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PREFACE 

The problem o f  how t o  model t h e  t i m e  dependence o f  obser -  
v a t i o n s  and of  how t o  p r e d i c t  f u t u r e  o b s e r v a t i o n s  u s ing  p a s t  
d a t a  a r i s e s  i n  many a r e a s  o f  a p p l i c a t i o n  a t  I I A S A .  A very  
broad c l a s s  o f  models which i s  capab le  of r e p r e s e n t i n g  many 
r e a l  t i m e  series i s  t h e  c l a s s  of  a u t o r e g r e s s i v e  i n t e g r a t e d  
moving average (ARIMA) models. 





ABSTRACT 

In recent years there has been considerable interest in 
building models which preserve the autocorrelation structure of 
hydrologic sequences. In particular, Markov models, are frequently 
entertained to describe the time dependence of run-off sequences. 

In this paper we follow a more general approach. Instead 
of restricting ourselves to Markov models, we consider the 
class of autoregressive integrated moving average (ARIMA) models. 
This broad class of models is capable of representing many time 
series observed in practice. 

Since the distribution of the run-off sequences is frequently 
skewed, one has to transform the data. In this paper we give some 
thought to the questions of which transformation one should choose. 
The class of power transformations is discussed in detail. 





ARII.IA Models and Their Use in Modelling Hydrologic Sequences 

1. Introduction 

The design of water resource systems demands frequently the 

generation of synthetic sequences of various water quality and 

run-off sequences. Before being able to generate synthetic se- 

quences and/or forecast future values models have to be found 

which describe past data adequately. Ideally, these models should 

preserve all the properties of the observed data. In practice, 

however, this cannot be achieved and most advisable criteria for 

evaluating the statistical resemblance between historic and gen- 

erated hydrologic data have to be chosen. They should depend on 

the uses to which the generated sequences are to be put and the 

loss that accumulates from reaching the wrong decision. General 

applicable criteria include the preservation of 

i) the correlation structure 

ii) the distribution of the observations, in particular 

a) extreme values 

b) sums and ranges 

iii) the Hurst coefficient 

In recent years there has been considerable interest in 

building models which preserve the autocorrelation structure of 

the observations. Systematic study of the autocorrelation func- 

tion (or spectral distribution function) has led to the specific- 

cation of stochastic models which can be used for prediction and 

generation of hydrologic sequences ([7,8,11,141). In particular, 

autoregressive (Markovian) models are frequently used to describe 

the time dependence (i~ersistance) of hydroloqic run-off sequences. 



However, not only autoregressive models can be used to des- 

cribe stochastic processes. In this paper, we will review and 

discuss the class of ARIMA (autoregressive integrated moving 

average) models, the autoregressive model being a special case 

of it. A three stage iterative modelling procedure, due to Box 

and Jenkins [61, is discussed showing how models can be specified, 

their parameters estimated and their validity checked. 

Models in hydrology are frequently applied to operate on 

the logarithms of the record rather than working with the histori- 

cal untransformed sequence. The logarithmic transformation is 

usually chosen to transform the skewed run-off distribution and 

achieve Normality. It has to be pointed out that: 

1) investigations should be made whether the logarithmic 

transformation is appropriate; 

2) a choice has to be made with respect to the increment 

that should be added to the historical sequence to avoid 

infinite logarithms for times of zero flows. This can 

give rise to serious problems since it is easily shown 

that, for example, the variance of the logarithmic series 

may be drastically changed depending on the increment 

added to the original series. Thus a great part of the 

appropriateness of the model can depend on the increment 

added. 

In this paper we discuss methods which enable us to deter- 

mine whether the logarithmic transformation is feasible or whether 

one should consider different transformations. F1a-thermore, these 

methods provide information on the choice of the increment to be 



added. We discuss the class of power transformations and their 

application to models in hydrology. This class was first intro- 

duced into the statistical literature by Box and Cox [41, and 

has been applied in various other fields such as economics and 

business ([16,18]). It is reviewed how this class of transforma- 

tions can be applied in the context of ARIMA models. 

To illustrate the Box-Jenkins iterative model building pro- 

cedure and the class of power transformations suggested by Box 

and Cox we consider an example using 40 years of monthly stream 

flow data. 

2. The general linear process and its parsimonious versions. 

The class of ARIMA models: 

In the early part of the 20th century, time series studies 

were based on models consisting of a non-stochastic trend term 

with added independent shocks (Schuster [15]). Early criticism, 

however, prompted the search for models which could better describe 

the time dependence of the data. This led to stochastic models 

based on Yule's idea [22], that time series in which successive 

values are highly dependent can be regarded as a linear aggregate 

of independent shocks at. Shocks or innovations are independent 

drawings from some fixed distribution, with mean zero and constant 

2 
variance a . A sequence of such independent random drawings from a 

such a distribution is called white noise sequence, 

Wold [I91 proved the fact that any weakly stationary process 

z (i.e. a process with time invariant first and second order t 

moments) can be uniquely represented as the sum of two process: 



where i) the process u is uncorrelated with the process vt t 

ii) the process v is deterministic t 

ili) u has a one sided moving average representation t 

m cn 
2 

Ll = 1 Ckat+ with$O= 1 and 1 Cj < a . 
k=O j =o 

Such a decomposition of stationary stochastic processes in terms 

of uncorrelated random variables is important since it provides 

a natural setting for predicting future values of the process 

from values obtained in the past. 

