
International Institute for Applied Systems Analysis
Schlossplatz 1 • A-2361 Laxenburg • Austria

Telephone: ( 43 2236) 807 342 • Fax: ( 43 2236) 71313
E-mail: publications@iiasa.ac.at • Internet: www.iiasa.ac.at

Interim Report IR-00-022

Dynamic Model of Market of Patents and Equilibria in
Technology Stocks
Arkadii Kryazhimskii (kryazhim@mi.ras.ru)
Chihiro Watanabe (chihiro@me.titech.ac.jp)

Approved by

Gordon MacDonald (macdon@iiasa.ac.at)
Director, IIASA

April, 2000

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National
Member Organizations, or other organizations supporting the work.



– ii –

Contents

1 Firms: static relations 3
1.1 Production functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Exchange in technologies . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Technology game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Dynamic market of patents 5
2.1 Dynamics of technology stocks . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Market of patents. Boundedly rational decisions . . . . . . . . . . . . 6
2.3 Optimality of boundedly rational decisions . . . . . . . . . . . . . . . 7
2.4 Robustness and multioptimality of boundedly rational decisions . . . 9
2.5 Local game. Nash equilibricity of boundedly rational decisions . . . . 9
2.6 Informational aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Analysis of market trajectories 11
3.1 Assumptions and definitions . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Domain of attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Evolution in the area of low technology stocks . . . . . . . . . . . . . 13
3.4 Convergence to the best Pareto equilibrium . . . . . . . . . . . . . . 13

4 Conclusions 14

5 Appendix 14



– iii –

Abstract

The paper presents a dynamic model of trading on market of patents. It is assumed
that each firm participating in market produces its own technologies, whereas its
manufacturing sector utilizes both originally produced technologies and those pro-
duced in other firms. The firms are therefore interdependent through the technology
stocks used in manufacturing, which provides a basis for the emergence of market
of patents. In our model a firm has three actions in market, prior announcement,
offering payoffs and making decisions. Three-stage trading is repeated periodically
and thus drives the evolution of the firms’ technology stocks. We show that, un-
der reasonable assumptions, the proposed pattern allows the firms to act so that,
first, their individual decisions are subjectively best in every period of trading, and,
second, current combinations of their technology stocks gradually approach a state
which maximizes the total profit of the firms’ community. An important feature of
the model is that the described market operations imply the minimum exchange in
individual information.
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Dynamic Model of Market of Patents and

Equilibria in Technology Stocks

Arkadii Kryazhimskii
Chihiro Watanabe

Introduction

Globalization processes in economy have elevated the importance of knowledge as a
critical techno-economic driver. Many economists describe knowledge as the engine
of modern technological development. The key impacts of knowledge dissemina-
tion on long-run economic growth performance have been captured in the analytic
framework of endogenous growth theory (see Grossman and Helpman, 1991). Within
this analytic approach, the situation where a country has immediate, complete and
costless access to the knowledge stocks of other countries, and also effects of assym-
metric and symmetric flows of knowledge have been explored (see Hutschenreiter,
et. al., 1995; Borisov, et. al., 1999). In these studies the country’s ability to utilize
externally produced knowledge is characterized by its absorbtive capacity, a vari-
able index positively related to the country’s accumulated knowledge stock. The
absorptive capacity (or the assimilation capacity) consists of capacities of (i) distin-
guishing profitable knowledge from different knowledge, (ii) internalizing accepted
knowledge, and (iii) embodying the internalized stock of knowledge to production
process (Watanabe, et. al., 1998).

The absorbtive capacity represents the aggregate result of different knowledge
exchange mechanisms without explaining them in detail. However, the importance
of explaining and classifying such mechanisms on the international, national and
corporate levels (which is obviously related to the issue of optimizing knowledge
networks) is rapidly growing due to the explosion in information technology. Gov-
ernments are increasingly challenged to build “knowledge-based” economies by cre-
ating “knowledge” infrastructure for “knowledge” intensive industries. In national
systems of innovation there are a number of formal and informal mechanisms to
acquire, create, exploit and accumulate new knowledge. For example, firms can
create strategic alliances, undertake mergers and acquisitions, invest in R&D, en-
hance personnel movement, or simply use technology of selling and buying patents.
For understanding the nature of all of these mechanisms and systematizing them
a mathematical treatment would be critical. Such a systematic analysis could be
a serious research program which is obviously far beyond the scope of the present
work. Here we focus specifically on the exchange of patents.

