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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 36

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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Abstract

We define a fitness concept applicable to structured metapopulations consisting
of infinitely many equally coupled patches, and provide means for calculating its
numerical value. In addition we introduce a more easily calculated quantity Rm that
relates to fitness in the same manner as R0 relates to fitness in ordinary population
dynamics: Rm of a mutant is only defined when the resident population dynamics
converges to an equilibrium, and Rm is larger (smaller) than one if and only if mutant
fitness is positive (negative). Rm corresponds to the average number of newborn
dispersers resulting from the (on average less than one) local colony founded by a
newborn disperser. As an example of the usefulness of these concepts we calculate
the ES conditional dispersal strategy for individuals that can account for the local
population density in their dispersal decisions.
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How Should We Define Fitness in Structured

Metapopulation Models?

Including an Application to the Calculation of

Evolutionarily Stable Dispersal Strategies

J.A.J. Metz
M. Gyllenberg

1 Introduction

Classical metapopulation models are characterized by the fact that an infinite num-
ber of equally coupled patches are assumed. This poses some problems when it
comes to doing ESS or Adaptive Dynamics (Metz et al., 1996; Geritz et al., 1997,
1998) calculations for these models. In particular, it is not immediately clear how
we should define fitness, and what would be useful stand-ins for fitness, comparable
to R0 in the single population case. In this paper we solve these problems. To show
the usefulness of the introduced concepts we calculate the ES conditional dispersal
strategy if individuals can sense the local population density.

Before embarking on our program we provide a little context. In reality we have
a finite, though possibly large, number of patches with different characteristics and
different local population sizes, which are coupled in a complicated manner. One
of the simplifying assumptions in metapopulation theory, to which we also shall
adhere, is that all patches have equal characteristics, though not equal population
sizes, and are equally coupled. This simplification may actually approximate reality
rather well in the case of, for example, aphids, for which the dispersal distance is
large relative to the intercolony distance, and where the patches correspond to single
leaves in a tree.

Given the homogeneity assumption that we just introduced, we have available
two overall system parameters, size of the patches ω, and number of patches Ω.
When both parameters are small the metapopulation will go extinct on an ecological
time scale. Therefore, if we are interested in long term evolution, at least one of
these parameters should be large. We shall take the mathematician’s stance and
equate large with infinite, so that we may rigorously neglect process properties that
at large sizes effectively disappear from sight.

In case only the patch sizes ω are infinite but there are but few patches (Ω small)
the classical fitness concepts for structured populations, as expounded by Metz et
al. (1992) applies. If there are no further structuring variables we just have Ω
local population densities as the state variables of the metapopulation. The same
holds good for a rare invader. So the local linearization of the invader dynamics,
near zero invader densities, yields an Ω-dimensional linear dynamics, possibly with
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timevarying coefficients, depending on whether the overall environment is constant
and the resident population dynamics converges to a point attractor, or some more
complicated environmental and/or resident population dynamics ensues. The dom-
inant Lyapunov exponent of this linear dynamics, which in the case of constant
coefficients reduces to the dominant eigenvalue, provides the right fitness concept to
be inserted into evolutionary calculations (see e.g. Parvinen, 1999). In the case of
a population dynamical point equilibrium, we can use the general R0 -concept for
structured populations, introduced by Diekmann et al (1990, 1998; see also Heester-
beek, 1992), as stand-in for fitness: if and only if R0 is larger (smaller) than one
fitness will be positive (negative).

The real challenge comes when Ω is infinite, for then we are outside the standard
mathematical framework for establishing the existence of an exponential growth rate
and for establishing the existence of an R0-like quantity telling in an unambiguous
manner when a mutant will be able to invade. This mathematical quandary is not
confined to the equal coupling case. It also applies to, say, patches coupled by
nearest neighbour migration in a hexagonal grid in the plane. The only difference
is that in the exceedingly symmetrical equal coupling case it can be resolved by
classical analytical means whereas in the other cases there is no clear sight on a
solution yet. Therefore we shall confine ourselves to the equal coupling case with Ω
infinite and ω either finite or infinite.

To keep the mathematics simple we shall concentrate on the case without further
structuring variables. In addition we shall assume that only newborns disperse, and
that they do so by entering a dispersal pool which they leave either by dying or
by entering a patch. We shall also phrase the models such that the newborns are
allowed to migrate with a probability dependent on the local population density,
and to choose on encountering a patch to stay or to leave again depending on the
population density that they encounter. The reason for explicitly taking account of
such decision rules is that this directly leads to our closing example, in which we
calculate the ES conditional migration strategy. However, the arguments below are
of a fully general nature, not tied to those specific model assumptions.

An excelent discussion of the litterature on life history calculations, and in partic-
ular ES dispersal strategies, in metapopulations can be found in Olivieri & Gouyon
(1998; see also Ronce et al., submitted). A companion paper (Gyllenberg & Metz,
1999) dissects the abstract structure of the argument within the general framework
for structured population models put forward in Diekmann et al. (1994, 1998), and
calculates the ES conditional migration strategy for adult, as opposed to juvenile,
dispersal.

