fields, 

r

ϕ  and 
r
x , respectively. Therefore, D(

r
x ,

r

ϕ ) =
D(|

r
x  – 

r

ϕ |), in which |
r
x  – 

r

ϕ | = √(x1 – ϕ1)2 + (x2 – ϕ2)2, is the
distance between 

r
x  and 

r

ϕ .
Spore production. A field at position 

r
x  and time t can contain

several foci of various ages. The total number of spores produced
by the field per unit of time is denoted by ρ(t,x1,x2) = ρ(t,

r
x ), which

is the sum of within-field and between-field spores at 
r
x  and t.

Not every between-field spore will be deposited in a target field,
since only a fraction, ζ, of the continent is covered with host fields.
The total number of spores dispersed between fields, originating
from all possible fields on the continent, deposited per unit of time
in a field at position 

r
x  is denoted by ν(t,x1,x2) = ν(t,

r
x ).

To calculate the total rate of spore production of a field, ρ(t,
r
x ),

we first consider foci of age a in this field. The number of foci of
age a equals the number of foci initiated at time t – a, b(t – a,

r
x ).

These foci together produce g(a) b(t – a,
r
x ) spores per unit of time.

Foci of all possible ages contribute to the total rate of spore pro-
duction of a field, ρ(t,

r
x ). To calculate ρ(t,

r
x ), we therefore must

add all contributions of all focus ages to arrive at

( ) ( ) ( )ρ t x b t a x g a da
t

, ,
r r= −∫

0

(1)

Spore deposition. Both between-field spores and within-field
spores can initiate new foci in the crop at position 

r
x . The prob-

ability that a spore landing in a field initiates a new focus is de-
noted by ψ. The number of new foci initiated per unit of time per
unit of area in a field at position 

r
x  at time t is denoted by

b(t,x1,x2) = b(t,
r
x ). Note that ν, b, and ρ are numbers per unit of

time or rates per unit of area.
The total number of spores deposited per unit of time in a field

at position 
r
x  at time t is the sum of within-field spores, S1, and

between-field spores, S2. Given the probability of a spore deposited
in a field to initiate a new focus, ψ, the number of foci initiated
per unit of time, b(t,

r
x ), equals

( ) ( )b t x S S,
r = +ψ 1 2 (2)

The parameter ψ will be called the ‘success ratio.’ The deposition
rate of within-field spores is S1 = κρ(t,

r
x ), and the deposition rate

of between-field dispersed spores is S2 = ν(t,
r
x ).

TABLE 1. Definitions of the variables, functions, and parameters used in the model

Definition Dimensiona

Variables
ρ(t,

r

x ) Number of spores produced per unit of time by a
field at position 

r

x  = (x1,x2) at time t (field rate
of spore production)

Ns T–1 L–2

b(t,
r

x ) Number of foci initiated per unit of time in a field
at position 

r

x  at time t (rate of focus initiation)
Nf T–1 L–2

ν(t,
r

x ) Number of between-field spores deposited per
unit of time at position 

r

x  and at time t (rate of
spore deposition)

Ns T–1 L–2

N(t,
r

x ) Number of foci in a field at position  
r

x  at time t Nf L–2

Functions
g(a) Number of spores produced per unit of time by a

focus of age a (focus rate of spore production)
Ns T–1

D(
r

x ,
rϕ ) The probability density of a between-field spore

originating from a field at position  
rϕ to be

deposited in a field at position  
r

x  (pandemic
dispersal distribution)

L–2

F(a) Number of foci initiated per unit of time due to
within-field and between-field spores produced
by a field infected time a ago

Nf T–1

Parameters
a Time since the initiation of a focus, age of a focus T
α Parameter in the spore production function g(a) Ns T–2b

Ns T–1c

αψ Measure of pandemic effectiveness Nf T–2b

Nf T–1c

C Within-season velocity of pandemic spread L T–1

ε Probability of a focus to survive the off-season
(survival ratio)

Nf Nf
–1

ζ Fraction of the continent covered by host fields
(cropping ratio)

1

κ Probability that a spore leaving the canopy is
redeposited in the field of its origin
(probability of within-field spore dispersal)

1

λ Steepness parameter of the pandemic disease profile L–1

σ Standard deviation of pandemic dispersal
density, D(

r

x ,
rϕ )

L

t Time T
T Duration of the crop season T
V The distance traveled during 1 year, polyetic

velocity of pandemic spread
L

r

x = (x1,x2) Position on the two-dimensional continent L
ψ Probability that a spore landing in a field

initiates a new focus (success ratio)
Nf Ns

–1d

a 1 = no dimension, L = length, Ns = number of spores, Nf = number of foci,
and T = time.

b According to Metz and van den Bosch (16).
c According to Minogue and Fry (17).
d ψ has the dimension Nf Ns