Our starting conjecture is that repeated “fair” trading on market of patents
is able to organize well-structurized flows of knowledge. “Fair” trading, in our
understanding, implies that a firm which buys technologies produced by another
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firm offers, confidentially, a “fair” payoff to the producer. In our model a firm
has an R&D department and a manufacturing deparment. The R&D department
produces its own original technologies and the manufacturing deparment utilizes
both originally produced technologies and technologies produced in other firms.
The technological interdependence of the firms provides a basis for the emergence
of market of patents.

In our model, each firm has three actions in market, prior announcement, of-
fering payoffs and making decisions. At the first stage (prior announcement), each
firm demonstrates a relatively small portion of its new project technologies with-
out producing them. At the second stage (offering payoffs), each firm studies the
announced technologies of other firms and offers its payoffs for these technologies.
At the third stage (making decisions), each firm analyzes the total payoff offer of
other firms and makes its decision on producing and selling or not producing (and
not selling) its announced technologies. The three-stage procedure is repeated pe-
riodically and, thus, drives the evolution of the firms’ technology stocks. Our goal
is to show that the proposed pattern is flexible enough to let the firms produce
and sell new portions of technologies in such a way that, first, the individual deci-
sions are best for every firm in every period, and, second, the current combinations
of firms’ technology stocks eventually approach a state, which maximizes the total
profit of the firms’ community. An important feature of the discussed model is that
the associated market operations imply the minimum exchange in information on
firms’ individual key characteristics such as the production functions, the costs for
producing and maintaning technologies, and the structure of the technology stocks
accumulated in manufacturing.

The paper is organized as follows. In section 1 we introduce a model of a com-
munity of firms. A model of “fair” round-by-round trading on market of patents
is presented in section 2. Here we describe an intuitively clear rule for making
individual decisions in one round (we call them boundedly rational decisions) and
justify their (intuitively clear) optimality for every firm in every round. Section 3
is devoted to the analysis of the global evolution of the technology stocks driven by
boundedly rational market decisionmakers. In particular, we state that the area of
low technology stocks (which is covered in an initial period of the evolution) is very
favourable for the technological development and operations on market of patents.
In this area the boundedly rational firms never interrupt production of new technolo-
gies and all patents are sold on market. Our main result, which closes the section,
states that the boundedly rational decisionmakers drive their technology stocks to a
state which maximizes the total profit of the firms’ community. In other words, the
firms behaving boundedly rational in every round eventually find a combination of
their technologies, which is best for their community as a whole. Section 4 presents
conclusions. Section 5, the Appendix, contains the proves.

We conclude the Introduction with a short characterization of our methodology.
In our setting, the firms operate in the situation where their profits depend on the
technologies developed in other firms. This falls entirely into the scope of theory
of noncooperative games (see Germeyer, 1976; Basar and Olsder, 1982; Vorobyov,
1985). To characterize the combinations of firms’ technologies, which may be ac-
ceptable for their community, we refer to the notion of a Pareto equilibrium. Among
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the Pareto equilibria we select the one which maximizes the total profit of the firms’
community and, thus, represents the best combination of firms’ technologies. This
combination can obviously be viewed as a target of the firms’ community as a whole.
However, the immediate switch to the target of all firms simultaneously is not pos-
sible thanks to the informational barriers. To make a cooperative decision on the
radical switch to the target the firms must communicate to each other their pro-
duction functions, thier costs for producing and maintaining technologies, and the
structure of thier technology stocks. This total exchange in privat information is
hardly imaginable; moreover, the firms may not be able to reconstruct instanta-
neously the global shape of their own production and cost functions. Instead of the
radical switch, slow evolutionary paths towards the target should be studied. This
view is in good agreement with theory of repeated games which assumes interacting
agents to learn in an infinite sequence of rounds (see Smale, 1980; Axelrod, 1984; Fu-
denberg and Krebs, 1993; Nowak and Sigmund, 1992; Kaniovski and Young, 1995).
In this context, we state that boundedly rational firms which gradually approach
the target through market of patents learn successfully.