One other extensively used decomposition of stationary 

stochastic processes is the spectral decomposition. This is an 

integral expansion with complex coefficients. There are several 

studies using spectral analysis to investigate the statistical 

structure of observed hydrological records such as stream flow 

and precipitation ([2,12,131). It is easily shown that the autocor- 

relation function (time donain) contains the same information as 

the spectral density function (frequency domain). 

Wold's decomposition states that any non-deterministic 

weakly stationary stochastic process can be represented as a 

linear aggregate of random shocks. The general linear process is 

a linear transfornation of white noise, 

where i) zt is the difference between the original 

observations and some deterministic component v t 

(e .g. deviations from the mean) . 



m 

ii) $(B) = I $,B' ; q0 = 1 and 
j=O 

B is the backshift operator ~~z~ = z t-m' 

iii) {at} is a white noise sequence with 

Eat = 0 

for k 0 
- - 

Eatat-k la: for k = o 

Such a linear process is said to be stationary if +(B), the 

generating function of the $-weights, converges for I B ~  - < 1. 

This condition ensures that the $ weights form a convergent 

series, the variance of the process is finite and the matrix of 

autocovariances is positive definite. 

An equivalent representation of the stochastic process (2.2) 

is given by 

where 

a3 

j n(B) = $-I(B) = I - I n.S . 
j=1 3 

The linear process is said to be invertible if r(B), the gener- 

ating function for the n-weights, converges for I B ~  - < 1. The 

invertibility condition is independent of the stationarity con- 

dition and is only necessary if one is interested in a particular 

direction of time. As far as defining a stationary stochastic 

process is concerned, it is easily shown that the representation 

(2.2) is not unique. For example, the two representations 



- 1 where the forward shift operator F = B and et = define 

the same process (correlation function). The first representation 

is directed into the future and for 1$11 < 1 future values are 

derived as a convergent weighted sum of past observations. The 

second representation is directed into the past, and for 1 $ 1 1  < 1 

future values will be a linear combination of past values, but 

with divergent weights. 

Parsimonious versions 

In general, representations (2.2) and (2.3) could cont'ain an 

infinite number of parameters $ and T and they would not be 
j j 

useful if only a finite record of data is available to estimate 

the parameters. 

The consideration of a ratio of two polynomials in B, 

(B) = 1 - BIB -...- e B'--' 
9 

and 

allows great flexibility with only few parameters. 

(i) Op(B) zt = eq(B)at (2.3) 

is called autoregressive moving average model of 

order p and q; ARMA (p,q). 



(ii) Op(B)zt = at (2.4 

is called autoregressive process of order p; A R ( p ) .  

(iii) zt = O (B)at 
9 

(2.5) 

is called moving average process of order q ;  ?4?i(q). 

It can be shown that the ARJlA ( p , q )  process is stationary if 

the characteristic equation $ ( B )  = 0 has all its roots outside 
P 

the unit circle. It is invertible if the roots of 6 (B) = 0 lie 
9 

outside the unit circle. 

Yaglom ([20,211), Box and Jenkins [6] extend this class of 

AX4A models to cover nonstationary series which in particular 

do not vary about a fixed level and/or trend and/or periodicity, 

but apart from this one part of the series behaves very much 

like the other. Stochastic processes which exhibit these char- 

acteristics have some roots of @(B) = 0 lying on tne unit circle 

implying that the autoregressive operator will contain factors 

2 2 12 
of the form (1 -B), (1 -B) , ( 1  -6  B + B  ) ,  (1 - B  ) . . . .  Box 

and Jenkins refer to such as simplifying operators. Particular 

examples of the simplifying operators are the ordinary differ- 

ences. The introduction of the operator (1 - B) allows for non- 

st 
stationarity of the original series and up to the (d-1) differ- 

ence, while all higher differences are stationary. For d = 1, 

the model allows for nonstationarity in terms of having no fixed 

level. For d = 2 it allows for nonstationarity in both level and 

slope. Processes of the form 

are called autoregressive integrated moving average processes; 

ARIm (p,d,q). 



Forecasts for this class of models are easily derived using 

general prediction theory as discussed by I<olmogorov [91f Wiener 

[17], and Wold [191. The minimum mean square error forecast of 

z n+Rf denoted by sn(R), is given by 

where [ z ~ + ~ ]  is the conditional expectation of z,+~ given know- 

ledge of all the observations z up to time n. Forecasts can be t 

expressed in different equivalent forms: 

(i) forecasts from the difference equation 

where 

E(zn-j J z ~ ~ z ~ - ~  I. - - I  for j < o 
[zn- 

z n-j for j > 0 - 

for j < 0 

for j > 0 - 

Forecasts are updated easily from one observation to the other: 

where a n+ 1 is one step ahead forecast error; 



(ii) Another  way t o  r e p r e s e n t  minimum mean s q u a r e  e r r o r  

f o r e c a s t s  i s  o v e r  t h e  e v e n t u a l  f o r e c a s t  f u n c t i o n .  The e v e n t u a l  

f o r e c a s t  f u n c t i o n  i s  t h e  s o l u t i o n  o f  t h e  d i f f e r e n c e  e q u a t i o n  

yp+d ( B ) i n ( k )  = 0 
f o r  R > q 

which i s  g i v e n  by 

& ( e )  = bl  ( n ) f l  ( e )  +. . .+ b p + d ( n ) f p + d ( e )  f o r  > q-P-d (2 .9 )  
n  

f l ( R )  , . . . , f p + d ( R )  a r e  f u n c t i o n s  o f  t h e  l e a d  t i m e  R and depend on 

t h e  a u t o r e g r e s s i v e  p a r t  o f  t h e  model o n l y .  I n  g e n e r a l  t h e s e  

f u n c t i o n s  can  be  po lynomia l s ,  e x p o n e n t i a l s ,  s i n e s ,  c o s i n e s  and 

combina t ions  o f  t h e s e  f u n c t i o n s .  

