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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 37

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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Abstract

In this paper we present a mathematical definition of fitness in general structured
metapopulation models. We apply the theory to a model structured by local pop-
ulation size and in which local dynamics is explicitly modelled. In particular, we
calculate the evolutionarily stable dispersal strategy in the case where only dispersal
is subject to evolutionary control but all other model ingredients are assumed fixed.
In this case we show that there exists a threshold size such that at ESS everyone
should stay as long as the population size is below the threshold and everyone should
disperse immediately as the population size reaches the threshold.
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On Fitness in Structured Metapopulations

Mats Gyllenberg
J.A.J. Metz

1 Introduction

During the past decade we have witnessed an increasing interest in the dynamics
of metapopulations. The book edited by Hanski and Gilpin (1997) and the book
by Hanski (1999) contain more than 1000 references each. At the same time the
evolution of dispersal has caught the interest of many scientists (Hastings 1983; Holt
and McPeek 1996; Doebeli and Ruxton 1997; Parvinen 1999). Long-term evolution
is the result of invasions of mutant traits and the success of invasion attempts is
determined by the fitness of the mutant. As most species have a hierarchical spa-
tial structure with several local populations connected by dispersal comprising a
metapopulation, the evolution of migration or dispersal is most conveniently mod-
elled in the framework of metapopulation dynamics. It is the purpose of the present
paper to present a mathematical definition of fitness in structured metapopulation
models.

In a single population fitness is usually defined as the long-term exponential
growth rate r(E) of a phenotype in a given environment E (Metz, Nisbet and Geritz
1992). Here one should think of the environment as an interaction variable through
which all (nonlinear) feedback takes place. If the environment is constant, E(t) ≡ E,
then one can alternatively and equivalently use the basic reproduction number R(E)
as fitness measure because it is well known that R(E) is less than, equal to, or
greater than 1 depending on whether r(E) is less than, equal to, or greater than 0.
R(E) is the expected lifetime production of offspring. The difference between r and
R is that r is the growth rate in real time, whereas R operates at the generation
level.

The question concerning successful invasion is easily addressed using the basic
reproduction number R. Assume that the resident population is in demographical
equilibrium corresponding to a constant environment E

res
. Since at demographical

equilibrium every individual on average exactly replaces itself one has Rres
(
E

res
)

=
1. The basic reproduction number R depends on both the environment and the
strategy and the superscript res refers to the strategy played by the resident. A
mutant playing a different strategy can invade if and only if

Rmut
(
E

res
)
> 1. (1.1)

This means that a mutant can invade if and only if its basic reproduction number
in the environment set by the resident is greater than 1.
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When we want to apply the procedure outlined above to metapopulations we
encounter several difficulties. The most obvious one is that even if the environmen-
tal interaction variable is constant at the resident attractor, a mutant experiences
different conditions in different patches, and moreover, the conditions change in the
patch due to the development of the resident local population. So it is far from
obvious how to define Rmut

(
E

res
)

in the case of metapopulation models.

In this paper we present a mathematical definition of Rmut
(
E

res
)

for a large class
of structured metapopulation models including models with stochasticity at the level
of local populations. In Section 5 we give an explicit formula for Rmut

(
E

res
)

for a
model with deterministic growth of local populations. We also calculate the evolu-
tionarily stable dispersal strategy assuming that the tendency to migrate depends
only upon the local population size and not for instance on the age of the individual.
Because of the deterministic nature of local dynamics this model assumes infinite lo-
cal populations. In a companion paper (Metz and Gyllenberg 1999) we work out the
details for the finite local population case and give recepies to efficiently calculate
Rmut

(
E

res
)

using existing software. In that paper we also calculate the evolutionar-
ily stable dispersal strategy for the case of juvenile migration for the case of infinite
local populations as opposed to the age-independent migration considered in the
present paper.

2 Structured metapopulation dynamics

In this paper we model structured metapopulations in the spirit of Gyllenberg,
Hanski and Hastings (1997). We start by giving a brief description of that part of
the theory which is essential for our present needs. As pointed out by Metz and
Diekmann (1986) (see also Diekmann et al. 1988, 1989), the theory of structured
populations can be applied to metapopulations in a rather straightforward manner
if one makes the analogy between local populations and individuals and between
metapopulation and population. Our approach is therefore merely an adaptation of
the general structured population framework of Diekmann, Gyllenberg, Metz and
Thieme (1993, 1998) to metapopulation models.