–1 transforming number of spores into number of foci.
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Model completion. To complete the model, we derive a relation
between the deposition rate of between-field spores in a field at 

r
x

and the spore-production rate of fields all over the continent. Con-
sider a field at position 

r

ϕ . This field produces (1 – κ)ρ(t,
r

ϕ ) be-
tween-field spores per unit of time. The number of spores origi-
nating from 

r

ϕ  and deposited at 
r
x  equals (1 – κ)ρ(t,

r

ϕ )D(
r
x ,

r

ϕ ).
Multiplying this value by the cropping ratio, ζ, yields the number
of between-field spores originating from a source field at 

r

ϕ  and
deposited in target fields at position 

r
x . To calculate the total

number of spores deposited per unit of time in target fields at 
r
x ,

ν(t,
r
x ), we have to add all contributions of fields at all possible

places 
r

ϕ . The resulting expression for ν(t,
r
x ) is

( ) ( ) ( ) ( )ν ζ κ ρ ϕ ϕ ϕ ϕt x t D x d d, ,
r r r r

= − −
− ∞

∞

− ∞

∞

∫∫1 1 2 (3)

Putting all pieces together and substituting equation 1 where ap-
propriate, the model finally reads

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

b t x b t a x g a da t x

t x b t a g a D x d d da

t

t

, , ,

, ,

r r r

r r r r

= − +

= − − −

∫

∫∫∫
− ∞

∞

− ∞

∞

ψκ ψν

ν ζ κ ϕ ϕ ϕ ϕ

0

0
1 21

(4)

If one is not interested in the rate at which new foci are initiated
in a field at position 

r
x  but in the number of foci in this field,

N(t,
r
x ), this can be calculated from

( ) ( )N t x b t a x da
t

, ,
r r= −∫

0

Reformulation of the model. Appendix I shows that the model
can be rewritten as

( ) ( ) ( ) ( )b t x b t a F a D x d d da
t

, ,
r r r r

= − −
− ∞

∞

− ∞

∞

∫∫∫ ϕ ϕ ϕ ϕ1 2
0

(5)

in which

( ) ( ) ( )F a g a
i i

i

= −
=

∞
∑ζ κ

κ
κψ1

1

* (6)

In equation 6, the term g*i(a) is the so-called convolution of i
times the function g(a), defined as

( ) ( ) ( )( )g a g g a di
a

i* *= −∫ −τ τ τ
0

1 (7)

for i = 2, 3,... and g(a)*1 = g(a).
Velocity of pandemic spread. The model in its reformulated

form (equation 5) is formally equivalent to a general model used
to study the spread of animal, plant, and pathogen populations.
This model and its nonlinear variants have been studied exten-
sively (5,6,16,19,28–33). Here, we state the main results to be used
in this paper.

Since the between-field dispersal density is rotationally sym-
metric, the pandemic has circular symmetry also. Therefore, the
following can be limited to a transect along the x1 axis. When a
new disease is locally introduced into a continent, the epidemic will
spread over the continent as a traveling wave (37). Such a travel-
ing wave can be visualized as a disease profile, with a fixed shape
in space. This disease profile moves through space at a constant
velocity. The disease profile of the traveling-wave solution of equa-
tion 5 has an exponential shape given by

( ) ( )b t x Me Ct x, ,1 0 1= −λ (8)

in which C is the velocity of the traveling wave, λ is the steepness
parameter of the disease profile, and M is a parameter (Fig. 1A).

The results reported in the literature on equation 5 imply that
the velocity, C, and steepness, λ, of the (only relevant) traveling-
wave solution can be calculated from

( )
( )

L C

L C

,

,

λ
∂ λ

∂λ

=

=







1

0
(9)

in which

( ) ( ) ( )L C e F a da e D x dxCa x,
~λ λ λ= −

−∞

∞∞

∫∫ 1
1 1

0
(10a)

is the characteristic equation and

( ) ( )~ ,D x D x x dx1 1 2 2=
− ∞

∞

∫ (10b)

is the marginal distribution of the spore-dispersal density, D(
r
x ).

Calculation of the within-season velocity of pandemic spread, C,
is only possible if the integrals in equation 10a exist. This condi-
tion does not cause problems with the functions F(a) and g(a), but
it imposes a biologically relevant restriction on the second integral
of equation 10a, which only exists when the tail of D(

r
x ) falls off

exponentially or steeper with increasing 
r
x . Severity dependence

in the rate of a field’s spore release and severity dependence in the
probability that a deposited spore initiates a new focus has been
neglected in the current model. However, this will not affect our
results (discussed below under Generalizations).

Fig. 1. Number of foci, N(t,
r

x ), as function of position. A, The pandemic
disease profile for various times, t, during one cropping season. C is the
within-season velocity of pandemic spread. B, The development of the
pandemic profile during 1 year. Left-most curve = pandemic disease profile
at the onset of the cropping season. Right-most curve = pandemic disease
profile at the end of the cropping season (the start of the off-season). Middle
curve = pandemic disease profile at the end of the off-season. C*T = the total
distance traveled by the pandemic wave during one cropping season. The
left-pointing dotted arrow indicates the push-back distance, ∆h.
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Measures of severity increase. Equation 8 and Figure 1 make
clear that a traveling-wave solution has two relevant measures of
severity increase. First, the steepness of the pandemic profile, λ, is
a measure of severity increase in the spatial dimension at any
time. This measure of severity increase can be seen as relevant for
a distant observer. Second, the velocity C multiplied by the steep-
ness parameter λ is the rate of severity increase in a field at posi-
tion 

r
x . This measure of severity increase is relevant to a local ob-

server. These two measures of severity increase and the velocity
of pandemic spread will be studied in the next sections.