For  a g i v e n  f o r e c a s t  o r i g i n  t t h e  c o e f f i c i e n t s  b ( n )  = - 
[bl ( n )  , . . . bp+d ( n )  1 are c o n s t a n t s  and a r e  t h e  same f o r  a l l  l e a d  

t i m e s  R .  They change,  however, from one f o r e c a s t  o r i g i n  t o  t h e  

n e x t  and shown by Box and J e n k i n s  [6] a r e  updated  by 

where 

and 



(iii) Forecasts as weighted average of previous observa- 

tions 

where 

Seasonal Models 

The fundamental fact about seasonal time series with period 

s is that observations which are s intervals apart are similar. 

Therefore one might expect that the operation BSz = z 
t t-s would 

play an important role in the analysis of seasonal series. Fur- 

thermore, if nonstationarity is to be expected in the series zt, 

S the simplifying operation (1 - B  )zt = z -z t t-s might be useful. 

i2mk 

This nonstationary simplifying operator has s zeros e S 

(k=O,l, ..., s-1) evenly spaced on the unit circle. 
For monthly observations with a yearly seasonal pattern, 

a complete set of sinusoids would be generated by the opera- 

12 tor (1 - B  ) This operator can be factored into operators 

corresponding to different components of sines and cosines. 

Factor 

1 - B  

1 - J ~ B + B ~  

1 - B + B  2 
1 + B~ 
1 + B + B  2 

1 + J S B + B ~  

l + B  
J 

Root 

1 

f ( ~ 3 k i )  

f (1 t i) 

ti 

f (-1 t i) 

f(-fiki) 

-1 

Period 

Constant 

12 

6 

4 

3 

12/5 

2 

Frequency in 
Cycles per Year 

1 

2 

3 

4 

5 

6 



When we analyze a series which exhibits seasonal behaviour 

with known periodicity (let's say monthly run-off data with yearly 

seasonal pattern) one realizes that in periodic data there are 

not one, but two time intervals of importance. One expects 

relationships to occur 

(i) between observations for .the same month in successive 

years ; 

(ii) between observations for successive months in the 

same year. 

Since in seasonal time series the observation zt, let's say for 

the month of August, is related to previous August values, we 

might be able to link these observations by 

where 

Usually it will be reasonable to assume that the parameters 

@ and O contained in these models are approximately the same 

for each month. If this assumption is too restrictive, addi- 

tional parameters have to be introduced. 

The error components at,at-lI... in these models, however, 

would in general not be uncorrelated. For example, the obser- 

vation for August would be related to the observation of July 

of the same year. To take care of such,relationships, we intro- 

duce the second model 



d 
@(B) (1 -B) at = 0 (B)at , 

where at is a white noise process and 

$(B) = 1 - @lB -.. . P - OPB , 

Combining the models in (2.12) and (2.13) we obtain the multi- 

plicative model as it is discussed in Box and Jenkins ([5,61) 

The resulting multiplicative model is said to be of order 

(prdtq) x (P,D,Q) i2 -  

To get better understanding of these seasonal stochastic 

difference equation models it is best to consider some examples. 

Model I: The multiplicative 0,1,1 x (0,1,1)12 model 

12 (1 - )  (1 B )zt = (1 - BB) (1 -OB 12 )at . (2.15) 

The eventual forecast function satisfies the difference equation 

(1 - B) (1 - B ~ ~ ) & ~ ( u  = 0 for R > 13 . 

Writing R = (r,m) r = 0,1 ...; m =1,2, ..., 12 to represent a lead 
time of r years and n months it can be readily shown that the 

solution of (2.15) is given by 

The forecast function contains 13 adjustable coefficients 

bOtl (n), - ,b0,12 (n) , bl (n) representing 12 monthly and one 

yearly contribution, determined by the first 13 forecasts. 



The $-weights of model ( 2 . 1 5 )  are derived by equating 

1 2  ( 1  - 0 B ) : ( 1  - OB 1 = $ ( B ) . ( l  - B )  ( 1  - B ' ~ )  . 
and are given by 

- 
= $ -. . .= J I l l  = h  q 1 2  = h  + A 

- - - 
'13 - '14 - . . .- $ J ~ ~  = h ( l + A )  $ J ~ ~  = h ( l + A )  + A 

- 
'25 = $ 2 6  - . . .= $ J ~ ~  = h ( 1 + 2 A )  $ J ~ ~  = h ( 1 + 2 A )  + A . 