We regard a metapopulation as a population of populations or, more generally,
as a population of local entities. In addition to local populations, local entities can
represent patches, dispersers etc. A local entity is characterized by its state x, which
typically is a vector in a finite dimensional space. The components of x may for
instance stand for patch quality or area or size of a local population.

A local entity develops (i.e., its state changes with time) as a consequence of
for instance patch quality dynamics, local population growth due to births, deaths
and migration; it gives rise to new local entities (e.g. local populations produce
dispersers, dispersers colonize empty patches); and vanishes (e.g. when a local
population goes extinct or a patch is destroyed). To model mechanisms at the local
level, we therefore need two ingredients, one describing the production of new local
entities and one describing the development and survival of local entities.

In this paper we shall only be concerned with constant environments and this
makes the notation much simpler as compared with the one in (Gyllenberg, Hanski
and Hastings 1997). In particular we shall drop the overbar on constant environ-

2



ments and since the environment is always assumed to be set by th resident, the
superscript res becomes superfluous. We thus write simply E instead of E

res
.

We let Ω denote the local state space, that is, the set of all admissible local
states. We introduce the lifetime cumulative reproduction measure Λ and the local
development measure as follows: For each given constant environment E, each x ∈ Ω
and each measurable set ω ⊂ Ω we let

ΛE(x)(ω) = expected number of new local entities with birth state in ω
produced by a local entity with birth state x during its entire
life,

uE(x; t)(ω) = probability that a local entity with state x will still be alive and
have state in ω t time units later.

The measures ΛE(x) and uE(x; t) are not independent but satisfy certain consistency
relations (Diekmann et al. 1998; Gyllenberg et al. 1997). For instance, the measures
uE(x; t) are the transition probabilities of a Markov process and therefore they satisfy
the Chapman-Kolmogorov relation.

The metapopulation state is by definition the distribution of local states and is
represented by a measure m ∈ M+(Ω), the set of all finite positive Borel measures
in Ω. We can now lift the model to the metapopulation level by defining the next
generation operator W and the next state operators T (t), t ≥ 0 acting on M+(Ω).
For each given constant environment E, each m ∈ M+(Ω) and each measurable set
ω ∈ Ω we set

(WEm) (ω) =
∫

Ω
ΛE(x)(ω)m(dx), (2.1)

(TE(t)m) (ω) =
∫

Ω
uE(x; t)(ω)m(dx). (2.2)

(WEm) (ω) is the expected number of new local entities with birth state in ω pro-
duced by a collection of local entities distributed as m during their entire lives.
TE(t)m is the distribution at time t of a collection of local entities which at time
zero were distributed as m. It follows from the fact that uE satisfies the Chapman-
Kolmogorov relation that {TE(t)}t≥0 is a semigroup.

Following Diekmann et al. (1990, 1998), Heesterbeek (1992) and Gyllenberg et
al. (1997) we now define the basic reproduction number R(E) as the spectral radius
of the operator WE.

In most cases of interest positivity arguments guarantee that R(E) is an eigen-
value and that all other eigenvalues have absolute value less than or equal to R(E).
Let bE be the eigenvector corresponding to R(E). bE and R(E) have important
biological interpretations: bE is the distribution of birth states at equilibrium and
R(E) is the expected number of new local entities produced by one “typical”, that
is, sampled from bE, local entity during its entire life.

Usually the set Ωb of admissible birth states is much smaller than the local state
space Ω. It is clear that for solving the eigenvalue problem (determining R(E)) one
only has to consider the restriction of WE to M(Ωb). In many models there are only
a finite number of admissible birth states. When this is the case determining R(E)
boils down to finding the dominant eigenvalue of a nonnegative (finite dimensional)
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matrix. Without risk of confusion we shall use the same symbol for WE and its
restriction to M(Ωb) or the corresponding matrix.

The steady metapopulation state corresponding to E is given by

mE =
∫ ∞

0
TE(t)bEdt. (2.3)

A necessary condition for equilibrium is

R (E) = 1. (2.4)

Often, and in particular in the cases considered below, the environmental interaction
variable E is connected to the metapopulation state through a linear operator A and
this gives us an additional equilibrium condition:

E = AmE. (2.5)

We emphasize that at the local level the model is stochastic and that it therefore
allows for finite local population sizes taking on integer values. But the way in
which the model is lifted to the metapopulation level involves taking expectations
and therefore the full model is deterministic and based on the tacit assumption of
an infinite number of patches.