1 Firms: static relations

1.1 Production functions

Let us assume that n firms, numbered 1, . . . , n, operate on market. Following the
classical approach (Arrow and Kurz, 1970; Intriligator, 1971; see also Watanabe,
1992), we assume that production of each firm i, yi, is a function of labor, Li, capital,
Ki, materials, Mi, energy use, Ei, and the technology stock, ξi, accumulated in the
manufacturing sector,

yi = Fi(Li, Ki,Mi, Ei, ξi); (1.1)

as usual, we call this function the production function. We assume that, given a size
of the firm’s accumulated technology stock, ξi, particular amounts of labor, capital,
materials, and energy are required. Usually, these amounts are found as minimum
ones supporting the technology stock ξi which is, in turn, represented as

ξi = min{h1i(Li), h2i(Ki), h3i(Mi), h4i(Ei)};

here hji (j = 1, . . . , 4) are strictly increasing functions of the quantities of labor,
capital, materials, and energy use, respectively. The requireness of the minimum
values for these quantities leads to

Li = h−1
1i (ξi), Ki = h−1

2i (ξi), Mi = h−1
3i (ξi), Ei = h−1

4i (ξi).

Substituting into (1.1), we represent production, yi, as a function of ξi only:

yi = fi(ξi). (1.2)

The function fi will also be called the production function of firm i. We assume fi
to be monotonically increasing. This assumption agrees with the observation that
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firm’s production, yi(t), grows in time, t, as the R&D investment, ri(t−m) (where
m is a commercialization time lag), exceeds the rate of technology obsolescence,
ρiξi(t), in the firm. In this situation the rate of the firm’s technology stock, which
is represented as ξ̇i(t) = ri(t − m) − ρiξi(t), is positive; in other words, the firm’s
technology stock, ξi(t), grows. The fact that the growth in the technology stock,
ξi(t), is accompanied by growth in production, yi(t), implies that the production
function fi in (1.2) is increasing.

1.2 Exchange in technologies

We assume that each firm i works on new technologies, whereas the technology stock
used in its maunfacturing sector, ξi, consists not only of technologies produced
in firm i but also comprises some of those developed in other firms. Thus, ξi =
ai1x1 + . . . + ainxn, where xj is the stock of the technologies developed in firm j.
The coefficient aij located between 0 and 1 represents the fraction of the technology
stock developed in firm j, which is used in firm i. Generally, aij may depend on the
size and structure of the firms’ technology stocks. For example, Jaffe (1986) defined
this coefficient as a “technological distance” between firms i and j:

aij =

[
n∑
k=1

xik

xi

n∑
k=1

xjk

xj

] n∑
k=1

(
xik

xi

)2 n∑
k=1

(
xjk

xj

)2
−1/2

;

here xik is the fraction of the technology stock produced in firm i, which is devoted
to area k (xi = xi1 + . . . + xin). In the present study we, for simplicity, assume
that aij are constant. Substituting ξi = ai1x1 + . . .+ ainxn into (1.2), we represent
production, yi, of firm i as a function of the technology stocks developed in firms
1, . . . , n:

yi = fi(ai1x1 + . . .+ ainxn). (1.3)

1.3 Profits

Let ci = ci(xi) be the cost for producing and maintaining the technology stock xi
in firm i; the function ci is monotonically increasing. We assume for simplicity that
the whole output, yi, of firm i is sold on market with a unit price. Then the profit
of firm i is given by ui = yi − ci. Using (1.3), we represent the profit as a function
of the firms’ technology stocks:

ui = ui(x1, . . . , xn) = fi(ai1x1 + . . .+ ainxn)− ci(xi). (1.4)

1.4 Technology game

Each firm, i, desires to maximize its profit, ui. However, the firm’s profit depends
on the technology stocks developed in other firms (see (1.4)). Therfore, an actual
combination of the firms’ technology stocks, (x1, . . . , xn), may not be satisfactory for
all firms, and some firms may wish to change it. This situation falls into the scope of
game theory (see, e.g., [Basar and Olsder, 1982]). Following the theory, we consider
the set of all hypothetically admissible combinations of firms’ technology stocks,
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(x1, . . . , xn), and define combinations which are acceptable to the firms’ community
as a whole. The acceptable combinations represent the so-called Pareto equilibria;
we call them Pareto equilibrium combinations of thechnology stocks.