. . . . .  
Representing $ j as 'r.m where r refers to years and m to months 

where 

1  for m = 1 2  
6 = {  

0 f o r m + 1 2  

and 

The IT-weights are derived by equating coefficients in 

and are given by 

IT =  IT 
j 

+ OIT 
j - 1  j - 1 2  - "ITj-13 j - > 1 4  ( 2 . 1 8 )  

The one step ahead forecast for model I is an exponentially 

weighted moving average taken over previous months modified by 



a second exponentially weighted moving average of discrepancies 

found between similar monthly exponentially weighted moving 

averages and actual performaces in previous years. 

This can be seen from (2.15), since the model can be written 

Thus 

The one step ahead prediction for August, let's say, is an ex- 

ponentially weighted average of previous months up to July. 

However, it is also corrected by a second exponentially weighted 

average over previous discrepancies between actual August values 

and the corresponding monthly moving averages taken over previous 

months in those years. 

The adaptive nature of the forecast function can be seen 

by considering the updating relation 

b ~ , m  (n+l) + rbl (n+l) = bOtm+, (n) + rbl (n) + A(l+rA)ag+l . 

Equating coefficients in r 



Similarily if m = 12 

Model 11: The multiplicative (1,0,0) x (0,1,1)12 model. 

The eventual forecast function for (2.22) is the solution 

12 of (1-@B)(1-B )2n(!L) = 0 for !L > 12 and is given by 

Proof: 

Defining 

we see that 

Furthermore 



Adding the r equations we get 

un(0,12) 
Interpreting Pn (0.m) as b (n) and as bl (n) the re- 

O,m 1 - @I2 
sult (2.23) follows. 

The forecast function contains 13 adjustable coefficients 

bo, (n), . . . ,bat (n) ,bl (n) . These coefficients are determined 

by zn and the first 12 forecasts and are updated as new obser- 

vations become available. The adjustment of the coefficients 

depends on the $-weights of the model. 

models with time as extraneous variable. 

Models with time as extraneous variable 

Time dependent observations are often modelled as 

z = f (t) + at t (2.24) 

where f(t) is a deterministic function of time and at are in- 

dependent shocks. For example, 

Model (2.25a) specifies a fixed mean, model (2.25b) a monthly 

seasonal pattern and model (2.25~) a monthly seasonal pattern 



and yearly trend. These models suppose that the seasonal and 

trend components are fixed and that the same projection will 

apply at all times. The models (2.25) can be shown inadequate 

for two reasons: 

i) the noise is modelled inadequately, since it generally 

does not account for correlation among the errors 

ii) the models assume a functional form which remains 

constant over time. A great deal of flexibility 

might be added to the predictive capacity of such 

models if the f3 coefficients were adaptive and could 

change as the time series evolves. 

Both these deficiencies can be corrected by defining the models 

in terms of stochastic difference equations (AKIMA models). 

Adaptive stochastic difference equation models. 

It was pointed out before that from the time of Yule (1927) 

it has been realized that models in which the noise may be cor- 

related and in which the basic parameters are functions of time 

can be achieved by finding the model not in explicit terms as 

in (2.24), but in terms of stochastic difference equations. It 

was pointed out, for example, in (2.9), (2.16) and (2.23) that 

stochastic difference equations lead to eventual forecast func- 

tions of the form (2.24). The basic parameters of the forecast 

function, however, are adaptive. 

The difference between adaptive difference equation models 

and models with time as extraneous variable is best brought out 

by considering the following simple example: 



Example: 

The f i r s t  o r d e r  i n t e g r a t e d  model; A R I I A  ( 0 , 1 , 1 )  

I t  i s  e a s i l y  shown t h a t  

and 

(2 .28)  shows t h a t  t h e  f o r e c a s t  i s  a d a p t i v e  i n  t h e  s e n s e  t h a t  

t h e  c o e f f i c i e n t  b o ( n )  i s  updated w i t h  each  new o b s e r v a t i o n .  

However, i f  one would f o r e c a s t  w i t h  t h e  model (2 .25a)  z 
t = Bo + a t ,  

h w e  g e t  z ( R )  = BO. (2 .25a)  i m p l i e s  t h a t  t h e  added d a t a  l e a v e s  n  

t h e  b a s i c  pa ramete r  unchanged. 

F e a r s  have sometimes been exp re s sed  t h a t  t h e  s t o c h a s t i c  

d i f f e r e n c e  e q u a t i o n  (ARIMA) approach may l e a d  t o  unneces sa r i ' l y  

compl ica ted  models when models of  s i m p l e r  t y p e  (e .g .  de te rmin-  

i s t i c  component and a d d i t i v e  independent  e r r o r s )  a r e  ade- 

q u a t e .  One a d d i t i o n a l  advantage  o f  t h e  s t o c h a s t i c  d i f f e r e n c e  

e q u a t i o n  models b e s i d e s  a l l owing  f o r  g e n e r a l  n o i s e  s t r u c t u r e  

and a d a p t i v e  b a s i c  pa ramete r s  i n  t h e  f o r e c a s t  f u n c t i o n ,  however, 

i s  t h a t  t h e y  e n c a p s u l a t e  w i t h i n  themse lves  t h e  t r a d i t i o n a l  models 

l i k e  (2 .24)  ( f o r  d e t a i l e d  d i s c u s s i o n s  o f  t h i s  p o i n t  see Abraham [ I ] ) .  

For  example, t h i s  can  be seen  i n  (2 .26)  - (2 .28)  by l e t t i n g  9 + 1 .  