2 The finite patch size case

2.1 Model specification

The state equations for a structured metapopulation are similar to the differential
equations for the state probabilities of a continuous time Markov process. There
are good reasons for this similarity. Every single patch undergoes a Markov process.
Only the collective of all infinitely many patches together behaves as a determinis-
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Figure 1: State transition diagram for a single patch.

tice entity. In the case of finite ω the Markovian state of a single patch (p-state)
corresponds to the number of individuals present in it. To make our life easy we
shall assume that there is a maximum k to the number of individuals in a patch.
The state of the metapopulation (m-state) is given by the fractions pn of patches
with various numbers of individuals in them together with the disperser density D.
Figure 1 shows the possible p-state transitions for the model that we have in mind.
The µi are the per capita death rates, α is the rate constant of patch encounter for
the dispersers, the si are the probabilities that a newly arrived immigrant decides to
stay, the λi are the per capita birth rates, the di are the probabilities that a newly
born individual decides to disperse, and the γi are the rates of externally imposed
catastrophes wiping out the whole local population in one go. The strategy param-
eters di, and si are assumed to be heritable properties of the individuals. The other
parameters α, γi, µi, and λi are supposed to be either constants or else to fluctuate
in an ergodic manner. (In practice this means that the α, γi, µi, and λi should not
show any systematic trends on any relevant time scale. The reason for invoking the
term ”ergodic” is to guarantee the truth of some of our mathematical statements
below.) The m-state equations corresponding to the scheme in Figure 1 are

dp0

dt
= −αDs0p0 + µ1p1 +

k∑
j=1

γjpj ,

dpi

dt
= [αDsi−1 + (i− 1)λi−1(1− di−1)]pi−1 (1)

−[iµi + αDsi + iλi(1− di) + γi]pi + (i+ 1)µi+1pi+1,

dD

dt
= −α

k−1∑
i=0

pisiD +
k∑
i=1

iλidipi − µDD,

with µD the per capita death rate of the dispersers, which also is assumed to be
either constant or else ergodic. In writing down (1) we used the conventions that
p−1 = 0, pk+1 = 0, sk = 0, and dk = 1 (the first convention only becomes relevant at
a later stage). The first two conventions bring the form of the equations for the pi,
with i next to the boundary of the feasible domain, in line with those for the pi, with
i in the interior of that domain. The assumptions about sk and dk are biological
consistency conditions. We assume that the local population size never can become
larger than k. Anybody born or immigrating into a population of size k therefore
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had better leave lest she die.
No general results about the equilibria of (1) are known. However, we know of no

cases where for constant parameters (1) was found not to have a globally stable point
equilibrium. For special models this equilibrium can be calculated numerically by
solving F (D̂) = 0, e.g. using a bisection method, where F is defined by the following
algorithm (if F (D) < 0 for all D > 0 the metapopulation is not viable):

• Supply a value of D.

• The next step is to calculate two sequences of numbers to be called p̃1,i and
p̃2,i, i = 0, ..., k. The calculation is started by setting p̃1,0 = 0 and p̃1,1 = 1,
and p̃2,0 = 1 and p̃2,1 = 0.

• Successively calculate the following p̃1,i , i = 2, ..., k, using

p̃1,i+1 =

[iµi + αDsi + iλi(1− di) + γi]p̃1,i

−[αDsi−1 + (i− 1)λi−1(1− di−1)]p̃1,i−1

(i+ 1)µi+1
. (2)

• Calculate the p̃2,i in exactly the same manner as the p̃1,i.

• Calculate P1 =
∑k

i=0 p̃1,i and P2 =
∑k

i=0 p̃2,i.

• Calculate Q1 =
∑k

i=1 γip̃1,i and Q2 =
∑k

i=1 γip̃2,i.

• Calculate W = (µ1 +Q1)P2 + (αDs0 −Q2)P1.

• Calculate u1 = (αDs0 −Q2)/W and u2 = (µ1 +Q1)/W .

• Calculate the numbers p̂i = u1p̃1,i + u2p̃2,i.

• Calculate F (D) as

F (D) =
k∑
i=1

iλidip̂i − α
k−1∑
i=0

p̂isiD − µDD. (3)

From the equilibrium D̂ of D, we can calculate the equilibrium values p̂i of the
pi by the same rules as before with D̂ substituted for D.

2.2 The linearized mutant equations

Now consider what happens when a mutant having strategy parameters d∗i and s∗i
is introduced. In that case we have to consider an extended set of state variables
for the metapopulation, for which we choose the relative frequencies of the patches
filled with different resident and mutant numbers, qi,j , i≥ 0, j ≥ 0, i + j ≤ k,
where i refers to the number of individuals of the original resident type and j refers
to the number of the mutants. In addition we have equations for the resident and
mutant disperser pools. The former we shall again denote as D, the latter as D∗.
A schematic representation of the p-state transitions is indicated in Figure 2.
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Figure 2: Schematic representation of the p-state transitions in a combined resident
plus mutant patch. Thin arrows indicate transitions that are relatively rare.