The definition is as follows. A combination of the thechnology stocks, (x̂1, . . . , x̂n),
is said to be a Pareto equilibrium if there is no other combination of those, (x1, . . . , xn),
which is more preferrable to the firms’ community in the following sense: if all the
firms pass (virtually) from (x̂1, . . . , x̂n) to (x1, . . . , xn), at least one of them wins
in profit, that is, ui(x1, . . . , xn) > ui(x̂1, . . . , x̂n) for some i, whereas all the oth-
ers do not lose, that is, uj(x1, . . . , xn) ≥ uj(x̂1, . . . , x̂n) for all j 6= i. So, every
combination (x1, . . . , xn) differing from the Pareto equilibrium (x̂1, . . . , x̂n) is either
not better than (x̂1, . . . , x̂n) for all firms, that is, uj(x1, . . . , xn) ≤ uj(x̂1, . . . , x̂n)
for all j, or it is strictly worse than (x̂1, . . . , x̂n) for at least one firm, that is,
ui(x1, . . . , xn) < ui(x̂1, . . . , x̂n) for some i.

It is remarkable that every maximizer of the weighted sum of the firms’ profits,

u(x1, . . . , xn) = µ1u1(x1, . . . , xn) + . . .+ µnun(x1, . . . , xn),

where µ1, . . . µn are arbitrary positive weight coefficients, is a Pareto equilibrium.
The case where µ1 = . . . = µn = 1 is of special interest. In this case the weighted
sum represents the total profit of the firm’s community,

u(x1, . . . , xn) = u1(x1, . . . , xn) + . . .+ un(x1, . . . , xn). (1.5)

For the firms’ community as a whole, Pareto equilibria which maximize the total
profit (1.5) are obviously the best combinations of technology stocks.

2 Dynamic market of patents

2.1 Dynamics of technology stocks

Let us introduce dynamics in our model. For simplicity, we discretize time. Namely,
we fix an infinite sequence of instants, tk, k = 0, 1, 2, . . ., and study changes between
them. We set t0 = 0 and assume that instants tk appear with a fixed (small)
positive step δ: tk+1 = tk + δ. The technology stock produced in firm i and actually
used in manufacturing at time tk will be denoted xki . We assume that in period k

located between tk and tk+1 each firm i introduces rki δ new technologies and its rk−i δ
obsolesced technologies are washed off from manufacturing. Therefore,

∆kxi = xk+1
i − xki = (rki − rk−i )δ. (2.6)

Note that the size of the new portion of technologies, rki δ, is controlled by firm i,
whereas the size of old technologies washed off from manufacturing, rk−i δ, is deter-
mined by the production process. In period k production of firm i changes from
yki = fi(ai1xk1 + . . . + ainx

k
n) to yk+1

i = fi(ai1x
k+1
1 + . . . + ainx

k+1
n ) and, therefore,

grows for

∆kyi = fi(ai1x
k+1
1 + . . .+ ainx

k+1
n )− fi(ai1xk1 + . . .+ ainx

k
n)

= f ′(ai1x
k
1 + . . .+ ainx

k
n)(ai1∆

kx1 + . . .+ ain∆
kxn) + o(δ)

= f ′(ai1x
k
1 + . . .+ ainx

k
n)[ai1(r

k
1 − rk−1 ) + . . .+ ain(r

k
n − rk−n )]δ + o(δ);
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here and in what follows o(δ) stands for a small value which tends to 0 faster than
δ (o(δ) is second order in δ), and f ′i is the derivative of fi (we assume that fi is
differentiable); The cost for maintaning technologies in firm i changes from ci(xki )
to ci(x

k+1
i ) and grows for

∆kci = ci(x
k+1
i )− ci(xki ) = c′i(x

k
i )(r

k
i − rk−i )δ + o(δ)

where c′i is the derivative of ci (we assume that ci is differentiable). Therefore, in
period k the profit of firm i grows for

∆kui = ∆kyi −∆kci

= f ′(ai1x
k
1 + . . .+ ainx

k
n)[ai1(r

k
1 − rk−1 ) + . . .+ ain(r

k
n − rk−n )]δ −

c′i(x
k
i )(r

k
i − rk−i )δ + o(δ).