I n  t h i s  c a s e  bo(n+l  ) = bo(n)  and t h e  model (2 .28)  c o i n c i d e s  w i t h  

(2 .25a)  . 



Another example which illustrates this fact is given below. 

It will be shown in section 5 that the (1,0,0) x (0,1,1)12 model 

provides a suitable stochastic difference equation for repre- 

senting monthly run-off sequences. 

If O + 1, it can be seen that the model in (2.29) approaches 

(I-OB) (zt-f (t) = at (2.30) 

where f (t) satisfies (I-B'~) f (t) and thus, in general, can be 

represented by the 12 monthly means. If O - t  1, (2.29) is equiva- 

lent to a first order autoregressive process of the observations 

corrected by their monthly means. 

3. The philosophy of iterative model building 

If the form of stochastic model is known and the values of 

the parameters are given, synthetic sequences can be generated. 

In practice, however, the structure of the process is rarely, if 

ever, known and one has to use past observations to derive ade- 

quate models and estimate their parameters. 

Box and Jenkins [ 61  develop a three stage iterative pro- 

cedure "Identification-Fitting-Diagnostic Checking" to find ade- 

quate model(s) describing the correlation structure of past data. 

The iterative procedure is shown in the diagram. 



POSTULATE G E N - E R i '  
CLASS OF hlODEL 

I TO BE TENTATIVELY ENTERTAINED I 

I ESTIMATION OF THE P;ULWIETERS IN 1 
TENTATIVELY ENTERTAINED >IOOEL(,S) 

I 

DIAGNOSTIC CHECKING OF THE 
ADEQUACY OF TENTATIVELY ENTER- 
TAINED MODEL(,S) 

USE h-IODEi(Sf FOR 
FORECASTING ; 

DIAGRAM: THREE STAGE ITERATIVE  MODELLING PROCEDURE: 

" IDENTI FICATION - ESTIMATION - DIAGNOSTIC CHECKING, " 



Model Identification 

~t the first stage of the iterative approach to model build- 

ing, the identification (specification) stage, one uses the data 

and the knowledge of the system to suggest an appropriate parsi- 

monious subclass of models which may be tentatively entertained. 

At this stage one has to decide about the particular metric to 

present the data in, whether the data are modelled in their 

original form or whether transformations have to be considered. 

Quite frequently it is useful modelling the random component in 

a different metric achieving a simpler structure, constancy of 
. . 

error variances and normality of distribution. It will be dis- 

cussed in the fourth part of this paper how transformations can 

be parameterized and the value of the parameters estimated from 

observed data. 

At this stage, the basic tools for modelling the time de- 

pendence of the data are plots of the data and sample autocor- 

relation and partial autocorrelation function. The properties of 

theoretical autocorrelation and partial autocorrelation functions 

provide a convenient reference table for tile model (s) to be 

chosen. It must be pointed out that at this stage statistically 

inefficient methods must necessarily be used since no precise 

formulation of the problem is yet available. 

Model Estimation 

At this stage efficient use of the data is made by making 

inferences about the parameters conditionally on the adequacy of 

the entertained model. For the case of Normally distributed 

shocks, the likelihood function of ARIMA models can be obtained 



and the limiting properties of these estimates derived. For the 

case of Normally distributed errors the maximum likelihood estima- 

tors can be approximated by the least squares estimates and non- 

linear regression routines can be utilized to derive the estimates. 

For the case of other error distributions, however, the maximum 

likelihood estimates can differ from the usual least squares es- 

timates. Some discussion of this point for the class of symmetric 

exponential power distributions is given in Ledolter [ l o ] .  Since 

it can become very laborious to derive maximum likelihood estimates 

in the case of other non-Normal distributions it appears to be a 

better approach to first transform the data to achieve approxi- 

mately Normal error distributions. 

Diagnostic Checking 

After fitting the tentatively entertained model(s) to the 

observed data one has to check the fitted model in its relation 

to the observed data with intent to reveal model inadequacies and 

to achieve improvement. The residuals from the fitted model contain 

all the information about the adequacy of the fitted model. In- 

spection of sample autocorrelation function of the residuals 

indicate whether the entertained model is adequate to describe 

the correlation structure for the data set under study, or if 

and how the model should be revised. Furthermore, a plot of 

the histogram of the residuals shows whether the Normality assump- 

tion of the errors is justified. 

Model identification, estimation and diagnostic checking 

are important in the iterative model building procedure. After 

diagnostic checks satisfy the critic as of the adequacy of the 

model he originally sponsored, the derived model can be used for 

forecasting and generating purposes. 



4. The class of power transformation applied to time series 

models 

Box and Cox [ 4 1  consider the following family of power trans- 

format ions : 

(i) the one parameter family: 

(ii) .the two parameter family: 

The transformation in (i) is valid for z > 0; the transformation t 

in (ii) for zt > -A2. This class of transformations has proved 

useful in transforming the data to achieve a simple structure 

of the model as well as constant error variances and Normality 

of the error distribution. 