Spread during successive cropping seasons. Model equations
4 describe the epidemic expansion within one cropping season.
The duration of a cropping season will be denoted by T. During
one cropping season the epidemic wave travels a distance CT. Con-
sidering a transect along the x1 axis, the pandemic disease profile
at the end of the cropping season at time t = T is

( ) ( )N T x Ne CT x, ,1 0 1= −λ (11)

in which N is the number of foci in a field at position 
r
x . At the end

of the cropping season, t = T, the crop is harvested and most inocu-
lum is removed from the field. The remaining inoculum has to sur-
vive the off-season on plant parts not removed during harvest; on cull
piles, as for Phytophthora infestans; or on secondary hosts. Only a
fraction of the inoculum will survive the off-season. At the start of the
next cropping season, the surviving inoculum can induce one or more
new foci. We will denote by ε the number of foci at the beginning of
the new cropping season relative to the number of foci at the end of
the preceding cropping season. We will loosely speak of ε as the ‘sur-
vival ratio’ of foci. The disease profile at the start of the next crop-
ping season equals disease profile (equation 11) multiplied by ε,

( ) ( )N T x Ne CT x, ,1 0 1= −ε λ (12)

Equation 12 implies that the steepness of the pandemic disease pro-
file has not changed during the off-season. The effect of the off-sea-
son is only to push back the disease profile over a certain distance
(Fig. 1B, ∆h). To calculate this distance, consider a position h1, in
which at the end of the cropping season the number of foci in a field
is θ. At the start of the next cropping season, this same disease level θ
now has position h2. Substituting in equations 11 and 12, we find

( ) ( )Ne NeCT h CT hλ λε− −=1 2 (13)

and the push-back distance ∆h is

∆h h h= − = 



1 2

1 1

λ ε
ln (14)

The mean velocity of pandemic spread over a continent during suc-
cessive cropping seasons, V, here called the ‘polyetic velocity of
pandemic spread,’ is the distance traveled during a cropping season,
CT, minus the push-back distance. Therefore, V is calculated from

V CT= − 





1 1

λ ε
ln (15)

in which C and λ are calculated from equations 9 and 10.
Submodels. To actually calculate the velocity of pandemic spread

from model equations 4 using equations 9 and 10, the functions g(a)
and D(

r
x ) have to be specified. In this section, we introduce simple

parameter-sparse submodels for these two functions. By comparing
velocities of pandemic spread for these submodels, we get insight in
the influence of the details of the spore production, g(a), and spore
dispersal, D(

r
x ), functions on the velocity of pandemic spread.

Fig. 2. Transect of the between-field–dispersal densities used as special cases
of the general model.

TABLE 2. The equations for the within-season velocity of pandemic spread,
C, and the steepness parameter of the pandemic disease profile, λa,b,c

D(
r

x )g(a) Bessel Exponential

Linear

C
A A A

A A A
= + + +

+ − +
αψ σ κ1

2

1

1

2

2

λ
σ

= + − +1
2 1 2A A A

Solve Z numerically from

Z Z Z A3 2 23 3
27

4
1 0− + −





− =

Now C Z= αψ σ κ

and λ
σ

= +1 1 2

3

Z

Z

Constant

C A A A B= + + +





αψσ κ1

2
1

3

4

1

4
9 82

in which B
A A A

A A A
= + +

− + +

3 9 8

9 8

2

2

λ
σ

= −
+ +

2
1

4

3 9 82

A

A A A

Solve Z numerically from

Z AZ A3 22 0+ − =

Now C
A Z

Z Z
= +

−
αψκσ

1 2

and

λ
σ

= −1
1 2Z

a In which A = −ζ κ
κ

1
.

b For κ = 0 the following formulas apply:

Bessel + Linear C = 2σ αψζ

Bessel + Constant C = 3 3

2
σαψζ

Exponential + Linear C = 3 3

2
σ αψζ

Exponential + Constant C = 2σαψζ .
c For ζ approaching 0 the following formulas apply:

Bessel + Linear C = σ αψκ1

2

Bessel + Constant C = σ αψκ1
2

Exponential + Linear C = σ αψκ

Exponential + Constant C = σαψκ .
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Spore-production function. After a build-up phase, a focus ex-
pands radially at constant velocity (30,32). Since the amount of
host material is limited, a burnt-out zone will develop inside the
focus. Thus, we distinguish three circular zones. (i) An outer zone
where disease severity is so low that the contribution to spore pro-
duction is negligible. (ii) An intermediate zone, the productive zone,
where disease level and spore production are high. In a mature
focus, the width of this zone is constant. (iii) A central zone, the
burnt-out zone, that no longer produces spores. Since the inner
and outer boundaries of the intermediate zone increase linearly with
time, total area of the productive zone also increases linearly with
time. Therefore, we choose as a first approximation of the spore
production by a focus of age a

g(a) = αa (16)