The above formulas describe the firms’ dynamics. The dynamics is controlled by
rk1 , . . . , r

k
n, the rates of new technology inputs in firms 1, . . . , n.

2.2 Market of patents. Boundedly rational decisions

Our goal is to show that market of patents can make the firms choose new portions of
technologies, rki δ, in such a way that, first, the choices are profitable in each period k
and, second, the current combination of technology stocks, (xk1, . . . , x

k
n), eventually

approaches the Pareto equilibrium (x̂1, . . . , x̂n), which maximizes the total profit of
the firms’ community (see (1.5)).

In our model, each firm has three actions in period k: prior announcement, of-
fering payoffs, and making decisions. At the first stage (prior announcement), each
firm demonstrates a relatively small portion of its new technologies without produc-
ing them. At the second stage (offering payoffs), each firm studies the announced
technologies of other firms and offers its payoffs for these technologies. At the third
stage, (making decisions) each firm analyzes the total payoff offer of other firms and
makes its decision on producing and selling or not producing (and not selling) its
announced technologies. The three-stage procedure is repeated in each period k and
thus drives the evolution of the firms’ technology stocks.

Let us describe the firms’ behavior in period k in detail. Each firm i starts period
k with the announcement of its new technologies of a relatively small size rk+

i δ,
which is, however, greater than rk−i δ. Every other firm, j, examines the announced
technologies of firm i and offers to firm i its payoff, qkji, for those technologies (among
the announced ones) which will be used in the manufacturing sector of firm j. Now
we argue for firm j. By assumption fraction aji of the technologies produced in firm
i is used in firm j. Therefore, firm j is interested in ajir

k+
i δ announced technologies

of firm i. The incorporation of these technologies in the manufacturing sector of
firm j yields production growth of size

∆k+yji = fj(aj1x
k
1 + . . .+ aji[x

k
i + (rk+

i − rk−i )δ] + . . .+ ajnx
k
n)−

fj(aj1x
k
1 + . . .+ ajix

k
i + . . .+ ajnx

k
n)

= f ′j(aj1x
k
1 + . . .+ ajnx

k
n)aji(r

k+
i − rk−i )δ + o(δ).
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Firm j decides how much to pay to firm i for its ajir
k+
i δ new technologies. Firm

j has all reasons to view ∆k+yji as an upper bound for its payoff, qkji, to firm i.
Generally, firm j would offer to firm i some qkji smaller than ∆k+yji. However, the
difference between qkji and ∆k+yji can be small compared to their absolute values.
The more “fairly” firm j operates, the smaller is the difference. Here we resrict our
analysis to extremely fair behaviors. Thus, we assume that the payoff offered by
firm j to firm i is

qkji = f ′j(aj1x
k
1 + . . .+ ajnx

k
n)aji(r

k+
i − rk−i )δ (2.7)

(we neglect o(δ)).
Let us come back to firm i. Its own production growth due to its new technologies

is given by
qkii = f ′j(aj1x

k
1 + . . .+ ajnx

k
n)aii(r

k+
i − rk−i )δ

(again, o(δ) is neglected). Firm i finds the total payoff offer, qki , for the announced
new technologies as the sum of the payoffs offered by all other firms and its own
income due to production growth, qkii:

qki = qk1i + . . .+ qkii + . . .+ qkni. (2.8)

Next, firm i computes its expenditure for developing and maintaining the announced
new technologies as the cost increment

∆k+ci = ci(x
k
i + (rk+

i − rk−i )δ)− ci(xki ).