Suppose we observe a time series of n observations 

z' = (zl,z2,...,zn) from a ARIMA model - 

where A '  = (Al,A2) as in (4.2) above and a is a Normal white - t 

noise sequence. We thus assume that for some unknown A the - 
transformed observations can be represented as ARIMA model sat- 

isfying the usual Normal assumptions,of the shocks a 
t' 



Conditional on a set of starting values z (A) and a which 
-0- -0 

can be set equal to their conditional expectation (which is zero) 

the joint probability function of the transformed data is given 

where 

In terms of the original observations z '  = (zl,.. 
.., 

. ,zn) the like- 
2 

lihood of (@,O,A,a ) is given by - - -  

where the Jacobian of the transformation is 

We find the maximum likelihood estimates in two steps. For given 

X the likelihood in (4.5) is, except for the constant J(A;z), the - - - 
(A) likelihood of the ARIMA model in zt-. . The maximum likelihood 

estimates of @ and 8 can be derived using a non-linear regression - - 
2 2 

analysis program. For fixed A, the estimate of u , a (A), is - - 
given by n 

I L  2 A A L at(@,etA) t=1 '7 - - - - 82 (A) = - 
.., n n I 



and the maximized log likelihood is, except for a constant, given 

Lmax - 1 2  -n 6 (A) + log J(A;z) 2  ... - - 

The result simplifies considerably if one works with normalized 

variables 

In the case of the one parameter transformation z is given by t 

and in the case of the two parameter transformation 

where gm(*) denotes the sample geometric mean. It is easily seen 

that (4.6) simplifies to 

and 

. - 1  (A) 
a = (O (B)B (B) zt-- t 

and $ and 8 are the maximum likelihood estimates for the ARIblA - - 
(A) model in zt- . 



A plot of the maximized likelihood function L (A) for a max 

trial series of A values (in the one parameter transformation) 

will be informative. For the two parameter family contours of 

L (A) can be derived combining the points A' = (A1,A2) of equal 
max - - 
likelihood. 

From these plots the maximizing value f i  (in the one param- 
h h 

eter transformaiton) or A = ( ^ X  ,A ) (in the two parameter trans- - 1 2  

formation) may be read off. Furthermore, approximate 100 (1 -a) 

percent confidence regions can be obtained from 

2 where xi(a) is the a per cent cut off point of a Chi-square dis- 

tribution with degrees of freedom given by i = 1(2) for the one 

(two) parameter transformation. 

Equivalently one can also use a Bayesian approach to derive 

the posterior distribution of A. Assuming a non informative 
* 

a priori distribution which is flat over the region of appreciable 

likelihood will result in point estimates close to the ma.ximum 

likelihood estimates. The Bayesian approach, however, can also 

be used to incorporate a priori information into the analysis. 

5. An example: 

To illustrate the Box-Jenkins approach to model building 

and the use of the family of power transformations, we consider a 

record of 40 years of monthly run-off data collected at a Car- 

pathian river near the border of Czechoslovakia and Poland. The 

data together with their monthly means and standard deviations 

are given in Table 1; a plot of the data is given in Fig. 1. 



Inspection of the data immediately reveals that: 

i) the observations show a strong yearly seasonal 

pattern and thus seasonal models are called for. 

ii) higher measures of variation (monthly standard 

deviations) are observed at higher levels of run-off, 

thus calling for a transformation to transform the 

data to a Normal distribution with constant variance. 

Seasonal ARIMA model 

Identification. 

To tentatively identify the form of the model, we use the 

estimated autocorrelation and partial autocorrelation function. 

We first consider the logarithm of the original data, since it 

appears that the monthly means are roughly proportional to their 

standard deviations. Later in the estimation stage, however, we 

will parameterize the transformation and estimate the transform- 

ation simultaneously with the parameters in the ARIMA model, 

The estimated autocorrelation function (ACF) for log zt 

12 and (1-B ) log zt are given in Fig. 2. It can be seen that 

the ACF of log zt at lag 12,24,36, ... decays almost linearly and 
fails to die out quickly. This is an indication of nonstation- 

arity and leads to consider a model which includes the seasonal 

simplifying operator (1-B12). The ACF for (1-B1*) log z , given t 

in Fig. 2, shows an exponential decay in the non-seasonal part 

and significant autocorrelations around lag 12. In the Appendix, 

it is shown that a model which generates such a ACF can be given 

by 

12 12 
(l-@B) (1-B )logzt = (1-OB )at . 

The partial ACF strengthens this tentative conclusion. 



Es t ima t ion .  

A f t e r  t e n t a t i v e l y  e n t e r t a i n i n g  t h e  above model, w e  have t o  

e s t i m a t e  i t s  paramete rs .  S ince  t h e r e  a r e  no months o f  z e r o  f low 

w e  can  u se  t h e  fami ly  o f  one parameter  power t r a n s f o r m a t i o n s  

Es t ima te s  f o r  t h e  paramete rs  i n  

have t o  be d e r i v e d .  W e  u se  t h e  e s t i m a t i o n  approach a s  o u t l i n e d  

i n  s e c t i o n  4 and u s e  a  non - l i nea r  r e g r e s s i o n  s u b r o u t i n e  t o  d e r i v e  

approximate maximum l i k e l i h o o d  e s t i m a t e s  ( c o n d i t i o n a l  on s t a r t i n g  

v a l u e s )  . 
The p l o t  o f  Lmax(X) a s  g i v e n  i n  (4 .10)  f o r  a  series o f  h 

v a l u e s  can be found i n  F ig .  3. The maximum i s  reached  a t  

Using t h e  Normal t h e o r y  approxlmation (4 .11)  approximate 95% 

conf idence  l i m i t s  f o r  X a r e  g i v e n  by ( - .26 , - .08) .  The 95% con- 

-f idence  i n t e r v a l s  f o r  @ and 0 a r e  g iven  by ( .  53, .  67) and 

( .82, .92) r e s p e c t i v e l y .  