For reasons of comparison, we choose as an alternative description

g(a) = α (17)

implying a constant rate of spore production by a focus.
Spore-dispersal function. Consider the following simple descrip-

tion of between-field spore dispersal. Driven by wind, a spore flies
at a constant velocity denoted by ν. The flight direction makes an
angle, θ, with the positive x1 axis. With a probability γ per unit of
time, the wind direction changes. The new direction, –π < θ < π,
is chosen at random. The spore is deposited with a probability µ per
unit of time. The equation describing this dispersal process is given
in appendix II. Here, we use two limiting cases of the model.

When the average flight duration, 1/µ, is very small compared
with the average duration of the air flow in a fixed direction, 1/γ,

the spore-dispersal distribution is approximated by the exponen-
tial distribution

( )D x
x x

x x
r =

+
− +





1

2

1
2

1
2

2
2

1
2

2
2

πσ σ
exp (18)

in which σ2 = ν2/µ2 is the variance of the marginal spore-dispersal
density (equation 10b).

When the average time length during which a spore is airborne,
1/µ, is very large compared with the average duration of traveling
in a fixed direction, 1/γ, the spore-dispersal distribution approxi-
mately follows the Bessel density (32)

( )D x
x x

d
r = − −

+







∞

∫
1

8

1

82
1
2

2
2

2
0πσ τ

τ
τ σ

τexp (19)

in which σ2 = 2ν2/(γµ) is the variance of the marginal spore-dis-
persal density (equation 10b). Figure 2 compares transects through
the Bessel and exponential densities.

RESULTS

Epidemic spread within one cropping season. The two sub-
models for the spore-production function g(a) and the two sub-
models for the spore-dispersal density D(x1,x2) combine to give
four special cases of the model. The within-season velocity of pan-
demic spread, C, and the steepness parameter of the exponential dis-
ease profile, λ, are calculated using equations 9 and 10. Table 2
summarizes the results of these straightforward but lengthy calcu-
lations. The two special cases with the Bessel distribution give ex-
plicit solutions for C and λ. For the two cases with the exponential

Fig. 3. Relative within-season velocity of disease spread: C/σαψ when g(a) = αa and C/σ√αψ when g(a) = α, as a function of the fraction of within-field
spores, κ, for the four special cases studied. Parameters and functions are explained in Table 1.

http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PHYTO.1999.89.6.495&iName=master.img-002.png&w=604&h=383
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distribution, a cubic was solved numerically by a Newton-iteration
subroutine (22).

Table 2 shows that in all four cases the velocity of pandemic
spread, C, depends linearly on the standard deviation, σ, of the
marginal dispersal density. This dependence, which also follows
from scaling arguments, is not a property specific to the special
cases, but holds (30) for any model of the form (5).

In addition, the solution always depends on two parameter
groups, K = αψκ and A = ζ[(1 – κ)/κ]. The first compound pa-
rameter, K, can be interpreted as a measure of within-field effec-
tiveness of the pathogen. It is composed of the overall effective-
ness of the pathogen, αψ, and the probability that a spore stays in
the same field, κ. A is the ratio of the between-field and the within-
field effectiveness, i.e., the ratio of the number of daughter foci in
distant fields and in the field of the mother focus. The dependence
on A is complicated. K always appears in the formula for C as a
scaling parameter, but in different fashions depending on the
precise model for spore production.

The fact that κ appears in both K and A hampers the interpretation
of the mathematical results in biological terms. Therefore, we shall
concentrate on the dependence of C on the separate parame-
ters. The dependence of C on α and ψ is directly inherent from its
dependence on K. For the linear spore-production function, C is
proportional to αψ; for the constant spore-production function, C
is proportional to the square root of αψ. The lesson is that good
information about the dependence of the spore-production func-
tion on the age of the focus is crucial for quantitative predictions.

Next, we consider the effects of the fractions of within-field
spores, κ, and of the cropping ratio, ζ, on the velocity of pandemic
spread, C. Figure 3 shows the dependence of the velocity on these
two parameters for all four cases. There are only minor qualitative

differences between the four cases. The velocity of pandemic spread
increases with the cropping ratio to a minor extent only. A much
larger effect has the fraction of within-field spores, κ. The depen-
dence of within-season velocity of pandemic spread on κ is remark-
able. For κ = 0, no spores are redeposited in the field of origin.
Increasing κ results in larger velocities, C. This effect holds for
most values of κ and ζ, except for κ values close to unity. At high
values of ζ (ζ > 0.5), which are unrealistic, the velocities again
decrease continuously with increasing κ values.