We are primarily interested in the mutant population. This population is rep-
resented by those qi,j for which j 6= 0. Initially these qi,j may be supposed to be
very small relative to the qi,0. When the mutant population is still rare it has little
influence on the resident dynamics. Therefore the qi,0, i = 0, ..., k, can be approxi-
mated with the pi calculated from (1), after we have given that resident dynamics
some time to relax to an attractor. When the environment is constant we substitute
qi,0 = p̂i and D = D̂.

Initially D∗ also will be small. This allows us to neglect any further mutant
immigration into the rare patches which already have mutants in them. To first
order of approximation all mutant immigration occurs in patches which are either
empty or solely occupied by residents. In Figure 2 we have visualized this relative
scarcety of immigrating mutants in the width of the corresponding arrows. These
observations allow us to immediately write the linearized mutant equation from first
principles using the scheme in Figure 2 as a reference. We start with introducing
some conventions to simplify the notation. We shall notionaly set q−1,j = 0, qi,j = 0
when i + j = k + 1, and sk = s∗k = 0, and dk = d∗k = 1. The rationale is the
same as that for the similar conventions for the pi. Moreover, we shall add stars to
all parameters pertaining to mutant individuals to emphasize the generality of the
calculations. For the concrete special case under consideration, where mutants and
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residents differ only with respect to the probabilities that newborns disperse from a
patch, d, and the probabilities that dispersers stay in a patch, s, just set

α∗ = α, λ∗i+j = λi+j , µ∗i+j = µi+j , γ∗i,j = γi+j .

The differential equations for the qi,1 have a term corresponding to the immigration
of mutants into patches with only residents. In the equations for the qi,j, j > 1 this
term is lacking.

dqi,1

dt
= α∗D∗s∗ipi + [αDsi + (i− 1)λi(1− di)]qi−1,1

−[iµi+1 + µ∗i+1 + αDsi+1 + iλi+1(1− di+1) + λ∗i+1(1− d∗i+1) + γ∗i,1]qi,1

+(i+ 1)µi+2qi+1,1 + 2µ∗i+2qi,2,

dqi,j

dt
= [αDsi+j−1 + (i− 1)λi+j−1(1− di+j−1)]qi−1,j (4)

+(j − 1)λ∗i+j−1(1− d∗i+j−1)qi,j−1

−[iµi+j + jµ∗i+j + αDsi+j + iλi+j(1− di+j) + jλ∗i+j(1− d∗i+j) + γ∗i,j]qi,j

+(i+ 1)µi+j+1qi+1,j + (j + 1)µ∗i+j+1qi,j+1,

dD∗

dt
= −α∗

k−1∑
i=0

pis
∗
iD
∗ +

k−1∑
i=0

k−i∑
j=1

jλ∗i+jd
∗
i+jqi,j − µ∗DD∗.

Equation (4) forms a sufficient starting point for the discussion of invasion fitness in
structured metapopulations, even in the most general case where all the individual
parameters are functions of some strategy parameter S, i.e., for example, λi+j =
Λi+j(S), λ∗i+j = Λi+j(S∗), γ∗i,j = Γi,j(S, S∗), and γi = Γi,0(S, S∗).

2.3 Invasion fitness

Before we get to the definition of fitness we rewrite (4) in a slightly more accessible
form. To this end we define the vector V as

V = [(qi,j)i=0,..k−1,j=1,..,k−i, D
∗]T,

where the pairs (i, j), are supposed to be lexicographically ordered, i.e., put in the
order (0, 1),(0, 2),...,(0, k),(1, 1),(1, 2),...,(1, k − 1) ,...,(k − 1, 1), so that v1 = q0,1,
v2 = q0,2, ... , vk(k+1)/2 = qk−1,1, v1+k(k+1)/2 = D∗. The map transforming a pair
(i, j), i = 0, .. , k − 1, j = 1, .. , k − i, into its position n in the lexicografic order
we shall call L. With this notation we can write

dV

dt
= BV, (5)

where the matrix B contains the various coefficients from (4) ordered in the appro-
priate manner. If, as we supposed, the coefficients in (4) fluctuate in an ergodic
manner, there exists a dominant Lyapunov exponent ρ associated with (5). In
biological terms: the total mutant population size will overall grow or decline expo-
nentially at a per capita rate ρ. Generalizing from the case of ordinary population
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Figure 3: Schematic representation of the rationale behind the definition of Rm

dynamics we shall call ρ the fitness of the strategy S∗ = (d∗, s∗) in the environment
set by an S = (d, s) resident.

In the general case we can only calculate ρ by (i) numerically solving (1) till
some time t1 which should be sufficient to let the resident population relax to its
attractor, then (ii) in parallel with (1) numerically solving (5), or equivalently (4),
starting from some positive initial condition at t1, and finally (iii) estimating ρ from
the average linear increase rate of ln(D∗) with time.