Diagnostic. 

Before  a d a p t i n g  t h e  model (5 .1 )  and u s i n g  it f o r  f o r e c a s t i n g ,  

d a t a  g e n e r a t i o n  o r  c o n t r o l ,  i t s  adequacy has  t o  be checked. Most 



important are the residuals at this stage, since they provide 

the information whether the model is inadequate and how it should 

be changed. Plots of the ACF of the residuals are given in 

Fig. 4. If the time dependence in the observations is adequately 

represented by the model, the residuals should be white noise 

and the autocorrelations of the residuals rk(2) should, for 

large samples, be independent and approximately Normal with mean 

1 zero and variance (where n is the number of available obser- 

vations). Fig. 4 does not reveal any shortcomings of the model; 

only one autocorrelation (at lag 18) exceeds the 20 limits. A 

portmaneau lack of fit test reaches the same conclusion. It is 

shown in Box and Jenkins [61 that under the null hypothesis (no 

2 
lack of fit) n 1 rk(2) follows a X2 distribution with K- (numbers 

k= 1 
of estimated AR and MA parameters) degrees of freedom. For the 

present example, the test statistic is 38.06. Compared to a 

X2 distribution with 34 (36-2 estimated parameters) degrees of 

freedom, it is insignificant at the .1 level. 

Further tests to check whether there are differences in the 

monthly means of the residuals (analysis of variance) and whether 

the residuals are normally distributed (Chi-square test) failed 

to put model (5.1) in jeopardy. 



Jan. Feb. 

7.57 

3.90 

2.66 

I .a9 

3.57 

11.00 
2.75 

r .  ! June 

5.61 16.50 14.10 

2.05 5.37 14.60 

7-60 G.76 2.28 

3.25 12.30 5.49 

9.23 12.80 13.82 

7.00 8.-40 5.10 
3.52 39.70 13.80 

Ju lv  - 
7.84 

4.14 

2.23 

2.90 

5.25 

3.87 2.65 b'bl7th.l.y standard 
rkviat ion 

Table 1: Listing of 40 years of monthly 
run-off data (in rn3/sec. ) ; 
Carpathian River. 
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Figure 3: Plot of the function Lmax(A) 

for unstandardized run-off data. 

Arrows show approximate 95 percent 

confidence interval for A. 







APPENDIX : 

USE OF AUTOCOKRELATION FUNCTIONS IN IDENTIFICATION. 

Since the class of. ARIMA models is too extensive to be con- 

veniently fitted directly to the data, rough methods for iden- 

tifying parsimonious subclasses have to be found. The empirical 

autocorrelation functions of the original series and its differ- 

ences are important tools for the indentification of parsimonious 

models 

n-k n - 

where 2 is the sample mean of n available observations. The 

empirical autocorrelations r are for any stationary process k 

consistent estimators of the tl~eoretical au-tocorrelations p 
k 

The strategy in determining the order of the autoregressive, mov- 

ing average and differencing operators, is first to difference 

the observations until stationarity is achieved. It can be shown 

that the autocorrelations of any ARMA (p,q) process statisfy 

T ~ Q  solution of this difference equation (assuming distinct roots 

for convenience) is given by 

where Ai are the inverse of the roots of + ( B )  = 0. For a sta- 

tionary model, the ACF will die out quickly as I< increases. 

Whenever a root, however, approaches the unit circle 



(nonstationarity) the ACF will fall off slowly and very nearly 

linearly. This situation occurs, for example, in Fig. 2, where 

the autocorrelations of the log of the observations 12 steps 

apart fail to die out quickly. This prompted us to consider 

12 
(1-B ) log zt to achieve stationarity. 

After achieving stationarity, the orders of the autore- 

gressive and moving average operations have to be determined. 

It can be shown that the ACF of a MA(q) process is given by only 

q non-zero autocorrelations, while the autocorrelations for higher 

lags (greater than q) vanish. The ACF of autoregressive or mixed 

autoregressive moving average process is infinite in extent and, 

as can be seen from (A.3), is dominated by exponentials and 

damped sine waves. 

As far as our example in section 5 is concerned, it can be 

12 seen from Fig. 2 that the autocorrelations of (1-B ) log zt decay 

roughly exponentially from lag 1 onwards. However, apart from 

this correlation pattern, which can be explained as coming from 

a first order autoregressive process, one can still notice a 

seasonal effect at lag 12. Since the seasonal effect only re- 

sults in significant correlation at lag 12, but not at lag 

24,36, ... we include a seasonal moving average operator into the 
model. Therefore we tentatively identify the node1 as in (5.1). 

Another useful tool for the identification of models is the 

partial autocorrelation function. It is a device which exploits 

the fact that whereas an autoregressive process of order p has 

an autocorrelation function which is infinite in extent, it can, 

by its very nature, be described in terms of p non-zero functions 

of the autocorrelations. 