The most surprising observation is that when κ approaches unity,
implying fewer and fewer between-field spores, the high velocity
of pandemic expansion is maintained. This effect was described
by Goldwasser et al. (10), who studied the velocity of population
expansion of a species consisting of mobile and immobile types,
with the degree of mobility determined probabilistically at birth.
They also found that an extremely small number of between-field
dispersers can drive a surprisingly fast population expansion. This
result implies that containment measures that try to reduce the
numbers of between-field spores are bound to fail in stopping or
slowing down pandemic spread.

The dependence of C on κ for κ near zero is mimicked by the
dependence of C on the cropping ratio ζ. At low values of ζ, most
between-field spores fail to initiate a new focus, since they are not
deposited in a target field. Yet, the epidemic speed does not ap-
proach zero. This result does not mean that the epidemic can spread
without target fields, only that at low but finite cropping ratios the
lack of success of spores in finding target fields becomes of minor
importance relative to the growth of the epidemic within the scarce
source fields to the extent of causing a discontinuity of C at ζ = 0.

Quantitative differences are found for the within-season velocity
of pandemic spread, C, between the Bessel and the exponential dis-

Fig. 4. Relative steepness of the pandemic disease profile, λσ, as a function of the fraction of within-field spores, κ, for all four special cases studied. Parame-
ters and functions explained in Table 1.

http://apsjournals.apsnet.org/action/showImage?doi=10.1094/PHYTO.1999.89.6.495&iName=master.img-003.png&w=589&h=366
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persal densities; the velocities for the Bessel density being smaller
than for the exponential density. This quantitative difference is more
pronounced for larger values of κ. The difference is explained by
the difference in the thickness of the tails of the exponential and
Bessel densities (Fig. 2).

Next, we consider the measure of severity increase for a distant
observer, λ. Table 2 shows that the parameters α and ψ have no
effect on this measure of severity increase of the pandemic. Clearly,
the effectiveness of the disease does not affect the pandemic pro-
file. The steepness of the disease profile is only influenced by fac-
tors related to the dispersal of the disease.

Figure 4 shows that the measure of severity increase for a distant
observer, λ, slightly increases with increasing κ for all four cases.
The larger the fraction of within-field spores, the larger the rate of
focus initiation in an already infected field. At the same time, the
infection pressure on distant fields decreases. It is obvious that
under these circumstances the steepness of the pandemic disease
profile increases. Increasing the fraction of target area, ζ, flattens
the pandemic disease profile. This effect can be interpreted in the
same sense as the effect of the fraction of within-field spores, κ.
The larger the values of ζ, the more foci are initiated at distant
places relative to the number initiated in the source field. Chang-
ing parameter values so that the velocity of pandemic spread in-
creases can thus steepen (κ) or flatten (ζ) the disease profile.

Table 2 shows that the measure of severity increase usually de-
pends on the parameter combination A = ζ(1 – κ)/κ. When the ratio
of between-field– and within-field–deposited spores decreases, the
steepness of the pandemic disease profile increases in all four cases.
We conclude that the more a focus steers-up the epidemic in its
own field relative to the number of daughter foci produced in dis-

tant fields, the steeper the pandemic profile and thus the larger the
measure of severity increase for a distant observer, as could be ex-
pected.

The rate of severity increase in a field is found from the product
of velocity C and steepness parameter λ. The combination of Fig-
ures 3 and 4, with Cλ on the y axis, hardly alters the shape of the
Cλ curves from Figure 3. The curves only come closer to each
other. Thus, the rate of severity increase in a field is hardly influ-
enced by the cropping ratio ζ. The parameter with the largest effect
on the rate of severity increase is the fraction within-field spores,
κ, as expected, since κ has a large effect on both the velocity and
the steepness of the pandemic profile.

Epidemic spread during successive cropping seasons. Since
the within-season velocity of pandemic spread, C, depends linearly
on σ and λ depends inversely on σ (Table 2), we conclude from
equation 15 that the polyetic velocity of pandemic spread, V, also
increases linearly with increasing standard deviation, σ, of the
marginal dispersal density, as might be expected.

Equation 14 shows that the push-back distance, ∆h, during the
off-season is proportional to 1/λ, so that a steep pandemic disease
profile is pushed back over a short distance and a flat profile is
pushed back over a large distance. The equation further shows that
the push-back distance is proportional to the logarithm of the frac-
tion, ε, of the foci established after the crop-free period.

In the previous section, the within-season velocity of pandemic
spread, C, was analyzed. We concluded that there was no qualita-
tive difference between the four cases analyzed. Calculations indi-
cate that this qualitative independence is also found in the polyetic
velocity of pandemic spread (data not shown). Therefore, we restrict
our attention to the case of a Bessel dispersal density, equation 19,

Fig. 5. Relative polyetic or between-season velocity of pandemic spread, V/σ, as a function of the fraction of within-field spores, κ, at various values of ε.
Parameters and functions explained in Table 1.
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and a linear increase of spore production with age, equation 16. In
this case,

V

T A A A

A A A
=

+ + + − 





+ − +

σ
αψ κ

ε
2

1
1

1

2

2

ln

(20)

in which

A = −ζ κ
κ

1
(21)

We will first discuss parameter dependence of the push-back
distance. The survival of foci, ε, is, as expected, the major deter-
minant of push-back distance. The push-back distance is indepen-
dent of the parameter combination, αψ, interpreted as a measure
of effectiveness of the disease. Push-back distance depends linearly
on the standard deviation of the marginal spore-dispersal density.
Next, consider the term B = √[1 + A – √(A2 + A)], in which A is
given in equation 21. B decreases from B = 1 for A = 0 and B =
0.765 for A = 1 to B = 0.707 for A→∞. Since the factor (1 – κ)/κ
ranges from 0 (κ = 1) to ∞ (κ = 0), we conclude that the push-
back distance depends on κ to a minor extent only. For the crop-
ping ratio, ζ, ranging from 0 to 1, we also conclude that the push-
back distance hardly depends on ζ.