When the resident dynamics converges to a point equilibrium we can calculate ρ
as the dominant eigenvalue of the corresponding constant matrix B. However, this
is a hard task, and in this case there is a more easy solution to the invasion problem
which we shall discuss in the next section.

2.4 A stand-in for fitness in the case of population dynam-
ical point equilibria

In order to remove clutter we shall below adhere to the convention that ”individual”
and ”disperser”, refers to mutant individuals, dispersing mutants, etc.

In the model as formulated individuals may live in very many different environ-
ments: They are either dispersing, or they are in an (i, j)-patch and therefore have
i residents and j − 1 mutants impinging on them. This makes calculating the usual
R0, i.e., the mean lifetime number of children of a randomly chosen individual, a
very difficult task. The way out is to proceed not on an idividual but on a colony
basis, i.e., to work not from birth to births, but from emigration event to emigration
events (see Figure 3), on the rationale that in the usual structured metapopulation
model all dispersers are taken to be equivalent.

We shall call the average number of dispersers produced by the (0 or 1) colonies
founded by a newly born disperser Rm, m from metapopulation. We shall calculate
Rm in a number of steps: First we observe that a newborn migrant has probability

πi =
α∗s∗i p̂i

α∗
∑k−1

j=0 s
∗
j p̂j + µ∗D

(6)

to end up in an (i, 0)-patch, turning it into a (i, 1)-patch. The newly founded colony
then undergoes a Markovian stochastic population process till it dies out. The states
of this continuous time Markov chain are the pairs (i, j), j > 0, i ≥ 0, (i + j) ≤ k.
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We shall number these states according to the same scheme that we used in the
previous subsection. The corresponding probability vector X(a), a the age of the
colony, satisfies

dX

da
= B̃X, X(0) = Y, (7)

with yn = πi for n = L(i, 1), i = 0, .. , k − 1, and j = 1,

= 0 for all other n,

with B̃ constructed from B by removing the last row and column. (i, j)-patches
produce dispersers at a rate jλ∗i+jd

∗
i+j . We collect those rates in a vector A in the

now usual manner, i.e., we set jλ∗i+jd
∗
i+j = aL(i,j) for i = 0, .. , k − 1, j = 1, .. ,

k − i. Then the general theory of continuous time Markov chains tells us that

Rm = −ATB̃−1Y, (8)

or equivalently,
Rm = −ATZ, (9)

with Z the solution of
B̃Z = Y. (10)

In principle (10) corresponds to k(k + 1)/2 equations in as many unknowns. In
appendix A we indicate how solving (10) can effectively be reduced to solving k
linear equations in k unknowns, so that treatment of cases with k smaller than, say,
70 becomes numerically feasible. Taken together (9) and (10) provide a quick way
for numerically calculating Rm for concrete models. In the next section we shall
derive an approximation for Rm applicable for large patch sizes.

Rm is a function of two variables, the resident strategy S and the mutant
strategy S∗, which we can express by writing Rm(S, S∗). Consistency requires that
Rm(S, S) = 1. This property was born out by numerical work on various special
models, but we have not been able to prove it in general.

3 The infinite patch size case

3.1 Taking the limit for patch size going to infinity

There exists a large body of theory for structured metapopulations in which the local
population density x is treated as a continous variable (see e.g. Gyllenberg et al.,
1997). Biologically these models can be seen as useful limits for large patch sizes of
models with discrete local population sizes. We shall proceed in this spirit. We shall
argue heuristically in what manner our results simplify when we let the size of the
patches ω move towards infinity; in a companion paper (Gyllenberg & Metz, 1999)
we give a direct treatment of the invasion problem for structured metapopulations
including continuous ones. Moreover, we shall immediately concentrate on situations
where population dynamical equilibrium obtains, as these are the only cases where
we can arrive at analytical results. For fluctuating environments, we have to go
numeric, which comes close to using the model with a discrete structuring variable
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from which we started. (Actually this last statement is bit facetious as there are
now efficient numerial techniques for handling deterministic structured population
models with continuous structuring variables (De Roos et al., 1992; De Roos &
Metz, 1991).)

First we consider the dynamics of the local resident densities x = i/ω , i the
number of residents, and of the correspondingly scaled disperser pool M = D/ω,
without any mutants present. To arrive at a continuum limit we have to make
the biologically reasonable assumption that our individuals, be they mutants or
residents, only react to the local densities. Therefore we may write

λi = λ(i/ω), µi = µ(i/ω), γi = γ(i/ω), di = d(i/ω), si = s(i/ω). (11)

After ω has gone to infinity, and in between catastrophes, the resident dynamics
satisfies

dx

dτ
= g(x,M) := [λ(x)(1− d(x))− µ(x)]x+ αs(x)M, (12)

with τ the time since the last catastrophe, and

dM

dt
=

∫ ∞
0

λ(x)d(x)xp(x)dx− α

∫ ∞
0

s(x)p(x)dx M − µDM, (13)

with p the current probability density of the local population densities. This prob-
ability density can be calculated from a partial differential equation, as discussed
by Metz & Diekmann (1986) and Gyllenberg& Hanski (1992), or using the integral
equation approach discussed in Gyllenberg et al. (1997; also compare Diekmann et
al., 1998), using g from (12) as one of their ingredients.