Neglecting o(δ), we represent this as

pki = c′i(x
k
i )(r

k+
i − rk−i )δ. (2.9)

Finally, firm i compares the payoff offer, qki , and the expenditure, pki . If the payoff
offer is not smaller than the expenditure, qki ≥ pki , firm i produces the announced
technologies of size rk+

i δ, that is, sets rki = rk+
i (see (2.6)), and sells its patents to

all other firms; in this case every firm j pays qkji to firm i for patents for ajir
k+
i δ

technologies. If the payoff offer to firm i is smaller than the expenditure, qki < pki ,
firm i does not produce the announced technologies in period k; it sets rki = 0 (see
(2.6)). This closes period k. We call the above decisions of firm i boundedly rational.
The decisionmaking rule for finding boundedly rational decisions is, therefore,

rki =

{
rk+
i if qki ≥ pki ,
0 if qki < pki .

(2.10)

2.3 Optimality of boundedly rational decisions

Now we will show that the boundedly rational decisions are in fact best in every
period k (in our argument we neglect the second order terms o(δ)).

Let us decide for firm i, which of the two options is better in period k:

(i) to produce and sell the announced rk+
i δ technologies, or

(ii) not to produce (and not to sell) them.
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In terms of the transition formula (2.6), options (i) and (ii) prescribe rki = rk+
i and

rki = 0, respectively.
Recall that as the firms make their decisions in period k, the firms’ community

is spilt in the two groups, the group of those that produce and sell the announced
technologies (sell firms) and the group of those that do not produce (and do not sell)
the announced technologies (not-sell firms). Every sell firm j sells patents for its
aijr

+
j (tk)δ technologies to firm i. The implementation of these technologies brings

firm i the income

qkij = f ′(ai1x
k
1 + . . .+ ainx

k
n)aij(r

k+
j − rk−j )δ

due to production growth (see (2.7) where i and j change their places). This income
equals the payoff of firm i to firm j. Hence, every operation with a sell firm brings
firm i the income 0.

Every not-sell firm j does not sell its new technologies to firm i, which implies
the production loss of size

lkij = f ′(ai1x
k
1 + . . .+ ainx

k
n)aijr

k−
j δ

in firm i. The total loss of firm i due to the lack of new technologies of the not-sell
firms is given by

lki (J
k
i ) =

∑
j∈Jki

lkij; (2.11)

here Jki is the set of all not-sell firms in period k with the exception of firm i, and∑
j∈Jki denotes summation over all j from Jki .
Now consider i as a potential seller. Recall that every firm j offers firm i payoff

qkji for its announced technologies of size aijr
k+
i δ. Hence,

q̄kji =
qkji

ajir
k+
i δ

is the price set by firm j for a new technology unit of firm i. Therefore,

q̄kjiajir
k
i δ = qkji

rki
rk+
i

is the payoff of firm j for ajirki δ technologies of firm i. Similarly we find that qkiir
k
i /r

k+
i

is the income of firm i through the implementation of its own aiir
k
i δ technologies,

and pki r
k
i /r

k+
i (see (2.9)) is its cost for producing and maintainig rki δ new technolo-

gies. The income gained by firm i through producing, selling and implementing rki δ
technologies is, therefore,

qk1i
rki
rk+
i

+ . . .+ qkni
rki
rk+
i

− pki
rki
rk+
i

= (qki − pki )
rki
rk+
i

(see (2.8)). Distracting the loss lki (J
k
i ) (2.11), we find the total income, Qk

i (r
k
i , J

k
i ),

of firm i in period k:

Qk
i (r

k
i , J

k
i ) =

qki − pki
rk+
i

rki − lki (Jki ). (2.12)
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Recall that firm i must choose between rki = rk+
i (option (i)) and rki = 0 (option

(ii)). The best choice for firm i is, obviously, the one which provides a higher value
to Qk

i (r
k
i , J

k
i ). Substituting rki = rk+

i and rki = 0 in (2.12), we get

Qk
i (r

k+
i , Jki ) = (qki − pki )− lki (Jki ),

Qk
i (0, J

k
i ) = −lki (Jki ).

Consequently, if qki − pki > 0, the best choice for firm i is rki = rk+
i (option (i)), and

if qki − pki < 0, the best choice for firm i is rki = 0 (option (ii)). If qki − pki = 0,
both choices yield Qk

i (r
k
i , J

k
i )) = −lki (Jki ), in this case they are equivalent for firm

i. Thus, the bounded rationality decisionmaking rule (2.10), which prescribes firm
i to choose (i) if qki − pki ≥ 0 and (ii) otherwise, is best for firm i in period k.