3 A class of structured metapopulation models

In this section we specify the class of models to which the general framework of
Section 2 will be applied.

We shall assume that there are two types of local entities: local populations
and dispersers. We assume that selection operates on the level of individuals and
therefore we shall always include local population size x1 as a component of the
structuring variable x of local populations. Other components can for instance
reflect patch quality and area (Hanski and Gyllenberg 1993, 1997; Gyllenberg and
Hanski 1997) and they may or may not be dynamical variables. The set of all
admissible x is denoted by Ωp (p for population). The dispersers are unstructured
and they do not reproduce during migration. The condition of being a disperser is
symbolically represented by “d”. The local state space is thus Ω = Ωp ∪ {d}. The
total patch density will be scaled to 1.

The density D of dispersers affects local dynamics through immigration. This
is most conveniently modelled by taking D as one component of the environmental
interaction variable (Gyllenberg and Hanski 1992). We shall do so in this paper.

We shall allow for local disasters in which all individuals of a patch die. A local
disaster is considered as the simultaneous death of the old local population and the
birth of a new local population with size zero. This is a valid model assumption,
since in our deterministic setting there is a continuous inflow of migrants from the
disperser pool: There are no empty patches.

Emigration is interpreted as a local population giving birth to a disperser. The
set of population birth states is therefore Ωb = Ωbp ∪ {d}, where Ωbp is a subset of
{x ∈ Ωp |x1 = 0}.
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We represent a measure on Ω by a 2-vector the first component of which is a
measure p on Ωp and the second component is a real number D. Because there are
no empty patches in our model, p is a probability measure, that is, its total mass
equals 1. Similarly a measure on Ωb is represented by a vector with components
consisting of a measure b(p) on Ωbp and a real number b(d). The restriction of ΛE(x)

to Ωbp is denoted by Λ(p)
E (x) and the restriction to {d} is denoted by Λ(d)

E (x). Λ(d)
E (x)

is simply the expected number of dispersers produced by a local population born in
state x during its lifetime. By our model description we have

WE

 b(p)

b(d)

 =

 W
(p)
E 0

W
(d)
E 0


 b(p)

b(d)

 =


∫

Ωbp
Λ

(p)
E (x)b(p)(dx)

∫
Ωbp

Λ
(d)
E (x)b(p)(dx)

 . (3.1)

Because by our model assumption there is neither loss nor gain of local populations
it is clear that the spectral radius of W (p)

E is one and hence the same is true of WE.
It follows that

R (E) = 1. (3.2)

The eigenvector bE =
(
b

(p)
E , b

(d)
E

)T
corresponding to R (E) = 1 is now obtained by

first solving ∫
Ωbp

Λ(p)
E (x)b(p)

E (dx) = b
(p)
E , (3.3)

and then defining

b
(d)
E =

∫
Ωbp

Λ
(d)
E (x)b

(p)
E (dx). (3.4)

Finally the equilibrium metapopulation state is obtained from (2.3) and (2.2)

pE =
∫ ∞

0

∫
Ωbp

uE(x; t)b(p)
E (dx)dt, (3.5)

D = τb
(d)
E , (3.6)

where
τ =

∫ ∞
0

uE(d; t)dt (3.7)

is the expected time a disperser stays (until dying or immigrating into a patch) in
the disperser pool.

Note that in the calculations above we have pretended that the constant environ-
ment E is given. As we have pointed out E is determined by the metapopulation
state and contains D as a component. Therefore (3.5) and (3.6) are not explicit
formulas but equations from which E (and hence D) can be solved. An example of
how this can be done is given in Section 5.

4 The fitness of a rare mutant

Assume that the resident population has reached an equilibrium mE corresponding
to a constant environment E. The fitness of a rare mutant is in principle defined in
a straightforward manner along the lines outlined in the introduction and in Section
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2. We thus let Λmut
E be the lifetime cumulative reproduction measure of mutants

when the environment is set by the resident. The next generation operator of the
mutant is then analogously with (2.1) given by(

Wmut
E m

)
(ω) =

∫
Ω

Λmut
E (x)(ω)m(dx) (4.1)

and Rmut(E) is defined as the spectral radius of Wmut
E .