Mutants start their career as single individuals. Therefore, if we want to consider
how a mutant population takes off we have to deal with infinitesimally small values of
M∗. This means that in contrast to the resident case there is no continuous stream of
mutant immigrants into the patches, at least during the initial phase of the invasion
process. We have to consider single immigration events. The resulting infinitesimally
small local mutant population densities never grow out to appreciable size since (i)
they are swamped by the immigration of residents, and (ii) local populations have
only a finite time to go before they are wiped out by a catastrophe. Therefore even
for infinite ω, we have to treat the local mutant population dynamics as a stochastic
process. (The reason why we did not have this discrepancy between mutant and
resident dynamics in the case of finite ω is that the small patch size guarantees that
also the local residents behave stochastically. In the case of finite ω it is only D∗

which is very small relative to D. This means that the relative density of patches
with also mutants in them is very small. But when we concentrate on what happens
in those patches, mutant and resident population sizes are of the same order of
magnitude.)

The smallness of the local mutant populations also has a helpful side. The
presence of mutants leaves the local resident population unaffected. In the same vein
the population dynamical characteristics of the mutant individuals are unaffected
by the local mutant density. It is only the local value of x that determines the local
show. Therefore the local mutant numbers j develop according to a linear birth and
death process with x-dependent time-varying parameters.
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3.2 Calculating Rm

The procedure for calculating Rm proceeds along similar lines as in the finite patch
size case. Our closing example has been chosen such that it is possible to skip most
of the calculations. Yet, we shall outline the full procedure as it is both conceptually
relevant and a necessary ingredient in some other applications.

First we have to calculate the equilibrium values p̂ for p, the probability density
of the local resident population densities:

• To this end we first calculate the function p̃ of the two variables x and M as

p̃(x,M) =
C

g(x,M)
exp

[
−
∫ x

0

γ(ξ)

g(ξ,M)
dξ

]
for 0 ≤ x < x̂(M)

= 0 for x̂(M) < x,

with C =

(∫ ∞
0

1

g(x,M)
exp

[
−
∫ x

0

γ(ξ)

g(ξ,M)
dξ

]
dx

)−1

, (14)

with x̂(M) the positive solution of

g(x̂,M) = 0, (15)

provided such a solution exists (in which case it is unique), else x̂(M) = ∞.
In practice it will usually be necessary to evaluate the integrals numerically,
i.e., one has to write a procedure which takes M as its input and returns a
table with values of p̃ for different well chosen values of x. This is not easy as
1/g(ξ,M) becomes unmanageably large when ξ gets near x̂(M). Appendix B
describes a simple procedure to calculate the various integrals using existing
packages for solving differential equations.

• The next step is to calculate M̂ by (numerically) solving the equation (if
G(M) < 0 for all M > 0 the metapopulation is not viable)∫ ∞

0

λ(x)d(x)xp̃(x, M̂)dx− α
∫ ∞

0

s(x)p̃(x, M̂)dxM̂ − µDM̂ := G(M̂) = 0. (16)

• Finally we calculate p̂ as
p̂(x) = p̃(x, M̂). (17)

From p̂ we calculate the probability density π for the patches in which a newly
immigrating mutant migrant will find itself:

π(x) =
α∗p̂(x)s∗(x)

α∗
∫∞

0
p̂(ξ)s∗(ξ)dξ + µ∗D

. (18)

The resident density yx(a) surrounding a mutant colony for which the resident
density at the moment of founding was x, can be calculated from

dyx

da
= g(yx, M̂), yx(0) = x. (19)
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The independence of the individuals in the mutant colony has as consequence that
the average size mx of that mutant colony satisfies the differential equation

dmx

da
= [λ∗(yx)(1− d∗(yx))− µ∗(yx)− γ(yx)]mx, mx(0) = 1, (20)

where we now include the possibility that the colony has been eradicated by a
catastrophe. The expected reproductive output at age a from such a colony equals
λ∗(yx(a))d∗(yx(a))mx(a). Therefore, the expected number of dispersers produced by
a colony founded by a mutant immigrant entering at resident density x equals

R(x) =

∫ ∞
0

λ∗(yx(a))d∗(yx(a))mx(a)da, (21)

and

Rm =

∫ ∞
0

R(x)π(x)dx. (22)

Appendix C describes a simple procedure to calculateRm using existing packages
for solving differential equations.