REFERENCES 

[I] Abraham, B. and G.E.P. Box. L i n e a r  Mode ls ,  Time S e r i e s  and 
O u t l i e r s  3 :  S t o c h a s t i c  D i f f e r e n c e  E q u a t i o n  Mode ls ,  
Technical Report 438, Department of Statistics, Univer- 
sity of  isc cons in-Madison, 1975. 

[2] Adamowski, K. Spectral Density of a River Flow Time Series, 
J o u r n a l  o f  Hydro logy ,  - 14, (1971), pp. 43-52. 

[3] Bartlett, M.S. On the Theoretical Specification of Sampling 
Properties of Autocorrelsted Time Series, J o u r n a l  Roya l  
S t a t .  S o c . ,  S e r i e s  B ,  - 8, (1946), pp.27. 

[4] Box, G.E.P. and D.R. Cox. An Analysis of Transformations, 
J o u r n a l  Roya l  S t a t .  S o c . ,  S e r i e s  B ,  - 26, (1964), pp.211-252. 

[5] Box, G.E.P. and G.M. Jenkins. Models  f o r  P r e d i c t i o n  and 
C o n t r o l ;  V I I I  F o r e c a s t i n g  S e a s o n a l  Time S e r i e s ,  
Technical Report 104, Department of Statistics, Univer- 
sity of  isc cons in-Madison, 1967. 

[6] BOX, G.E.P. and G.M. Jenkins. Time S e r i e s  A n a l y s i s ,  F o r e c a s t -  
i n g  and C o n t r o l ,  Holden-Day, San Francisco, CA., 1970. 

[7] Carlson, R.F., MacCormick, A.J.A. and D.G. Watts. Application 
of Linear Random Models to Four Annual Flow Series, 
Water  R e s o u r c e s  R B S . ,  - 6 ,  / 1 9 7 0 ) ,  pp. 1017011073. 

[8] ~areliotis, S.J. and V.T. Chow. Analysis of Residual Hydro- 
logic Stochastic Process, J o u r n a l  o f  Hydro logy ,  - 15, 
(1972), pp. 113-130. 

[9] Kolomogorov, A.N. Interpretation and Extrapolation von 
Stationaren Zufalligen Folgen, B u l l .  Acad.  S c i .  (Nauk l  
USSR, S e r .  Math. ,  - 5, (1941), pp. 3-14. 

[lo] Ledolter, J. T o p i c s  i n  Time S e r i e s  A n a l y s i s ,  Ph.D. Thesis, (1975) 
Department of Statistics, University of Wisconsin-Madison. 

[I l l  McKerchar, A.I. and J.W. Delleur. Application of Seasonal 
Parametric Linear Stochastic Models to Monthly Flow Data, 
Water  R e s o u r c e s  R e s . ,  10, (1974), pp. 246-255. - 

[12] Quimpo, R.G. Stochastic Analysis of Daily River Flows, 
J o u r n a l  o f  t h e  H y d r a u l i c s  D i v i s i o n ,  A S C E ,  - 94, (1968) 
pp. 43-57. 

[13] Quimpo, R.G. Autocorrelation and Spectral Analysis in Hydro- 
logy, J o u r n a l  o f  H y d r a u l i c s  D i v i s i o n ,  ASCE, - 94, (1968) 
pp. 363-373. 

[14] Rodriguez-Irtube, I., Mejia, J.M. and D.R. Dawdy. Streamflow 
Simulation. 1 - A New Look at Markovian Models, Frac- 
tional Gaussian Noise and Crossing Theory, Water  Resource8  
R e s . ,  8, (1972), pp. 921-930. 



Schuster, A. On the Periodicities of Sunspots, P h i l .  T r a n s .  A, 
20;': (1906) , pp.69-100. -- 

Tiyit:' r, G. and G. Kadekodi. A Note on the Use of Trans- 
rmations and Differences in the Estimation of Econo- 

metric Relations, S a n k h y a ,  B, - 35, (1971), pp. 263-277. 

Wiener, N. E x t r a p o  Z a t i o n ,  I n t e r p o  Z a t i o n  and  S m o o t h i n g  o f  
S t a t i o n a r y  T ime  S e r i e s ,  John Wiley, New York, N.Y., 
1949. 

Wilson, T.G. Discussion of paper by Chatfield and Prothero, 
"Box and Jenkins Seasonal Forecasting : Problems in a Case 
Study," J o u r n a l  RoyaZ S t a t .  S o c . ,  S e r i e s  A, - 1 3 6 ,  (1973), 
pp. 315-319. 

Wold, H.O. A  S t u d y  i n  t h e  A n a l y s i s  o f  S t a t i o n a r y  T i m e  S e r i e s ,  
Almquist and Wicksell, Upsala, 2nd Edition, 1954. 

Yaglom, A.M. An I n t r o d u c t i o n  t o  t h e  T h e o r y  o f  Random F u n c t i o n s ,  
English Translation by A. Silverman, Prentice-Hall, 
Englewood Cliffs, N.J., 1962. 

Yaglom, A.M. The Correlation Theory of Processes Whose 
n'th Difference Constitutes a Stationary Process, 
Matem. S b . ,  37, (1955), pp. 141. 

Yule, G.U. On a Method of Investigating Periodicities in 
Disturbed Series, With Special Reference to ~6lfer'S 
Sunspot Numbers, P h i l .  T r a n s . ,  A, 226, (1927), pp. 267-298. 