When it comes to the actual specification of the reproduction measures we ob-
serve a fundamental difference between Λmut

E and Λres
E . Recall from Section 3 that

there is no reproduction event associated with a resident disperser immigrating into
a patch — the local resident population already exists and immigration will only
affect the growth of the local population and not its existence. For the mutant
the situation is different. A mutant disperser arriving at a patch with only resi-
dent individuals will indeed initiate a new mutant local population. After that the
development of the mutant local population depends only on the state of the resi-
dent local population in the same patch, because the rarity of the mutant makes its
contribution to density dependent effects negligible. This means that the mutant
population is structured by the state of the corresponding local resident population.
Contrary to the case of the resident for which the admissible birth states of local
populations were restricted to a subset Ωbp of {x ∈ Ωp |x1 = 0}, the mutant local
populations can have any birth state in Ωp.

Precisely as for the resident a mutant local population is considered to produce
or “give birth” to mutant dispersers.

In order to derive a simple formula for the mutant fitness we make the additional
assumption that dispersers choose their new patch at random. Let πmut be the
probability that a mutant disperser survives migration. With the above assumptions
we find that

Wmut
E

 b(p)

b(d)

 =

 πmutb(d)pE

∫
Ωp Λ

(d) mut
E (x)b(p)(dx)

 (4.2)

The mutant fitness is now obtained as a solution to the eigenvalue problem

Wmut
E

(
b(p)

b(d)

)
= Rmut(E)

(
b(p)

b(d)

)
(4.3)

It follows from (4.2) and (4.3) that

Rmut(E) =

√
πmut

∫
Ωp

Λ(d) mut
E (x)pE(dx). (4.4)

Formula (4.4) calls for some comments. First of all −Rmut(E) is also an eigen-
value of Wmut

E so the spectral radius is not a strictly dominant eigenvalue. This is
due to the fact that the mutant has alternating generations: dispersers give rise to
local populations and vice versa, so at the generation level the mutant metapopu-
lation oscillates. On the other hand, because the generations overlap, there will be
convergence towards a stable metapopulation state in real time.

The invasion criterion Rmut(E) > 1 is of course equivalent to the condition
(Rmut(E))2

> 1 and because the period on the generation level is two generations, the
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square of the basic reproduction number is easier to interpret biologically. Because
dispersers are not assumed to reproduce (in the ordinary sense of the word) mutation
always occur in local populations. Mutations can occur in any local population.
The probability that the mutation occurs in a local population with state in ω

is pE(ω). This mutant produces a local mutant colony. The expected number of

dispersers produced by such a colony is
∫

Ωp Λ
mut (d)
E (x)pE(dx). Of these a fraction

πmut will reach a habitat patch where they can found a new colony. The product
of these two last mentioned numbers is (Rmut(E))2 which therefore is the expected
number of new mutant colonies produced by one newly started mutant colony in
an otherwise mutant free metapopulation. Thus (Rmut(E))2 is here the direct local-
entity analogue of the usual individual level concept of basic reproduction number.

5 An example

In the general discussion above we have assumed that Λmut
E is given beforehand. In

applications the reproduction measure of mutants has, however, to be determined
from the vital rates of both the resident and the mutant. In this section we shall
illustrate the general theory by calculating (Rmut(E))2 for a concrete example.

We assume that the local populations are only structured by size and that the
density D of dispersers is the only component of the environmental interaction
variable. We thus write D = E. The local population state space is Ωp = [0,∞).
The space of admissible local population birth states of the resident is a single
point: Ωbp = {0}. The birth state measure can therefore be represented by a vector
(b(p) , b(d))T ∈ R2.

Our model is specified by the following ingredients:

g(x) density dependent per capita growth rate due to local births and
deaths,

k(x) density dependent per capita emigration rate,

α immigration rate per disperser,

ν death rate per disperser,

µ(x) density dependent local disaster rate.

The first four of these rates describe individual behaviour. Therefore they depend
on the strategy and will be equipped with superscripts res and mut whenever it
is needed. The disaster rate µ operates at the level of local populations and is
therefore independent of the strategy (recall that we assume that selection occurs
at the individual level).

When two types are simultaneously present it is conceivable that they affect the
local environment in different ways and therefore the functions g, k and µ are in
general functions of both the resident and mutant densities. However, below we
shall only consider the invasion problem in the case of infinite local populations and
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there the mutant is present only in infinitesimal quantities so its influence on these
functions can be neglected.