4 Example: Calculating evolutionarily stable dis-

persal strategies

We already included in our basic model formulation two explicit strategy vectors,
(di)i=1,..,k−1, the probabilities that a newborn disperses when born in a patch with
population size i, and (sj)j=0,..,k−1, the probabilities that a disperser stays on en-
countering a patch with population size j. We shall only consider the simpler infinite
patch size case here. In that case the strategy consists of two functions d and s of the
continuous variable x. In order to simplify calculating the ESS, denoted as (d̂, ŝ), we
introduce some biologically reasonable asumptions on the other model ingredients:
We shall assume that the birth rate λ, the death rate µ, and the catastrophe rate
γ are continuous functions of x, that λ − (µ + γ) does not increase with the local
population density x, that λ(0) > µ(0)+γ(0), and that there exists a unique positive
x̃ such that

λ(x̃) = µ(x̃) + γ(x̃). (23)

We get the ESS by maximising Rm[(d, s), (d∗, s∗)] in (d∗, s∗) and then setting
mutant equal to resident (so that Rm = 1).

Due to the lack of memory of the disperser state a just arriving immigrant in a
patch with resident density x has a future indistinguishable from a newly born indi-
vidual at the same value of x. Therefore d̂(x) = 1− ŝ(x) for all x where (d̂(x), ŝ(x))
is the unique maximizer of Rm in the (d∗(x), s∗(x))-direction. It will turn out later

that at such x either d̂(x) = 1− ŝ(x) = 1 or d̂(x) = 1− ŝ(x) = 0. Where uniqueness
fails there is a one-dimensional continuum of maximizing values 0 ≤ ŝ(x) ≤ 1 and

0 ≤ d̂(x) ≤ 1; we shall see below that this happens only at a single special value of
x.
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Since mutant individuals reproduce and die independently, for a newborn stayer
the expected number of dispersing descendants produced by all its within patch de-
scendants also equals R(x). A newborn had better disperse whenever staying would
lead to an expected number of dispersing descendants from its within patch descen-
dants that would be smaller than one. More precisely: At population dynamical
equilibrium a resident disperser has Rm = 1. A mutant who at some point produces
more future dispersers than the resident and everywhere else doesn’t do worse than
the resident will invade. So a strategy which has stayers at local densities where
staying results in a net loss (R(x) < 1) can always be invaded, and therefore cannot
be an ESS. The same argument applies to a strategy which has leavers at local
densities where staying would result in a net gain (R(x) > 1): A newborn should
always stay at densities for which the expected number of dispersing descendants
produced by all its within patch descendants together is above one.

R(x) can be calculated from (21) and (20):

R(x) =

∫ ∞
0

λ(yx(a))d∗(yx(a)) ×

exp[

∫ a

0

[λ(yx(τ ))(1− d∗(yx(τ ))− µ(yx(τ ))− γ(yx(τ ))]dτ ] da, (24)

where yx should be calculated from (19).
The general theory of structured population models tells that for our model

p̂(x) ≥ 0 if and only if g(x, M̂) ≥ 0. There is no way in which a local population
can ever reach values of x for which g < 0 . Therefore we can safely assume that in
(24) yx ≥ x. Therefore always R(x) ≤ H(x, x) with H defined by

H(z, x) :=

∫ ∞
0

λ(z)d∗(yx(a)) ×

exp[

∫ a

0

[λ(z)(1− d∗(yx(τ ))− µ(z)− γ(z)]dτ ] da. (25)

Our assumptions about λ, µ, an γ together with the definition (23) of x̃ guarantee
that at values of x > x̃

R(x) ≤ H(x, x) < H(x̃, x) = 1. (26)

Thereforefore everybody should disperse whenever x > x̃.
The previous result implies that at the ESS p̂(x) = 0 for all x > x̃. Now consider

what happens at values of x < x̃. Using the fact that x never grows beyond x̃ we
can conclude that here R(x) > H(x̃, x) = 1. So in the ESS everybody should stay
as long as x < x̃. Therefore

g(x, M̂) > g−(x̃, M̂) := lim
x↗x̃

g(x, M̂) = [λ(x̃)− µ(x̃)]x̃+ αM̂ > 0 (27)

for x < x̃. This means that at the ESS 0 < p̂(x) <∞ for 0 ≤ x < x̃.

Next we consider what happens at x̃. From g(x, M̂) > g−(x̃, M̂) > 0 for x < x̃
we conclude that x̃ is reachable from zero in finite time. Therefore at the ESS p̂
contains a delta function component at x̃ representing a concentrated probability
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mass. Moreover, consistency requires that the local population growth rate of the
resident precisely at x̃

g(x̃, M̂) = [λ(x̃)(1− d̂(x̃))− µ(x̃)]x̃+ αŝ(x̃)M̂ = 0. (28)