Next, we turn to the polyetic velocity of spread, V. From Figure
5, we conclude that decreasing survival of foci, ε, decreases rates
of spread. This, of course, only through its effect on the push-back
distance. Figure 6, however, shows that there is a large difference
in the relative effect of ε on V for different values of the effective-
ness, αψ. The survival of foci has a large influence on the polyetic
velocity of pandemic spread, V, when the disease has a small
T√αψ value. Measures to reduce the velocity of disease spread by
reducing survival during the crop-free period are thus successful
only for diseases with small T√αψ values.

Figure 5 shows the polyetic velocity of pandemic spread, V, as
a function of the fraction of within-field spores, κ, for several values
of the other parameters. Again, the polyetic velocity of pandemic
spread increases with increasing effectiveness, √αψ, of the disease.

The rate V increases with an increasing fraction of within-field
spores, κ, except for values of κ close to unity. This remarkable
relation was also found for the within-season rate, C, and the same
explanation holds.

Last but not least, the cropping ratio, ζ, has, compared with
other parameters, a minor effect on the polyetic velocity V. This is
due to the fact that it has a minor effect on both the push-back
distance and on the within-season velocity of spread. Note that
this last result immediately implies that our results will change to
a minor extent only when crop fields are not distributed homoge-
neously over the continent.

Decreasing survival of foci during the crop-free period can re-
duce the rate of pandemic spread to zero, implying complete con-
trol of the disease. Setting V equal to zero in equation 20, we find
the threshold value of the survival fraction, ε, in which the rate of
pandemic spread becomes zero. Complete control of the disease is
attained when

ε αψ κ≤ − + + +





exp T A A A1 2 (22)

Figure 6 shows the off-season survival ratio of foci, ε, as a
function of the cropping ratio, ζ. The threshold value of ε depends
to a minor extent on ζ. Only for κ values close to zero, the neces-
sary ε decreases considerably with increasing ζ. Figure 6 confirms
that prevention of the pandemic by reducing ε only seems an in-
teresting control strategy for pathogens with low effectiveness;
i.e., diseases with low αψ.

The method introduced to derive the polyetic velocity of pan-
demic spread shows that the measure of severity increase for a
distant observer, λ, is the same as for within-season pandemic
spread. We conclude that severity increase is not influenced by pa-
rameters of between-season survival of the disease. The discussion
on parameter dependence of the severity increase in the within-
season spread applies also to the polyetic spread. Combining Fig-
ures 4 and 5 we can, as for within-season spread, conclude that the
shape of the Vλ curves does not change much from Figure 5, and
again, the discussion on severity increase for within-season spread
applies to polyetic spread as well.

Generalizations. Nonhomogeneous physical environment. The
model equations 4 make two essential assumptions about the
physical environment. First, the target fields are assumed to be
homogeneously distributed through space. Second, we assumed
that dispersal is rotationally symmetric and not influenced by the
position of the source field on the continent. In real-life crop fields,
these assumptions will not be met. Crop fields usually show a
high degree of clustering. When tobacco blue mold, for example,
invaded western Europe, tobacco production occurred in limited
areas, whereas most of western Europe was a nontarget area (21).
In addition, spore dispersal from a field will vary according to the
field’s position: on the coast, inland, or in the mountains. In-
homogeneous crop field distributions will not influence the velocity
of pandemic spread to a great extent. When the spatial scale of the
inhomogeneity of the field distribution is smaller than the spatial
extent of the spore-dispersal density, measured by σ, the model pre-
dictions are an accurate approximation due to averaging. More-
over, in the previous section, we concluded that the cropping ration,
ζ, has, compared with other parameters, a minor effect on veloci-
ties of spread both for within-season as for polyetic spread. From
this, we may expect that the presence of large-scale inhomogene-
ities in cropping ratio have only a minor effect on the pattern of
epidemic spread.