Local dynamics are deterministic and are governed by the ordinary differential
equation

dx

dt
= g(x)x− k(x)x+ αD. (5.1)

This means that we assume that local populations are infinitely large. For a discus-
sion of how the infinite local population size case is obtained as a limit of Markov
processes describing the finite population case we refer to the paper by Metz and
Gyllenberg (1999).

For constant D the local population size can never exceed the least positive x
for which the right hand side of (5.1) is zero. We denote this value by xmax(D). If
the right hand side of (5.1) is positive for all x ∈ [0,∞), then xmax(D) =∞.

For constant D, let XD(y; t) be the solution of (5.1) with initial condition x(0) =
y. Then

uD(x; t) =


exp

(
− ∫ t0 µ(XD(x; s)ds)

)
δXD(x;t) if x ∈ [0,∞),

exp (−(α+ ν)t) δd if x = d.

(5.2)

Here δx denotes the point mass concentrated at x. The expected time a disperser
spends migrating is

τ =
1

α+ ν
(5.3)

and the probability of surviving dispersal is

π =
α

α+ ν
. (5.4)

Next we derive the equilibrium of the resident metapopulation. The expected
number of dispersers produced by a newly initiated local population during its entire
life is

Λres (d)
D (0) =

∫ xmax(D)

0

kres(x)x

gres(x)x− kres(x)x+ αresD

× exp

(
−
∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.5)

The expected lifetime of a local population is

`res
D =

∫ xmax(D)

0

1

gres(x)x− kres(x)x+ αresD

× exp

(
−
∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.6)

The eigenvalue problem takes the form

WD

(
b(p)

b(d)

)
=

(
1 0

Λres (d)
D (0) 0

)(
b(p)

b(d)

)
. (5.7)
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The first component of Equation (5.7) is b(p)
D = b

(p)
D and gives no information. The

other component yields
b

(d)
D = Λ

res (d)
D (0)b

(p)
D . (5.8)

It follows from (3.5) and (5.2) that

pD(dx) =
b(p)

gres(x)x− kres(x)x+ αresD

× exp

(
−
∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.9)

Because pD is a probability measure one has

b
(p)
D =

1

`res
D

. (5.10)

From (3.6), (5.3), (5.4), (5.8) and (5.10) we now deduce the equation

αresD = πres Λ
res (d)
D (0)

`res
D

(5.11)

from which the equilibrium number D of dispersers per patch can be solved. Note
that equation (5.11) is a balance equation. It says that at equilibrium the immigra-
tion rate equals the emigration rate times the probability of surviving dispersal.

Next we derive the expression for the mutant fitness. In order to apply formula
(4.4) we still have to calculate Λmut (d)

D (x). To do so, recall that since the mutant
is rare it does not affect the local population dynamics. The structuring variable
x (the size of the local resident population) will still grow according to (5.2). If
the mutation happened in a local population of size x the mutant population will
therefore grow thereafter (as long at it remains rare) according to the time dependent
linear ordinary differential equation

dy

dt
=
(
gmut(XD(x; t))− kmut(XD(x; t))

)
y. (5.12)

We conclude that the expected number of mutant dispersers produced by a mutant
local population that was initiated when the corresponding resident local population
had size x is

Λmut (d)
D (x) =

∫ xmax(D)

x

kmut(y)

gres(y)y − kres(y)y + αresD

× exp

(∫ y

x

gmut(ξ) − kmut(ξ) − µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dy. (5.13)

Hence we obtain the following formula for the fitness of the mutant:

Rmut (D) =
αmut

αmut + νmut

1

`res
D

∫ ∞
0

∫ xmax(D)

x

kmut(y)

gres(y)y − kres(y)y + αresD

× exp

(∫ y

x

gmut(ξ) − kmut(ξ)− µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dy
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× 1

gres(x)x− kres(x)x+ αresD
exp

(
−
∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.14)

Here D is a solution of (5.11).
We close this section by calculating the evolutionarily stable dispersal strategy,

when only k is under evolutionary control but all other vital rates are the same for
the resident and the mutant. We therefore drop the superscripts res and mut from
all other ingredients than k and consider Rmut given by (5.14) as a function of kres

and kmut. The ESS is obtained by maximising Rmut in kmut and then putting mutant
equal to resident.