If g(x̃, M̂) were larger than 0 at the ESS, the local population density would grow
beyond x̃, at which point it would immediately start to decrease to x̃, since beyond
x̃ all newborns leave. The same argument applies at the other side of x̃. If g(x̃, M̂)
were smaller than 0 at the ESS, the local population density would decrease below x̃,
at which point it would immediately start to increase to x̃, since below x̃ all newborns
stay. Averaging over the resulting dither would precisely amount to g(x̃, M̂) = 0.
The biological counterpart of this consistency argument runs as follows. Below x̃
individuals should stay, above x̃ they should leave. At x̃ it is unclear what they
should do. In practice they will perceive the surrounding population density with
some small error. So some of them will leave a little too early and some a little too
late. If by chance many were to err on the late side the local population density would
increase further beyond x̃ forcing them to leave anyway. This natural feedback loop
would (i) produce a very steep hump in p̂ around x̃, with p̂ = 0 somewhat further
beyond x̃, and (ii) produce a pattern of leaving over the small x-interval under the
hump, which when looked at through foggy glasses would be indistinguishable from
(28). (Notice that M̂ in (28) is not a constant: the algorithm for calculating p̂

returns different values of M̂ for different pairs (s(x̃), d(x̃)).)

At the ESS, R(x̃) = 1 independent of the value of d̂(x̃). Apart from (28) there is

no further constraint on d̂(x̃) and ŝ(x̃). If we arbitrarily decide that also d̂(x̃) = ŝ(x̃),

we can uniquely solve d̂(x̃) = ŝ(x̃) from (28). But there is no good biological or
mathematical argument for making such a choice.

The final conclusion is that the ESS overall has the pattern of a bang bang
control: ŝ(x) = 1, d̂(x) = 0 for all x < x̃, ŝ(x) = 0, d̂(x) = 1 for all x > x̃. Only for
x = x̃ the decisions are no longer deterministic. At this value of x the ESS is also
nonunique: there is a one dimensional continuum of ESSes characterized by the pairs
(ŝ(x̃), d̂(x̃)), 0 ≤ ŝ(x̃) ≤ 1, 0 ≤ d̂(x̃) ≤ 1, satisfying λ(x̃)(1−d̂(x̃))−µ(x̃)+αM̂ ŝ(x̃) =

0 together with G(M̂) = 0.

References

De Roos, A.M., O. Diekmann & J.A.J. Metz (1992) Studying the dynamics of struc-
tured population models: a versatile technique and its application to Daphnia.
Am. Nat.: 123-147.

De Roos, A.M. & J.A.J. Metz (1991) Towards a numerical analysis of the escalator
boxcar train. In: J.A. Goldstein, F. Kappel, W. Schappacher (eds.) Differen-
tial Equations with Applications in Biology, Physics and Engineering. Lecture
Notes in Pure and Applied Mathematics 13. Marcel Dekker. Pp. 91-113.

Diekmann, O., J.A.P. Heesterbeek & J.A.J. Metz (1990) On the definition and the
computation of the basic reproduction ratio R0 in models for infectious diseases
in heterogeneous populations. J. Math. Biol. 28: 365-382.

13



Diekmann, O., M. Gyllenberg, J.A.J. Metz & H.R. Thieme (1998) On the formu-
lation and analysis of general deterministic structured population models: I
Linear theory. J. Math. Biol. 36: 349-388.
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A How to calculate Rm when ω is finite

The renumbering scheme L used in subsections 2.3 and 2.4 had as only purpose to
bring out the classical vector-matrix structure of the procedures. To calculate Z
from (10) it is actually easier to go back to the original numbering scheme in terms
of i and j (the numbers of residents respectively mutants in the patch). This we do

by setting ui,j = zL(i,j). The components of the matrix B̃ we shall denote as:

x

x

x

x

-1 0 1 2 3 k

0

1

3

4

k

j

i

k+1

2

Figure 4: Calculating the ui,j from a boundary value problem. The values at the
fat dots are prescribed, those at the x-es and smaller dots have to be calculated.
The idea is first to take the values at the x-es as parameters, then to calculate
the remaining ui,j working downwards using a simple recurrence along the anti-
diagonals, and then to adjust the values at the x-es to satisfy the remaining boundary
conditions.

cai,j = (j + 1)µ∗i+j+1 ,

cli,j = αD̂si+j−1 + (i− 1)λi+j−1(1− di+j−1),

cci,j = −[iµi+j + jµ∗i+j + αD̂si+j + iλi+j(1− di+j) + jλ∗i+j(1− d∗i+j) + γ∗i,j ],

cri,j = (i+ 1)µi+j+1qi+1,j,

cbi,j = (j − 1)λ∗i+j−1(1− d∗i+j−1), for j > 1.
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(The indices a, l, c, r, and b stand for above, respectively left, center, right, and
below.) In addition we define

cbi,1 = −1.

With these conventions we can write, for i ≥ 0, j ≥ 1, i+ j ≤ k,

0 = cai,jui,j+1 + cli,jui−1,j + cci,jui,j + cri,jui+1,j + cbi,jui,j−1,

together with the boundary conditions (see figure 4)

u−1,j = 0, ui,0 = πi, ui,j = 0 for i+ j = k + 1.