In circumstances in which one would like to study nonhomoge-
neity, the assumptions of the model are easily relaxed. First, define

Fig. 6. Threshold survival ratio, ε, below which the disease dies out, plotted against
the cropping ratio, ζ, for different values of the fraction of within-field spores, κ.
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the cropping ratio to be dependent on the position on the continent
and write for the cropping ratio ζ(

r
x ). Second, use the general

description D(
r
x ,

r

ϕ ) for the probability that a spore produced at
r

ϕ  is deposited at 
r
x . Substituting the position-dependent cropping

ratio and dispersal density into model equations 4 yields the
generalized model

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

b t x b t a x g a da t x

t x x b t a g a D x d d da

t

t

, , ,

, , ,

r r r

r r r r r

= − +

= − −

∫

∫∫∫
− ∞

∞

− ∞

∞

ψκ ψν

ν ζ κ ϕ ϕ ϕ ϕ
0

1 2
0

1
(23)

To account for geographical elements such as large bodies of
water, jutting peninsulas, and continental boundaries, the cropping
ratio is set to zero for the positions where no crop can occur. In
the example given to develop D(

r
x ), prevailing wind directions

can be added by relaxing the assumption that after directional
change the new direction is chosen randomly from all possible
angles (20).

For nonrotationally symmetric dispersal densities, the pandemic
velocities can be calculated analytically as long as D is transla-
tionally invariant (16,28). During a growing season, the wind may
change unpredictably and blow in any direction with highly vari-
able directional frequency, as is common in Europe. Since the foci
established furthest away matter most for the pandemic velocity,
the effect of variation in directional frequency of the wind may even
out and rotational symmetry may be maintained to a fair degree.
European data (11) seem to confirm this point, which merits more
attention.

The generalized model (23) does not allow traveling-wave so-
lutions of the type studied in this paper. Some analytical results on
a diffusion-type model have been published (25,26). A further study
of the spatial spread in heterogeneous environments is urgently
needed but, probably, analytical solutions of equation 23 will have
to give way to numerical approaches (35,38). Realistic submodels
for D(

r
x ,

r

ϕ ) can be developed using the work of Aylor (2) as a
guideline.

Severity dependence. Model equations 4 assume that a fraction
ψ of the spores deposited in a target field always produce a new
focus. This is no longer true when disease severity in the field, or
the number of foci in the field, becomes large. Moreover, equation
1 assumes that the focal rate of spore production, g(a), is not in-
fluenced by the number of foci in the field. Again, this is no
longer true when the foci begin to overlap. Both types of severity
dependence can be incorporated into model equations 4. Denote
by O(a), the area of a focus of focal age a. The sum of the focal
areas in a field at position 

r
x , M(t,

r
x ), is calculated from

( ) ( ) ( )M t x O a b t a x da
t

, ,
r r= −∫

0

(24)

The field area is denoted by Ω. From the first term of the Poisson
distribution, we now find the probability that a spore deposited in
a target field at position 

r
x  is not deposited in a focus, P(t,

r
x ),

( ) ( ) ( )P t x O a b t a x da
t

, ,
r r= − −∫1

1

0Ω
(25)

Multiplying P with the probability for a spore to start a new
focus, ψ, we have the probability that a spore deposited at time t
in a field at position 

r
x  starts a new focus. To account for focal

overlap in the rate of spore production, we use a similar ap-
proach. In choosing submodels for g(a), we defined the burnt-
out zone of a focus as the central zone that no longer produces
spores. In the severity-dependent situation in which foci over-
lap, the area of overlap will be close to burnt-out. Thus, g(a) has
to be multiplied by the fraction of the foci that do not overlap with
other foci, H(t,

r
x ).

Substituting the severity-dependent processes in model equa-
tions 4, we find
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Several possible models can be developed for H(t,
r
x ). A simple

first approximation could be to use H(t,
r
x ) = P(t,

r
x ) in equation 25.

Another possible approach is described by Shigesada and Kawasaki
(24). An important question is whether this severity dependence in-
fluences the velocity of pandemic spread. At the continental scale,
the severity dependence will come into play at a certain position
some time after the front of the pandemic has passed this position.
Several related models (6,13,28,34) for the spatial spread of popu-
lations show that the velocity of population spread is exactly
the same in density-dependent and density-independent situa-
tions. The mathematical proofs have a biologically appealing
result. A population spreads through space by intruding into
areas where it was absent, the population wave being dragged
forward by its tail. Far in the front of the wave, the epidemic
does not experience any density-dependent effects, since popu-
lation densities are low. Since the mathematical evidence (6,13,28,
34) accounts for rather general classes of models, we can safely
assume, by analogy, that the velocities of pandemic spread of the
severity-dependent and the severity-independent model are sim-
ilar, although a proof for the current model does not exist. An
analytical solution for the case that foci overlap and the field ‘fills
up’ is not yet available.

Dispersal models with nonexponential tails. As stated above,
the calculation of the velocity of pandemic spread using equations
9 and 10 is possible only when the tails of the between-field–dis-
persal density are exponentially bounded. For nonexponential-
ly bounded tails, model equations 4 still applies. Ferrandino (7)
developed a spore-dispersal density with nonexponentially
bounded tails based on detailed considerations of wind vel-
ocity and turbulence. This dispersal density was incorporated
in an epidemic model. Numerical solutions of the model sug-
gested that the velocity of epidemic spread increased continually.
Ferrandino called such waves ‘dispersive epidemic waves.’ In
a recent paper (14), the existence of such dispersive waves
was proven in simple analytically tractable models of popu-
lation invasions and methods were developed to approximate
the velocity of the dispersive wave as a function of time since
the introduction of the species. It would be worthwhile to apply
their methods to the current model, but this will be a major math-
ematical task. Efficient methods to simulate epidemics with non-
exponential tails are available (23).