We assume that g and µ are continuous, that g − µ is decreasing and that the
equation

g(x)− µ(x) = 0 (5.15)

has a unique positive solution, which we denote by x̃.
It follows from (4.4) that maximising Rmut amounts to maximising Λ

mut (d)
D (x)

for all x. It follows from our assumptions that for all x one has

Λmut (d)
D (x) ≤

∫ xmax(D)

x

kmut(y)

g(y)y − kres(y)y + αD

× exp

(∫ y

x

g(x)− kmut(ξ) − µ(x)

g(ξ)ξ − kres(ξ)ξ + αD
dξ

)
dy. (5.16)

If the mutant local population is initiated when the resident local population has
size x > x̃, then

Λmut (d)
D (x) <

∫ xmax(D)

x

kmut(y)

g(y)y − kres(y)y + αD

× exp

(
−
∫ y

x

kmut(ξ)

g(ξ)ξ − kres(ξ)ξ + αD
dξ

)
dy = 1. (5.17)

A mutant disperser arriving at a local population with size x > x̃ will therefore on
average produce less than one new mutant disperser. It follows that it does not
pay to stay in such a population; the mutant should leave immediately. In our
formulation this requires the per capita emigration rate to be infinite for x > x̃.

It is easily seen that if x < x̃, then the number of mutant dispersers produced is
maximised by not producing any dispersers until x reaches x̃ at which time all mu-
tants in the local population should leave. In other words, the per capita emigration
rate should be zero for x < x̃.

What happens at the critical size x = x̃? Because all individuals leave for
x > x̃ one must have xmax(D) = x̃. k(x̃) can now be solved from the equation
g(x)x− k(x) +αD = 0. We have thus shown that the evolutionarily stable dispersal
strategy is

k(x) =


0 if x < x̃,
g(x̃)− αD

x̃
if x = x̃,

∞ if x > x̃.

(5.18)

Strictly speaking it does not make sense to model population dynamics with
rates that take on infinite values on intervals of positive measure. But turning
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to the cumulative framework (now at the level of individuals as opposed to local
entities as previously in this paper) this is easily remedied. Let us first note that
our model is memoryless in the sense that an individual born in a patch with local
population size x is indistinguishable from a disperser arriving at a patch with local
population size x. In the cumulative framework the individual dispersal strategy is
most conveniently described in the context of a thought experiment in which the
individual in question is equipped with a guardian angel who eliminates all causes of
death (both individual death and catastrophes). The cumulative ingredient is thus

λD(x; t) the probability that an individual born in (or arriving at) a patch
with local population size x has not migrated t time-units later,
given that the individual is not subject to any risk of death.

The content of formula (5.18) can now more appropriately be formulated by saying
that the ES dispersal strategy is given by

λD(x; t) =


1 if x < x̃ and t < TD(x, x̃),

exp
(
−
(
g(x̃)− αD

x̃

)
(t− TD(x, x̃))

)
if x < x̃ and t ≥ TD(x, x̃),

exp
(
−
(
g(x̃)− αD

x̃

)
t
)

if x = x̃, t > 0,
0 if x > x̃, t > 0.

(5.19)
Here TD(x, y) is the time it takes for a population to grow from size x to size y. In
words, at ESS an individual born in or arriving at a patch with local population
size less than x̃ should stay until the population reaches the size x̃. An individual
born in or arriving at a patch with local population size precisely x̃ should stay for
an exponentially distributed time. Nobody should stay if the local population size
exceeds x̃.

We mention in passing that the cumulative formulation of the full problem includ-
ing death is quite complicated because we have to deal with a so-called competing
risk problem with dependent risks. But these complications are of no importance
for the ESS problem and they are therefore omitted.

Finally we observe that at the ESS the equilibrium distribution of local popula-
tion sizes is a measure p concentrated on [0, x̃]. It has an absolutely continuous part
with density

φ(x) =
b(p)

g(x)x+ αD
exp

(
−
∫ x

0

µ(ξ)

g(ξ)ξ + αD
dξ

)
(5.20)

and an atom at x̃ containing the rest of the mass of p.
We close by pointing out that adding physiological structure of the individuals

leaves most of the arguments in the above example intact. Only the rank of the
reproduction operator becomes larger since we have to take the individual state of
dispersers into account. But the fitness and ESS can be calculated as above mutatis
mutandis.
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