One way to solve this boundary value problem is indicated in figure 4. The procedure
suggested there leads to the following algortihm.

• Define new variables v
(h)
i,j , h = 0, ..., k− 1, and i = −1, ..., k, j = 0, ... , k+ 1,

i+ j ≤ k + 1.

• For h = 0, ... , k − 1 set

v
(h)
−1,j = 0 for all j,

v
(h)
0,k+1 = 0, v(h)

1,k = 0, ... , v(h)
k,1 = 0,

v
(h)
0,k = 0, .. , v

(h)
h−1,k−h+1 = 0, v

(h)
h,k−h = 1, v

(h)
h+1,k−h−1 = 0, .. , v

(h)
k−1,1 = 0.

• For each h succesively calculate the v(h)
i,j for i = 0, j = k − 1; ... ; i = k − 2,

j = 1; i = 0, j = k − 2; ... ; i = k − 3, j = 1; ... ... ; i = 0, j = 2 ; i = 1,
j = 1; i = 0, j = 1, using

v
(h)
i,j = −

(cai,j+1v
(h)
i,j+2 + cli,j+1v

(h)
i−1,j+1 + cci,j+1v

(h)
i,j+1 + cri,j+1v

(h)
i+1,j+1)

cbi,j+1

.

• Solve the set of k linear equations in the k unknowns xh, h = 0, ... , k − 1

k−1∑
h=0

(cai,1v
(h)
i,2 + cli,1v

(h)
i−1,1 + cci,1v

(h)
i,1 + cri,1v

(h)
i+1,1)xh = πi.

• Finally calculate the ui,j as

ui,j =
k−1∑
h=0

v
(h)
i,j xh.

A computationally slightly cheaper alternative for the last step is to calculate the
ui,j using the same rule that is used for calulating the v

(h)
i,j , but with u0,k = x0,

u1,k−1 = x1, ... , uk−1,1 = xk−1.
Rm then can be calculated as

Rm = −
k−1∑
i=0

k−i∑
j=1

jλ∗i+jd
∗
i+jui,j.
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B How to calculate p̃(x,M)

An efficient way to calculate p̃(x,M) makes use of the fact that for a given fixed M
there exists a monotone relation (to be called X ) between the age of the local resi-
dent population, τ , defined as the time since a patch underwent its last catastrophe,
and the present resident population density x. The integrals can be calculated using
a standard package for solving differential equations. The differential equations to
be solved are (with the two arguments τ and M suppressed; the X, Y , Z, V and
W below bear no relation to the same symbols from the main text)

dX

dτ
= g(X,M), X(0) = 0,

dY

dτ
= −γ(X)Y, Y (0) = 1,

dZ

dτ
= Y, Z(0) = 0,

dV

dτ
= λ(X)d(X)XY, V (0) = 0,

dW

dτ
= s(X)Y, W (0) = 0.

X describes the development of the local population size, Y the survival of the
colony. The other three quantities are calculated only to find their values for large
τ which are needed as a normalization factor and in the equation for M̂ . Given the
solution of these differential equations G from (16) can be calculated as

G(M) = V (∞)/Z(∞) − [αW (∞)/Z(∞) + µD]M.

In practice one can take τ to be ∞ as soon as Y has decreased to a sufficiently
low value, say 10−5. x̂(M) corresponds to X(∞). The equilibrium colony age
distribution q̂ corresponds to

q̂(τ ) = Ŷ (τ )/Ẑ(∞),

where a ̂ means that the quantity has been evaluated at M = M̂ . The stationary
colony size distribution is calculated by transforming from population age to size:

p̂(X̂(τ )) =
q̂(τ )

g(X̂(τ ), M̂)
.

C How to calculate Rm when ω is infinite

To calculate Rm in practice, it is again easier to revert to a representation in terms
of local population ages. We start calculating a quantity related to the mx(a):

dU

dτ
= [λ∗(X̂)(1− d∗(X̂))− µ∗(X̂)− γ(X̂)]U, U(0) = 1,

with X̂(τ ) the quantities already calculated in appendix B (so that mX̂(τ )(a) =

U(τ + a)/U(τ )). In parallel we calculate a quantity related to the R(x):

dQ

dτ
= λ∗(X̂)d∗(X̂)U, Q(0) = 0
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(so that R(X̂(τ )) = [Q(∞)−Q(τ )]/U(τ )), as well as three helper quantities

dA

dτ
=

s∗(X̂)Ŷ

U
, A(0) = 0,

dB

dτ
=

Qs∗(X̂)Ŷ

U
, B(0) = 0,

dC

dτ
= s∗(X̂)Ŷ , C(0) = 0,

with Ŷ (τ ) the quantities calculated in appendix B. Rm can then be calculated as

Rm =
α∗[Q(∞)A(∞)−B(∞)]

α∗C(∞) + µ∗DẐ(∞)
,

with Ẑ(∞) the quantity calculated in appendix B.
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