DISCUSSION

This paper develops a framework for modeling the continental
spread of focal plant disease. Methods to calculate the velocity of
pandemic spread were developed both for within-season spread
and for polyetic spread (during successive cropping seasons). To
facilitate the study of the model by analytical methods, rather than
by computer simulation, the information on the mechanisms un-
derlying pandemic spread was stripped to bare essentials. Thus,
several potentially important aspects are not yet incorporated in
the current analysis. Subsequently, several generalizations are dis-
cussed that account for these aspects.

The general model equations 4 can be adapted to describe a
particular disease by an appropriate choice of g(a) and D(

r
x ). De-

tailed and realistic descriptions of the spore-production function,
g(a), and the dispersal distribution, D(

r
x ), will almost certainly be

parameter rich. Parameter dependence of the velocity of pan-
demic spread is difficult to study in such parameter-rich mod-
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els. Therefore, we restricted this first attempt at modeling pan-
demic spread to simple parameter-sparse submodels. Future re-
search should introduce more detailed models for g(a) and
D(

r
x ) and include the development of models for between-field

dispersal (2).
Simple analytically tractable models, like the one discussed in

this paper, are useful tools to gain qualitative insight in the depen-
dence of the velocity of pandemic spread on the underlying pro-
cesses. Sometimes, such models can be put to work in real-life
situations. A focus expansion model was validated using labora-
tory and field data (29,31–33). It will be difficult, if possible at all,
to perform similar validation studies using the current model.

We think that the current model can best be used as a means to
compare pandemics rather than as a stimulus to measure all input
parameters experimentally. Comparisons can be made, for example,
between pandemics of a plant disease that invaded at various places
in the world with different cropping ratios or different climatic
conditions.

APPENDIXES

I. Reformulating the model. In this appendix, we show that
the model equations 4 are equivalent to equations 5 and 6. To this
end, we use the technique of Laplace transformation. An intro-
duction to Laplace transformation and its application are described
by Churchill (3). The Laplace transform of a function f(t) is de-
fined as

( )[ ] ( ) ( )L f t f s e f t dtst: := = −
∞

∫
0

(I.1)

Laplace transforms of a large number of functions are described
by Abramowitz and Stegun (1). Laplace transforms are particularly
useful in solving linear differential and integral equations, since
these equations are transformed into algebraic expressions. As an
example, the integral equation

( ) ( )b t a b t a da t
t

= − +∫
0

(I.2)

seems unsolvable at first sight. It has Laplace transform
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From the tables by Abramowitz and Stegun (1), we find

( )[ ]L t
s

sinh =
−

1

12
(I.4)

and the solution of the integral equation I.2 thus is b(t) = sinh(t).
We apply these methods to our model. Taking Laplace transforms
of the model equations 4 with respect to t, we find
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Solving for b(s,
r
x ) in the first equation of I.5, we find
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Substituting the second equation of I.5, we find
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and taking inverse Laplace transforms finally yields equations 5
and 6.

II. The spore dispersal distribution. A detailed account of the
type of model formulation used in this appendix is given by Othmer
et al. (20). We will use their method to derive the spore-dispersal
distribution.

A spore is dispersed by wind. It travels with velocity v1 in the x1

direction and with velocity v2 in the x2 direction. With a probability γ
per unit of time, the wind changes its direction. The new wind-
direction vector, (v1,v2), is chosen randomly from a distribution
Q(v1,v2). The spore is deposited on the surface with probability µ
per time unit.

Denote by p(t,x1,x2,v1,v2) the probability density of a spore to be
at time t at position (x1,x2) and traveling with velocity vector (v1,v2).
The spore-dispersal process is governed by the model equation
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Taking Laplace transforms with respect to time s and position
(z1,z2), we find

( ) ( ) ( ) ( )sp s v v Q v v v p p Q v v Pi i
i
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with
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The deposition kernel is then given by
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Assuming Q to be homogeneously distributed on the circle with
radius ν, we have
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Now, to calculate the Laplace transform of the marginal dispersal
density, put λ1 = λ and λ2 = 0, substitute II.6 into II.4 to arrive at
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The two special cases are found as follows.
Taking the limit for γ↓0, µ→∞, and ν→∞ such that ν/µ remains

constant, we find

µ
σ λ

P =
−

1

1 2 2

in which σ2 = ν2/µ2, which is the Laplace transform of the mar-
ginal density of the rotationally symmetric exponential density
(equation 18).
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Taking the limit for γ→∞, µ→∞, and ν→∞ such that ν2/(γµ)
remains constant, we find

µ
σ λ

P =
−

1

1 1
2

2 2

in which σ2 = ν2/γµ, which is the Laplace transform of the mar-
ginal density of the Bessel density (equation 19).
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