2.4 Robustness and multioptimality of boundedly rational
decisions

The boundedly rational (and best) decisions of firm i are robust with respect to
the decisions of other firms. Namely, the boundedly rational decisions of firm i do
not depend on the decisions of other firms on selling or not selling their announced
technologies in period k, although the income of firm i in this period, Qk

i (r
k
i , J

k
i )

(2.12), depends on the decisions of other firms through Jki (the set of all not-sell
firms in period k with the exception of firm i).

The above rubustness property can also be interpreted as mulitioptimality. To
make this interpretation clear, let us replace Jki in (2.12) (and in (2.11)) by an
arbitrary subgroup, J , of firms 1, . . . , i− 1, i+ 1, . . . , n. “Free” Js have a very clear
meaning. When firm i does not know the actual decisions of other firms, it has to
view all Js as equally admissible candidates for being the actual not-sell group in
period k. Thus, we make firm i deal with the family of virtual incomes

Qk
i (r

k
i , J) =

qki − pki
rk+
i

rki − lki (J) =
qki − pki
rk+
i

rki −
∑
j∈J

lkij (2.13)

depending on an uncertain set J . For any J , firm i can find its best response to J ,
that is, its best decision under the hypothesis that J is the actual not-sell group. The
best response of firm i is given by rki which solves the next maximization problem:

maximize Qk
i (r

k
i , J) over rki ∈ {rk+

i , 0}; (2.14)

here rki ∈ {rk+
i , 0} indicates that rki is restricted to the two-element set with elements

rk+
i and 0. We see that the boundedly rational decision which is made by firm i

irrespective of J , responds best to any J . This decision is therefore multioptimal
in the sense that it solves all maximization problems (2.14) parametrized by J
simultaneously.

2.5 Local game. Nash equilibricity of boundedly rational
decisions

Let us represent the virtual income Qk
i (r

k
i , J) as an explicit function of the firms’

choices rk1 , . . . , r
k
1 . Note that fixing J is the same as assuming that all j from J
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choose rkj = 0 and all j not belonging to J choose rkj = rk+
j . Then, introducing

λkij(r
k
ij) =

{
1 if rkj = 0,
0 if rkj = rk+

j ,

we represent Qk
i (r

k
i , J) (2.13) as

Qk
i (r

k
1 , . . . , r

k
n) =

qki − pki
rk+
i

rki − λki1(rki1)lki1 − . . .− λki i−1(r
k
i i−1)l

k
i i−1 −

λki i+1(r
k
i i+1)l

k
i i+1 − . . .− λkin(rkin)lkin.

This representation shows that the firms – each maximizing its income – act as
players in an n-person game. In this local game rki ∈ {rk+

i , 0} is the admissible
action of player (firm) i and Qk

i (r
k
1 , . . . , r

k
n) is the payoff to this player.

The multioptimality of the boundedly rational decisions implies that in the local
game the boundedly rational decision (2.10) of any firm i responds best to arbitrary
combination, (rk1 , . . . , r

k
i−1, r

k
i+1, . . . , r

k
n), of admissible actions of other firms. In other

words, no matter how rkj for j 6= i are chosen, the boundedly rational decision of
firm i maximizes Qk

i (r
k
1 , . . . , r

k
n) over rki .

In particular, the boundedly rational decision of each firm responds best to the
boundedly rational decisions of all other firms. This property characterizes the entire
combination of the firm’s boundedly rational decisions as a Nash equilibrium in the
local game in period k (see, e.g., Vorobyov, 1985).

2.6 Informational aspect

Every firm is, obviously, interested in not spreading information about its key char-
acteristics such as the production function, the costs for producing and maintaning
technologies, and the structure of the technology stock accumulated in manufactur-
ing. In the context of our model, each firm i views functions fi and ci, the technology
stock ξi, and the coefficients aij characterizing the structure of ξi as its privat in-
formation. The technological evolution and exchange in technologies via market of
patents should imply the minimum exchange in privat information.

Market of patents with boundedly rational decisionmakers meets this condition
entirely. Indeed, in period k every two boundedly rational firms, i and j, commu-
nicate three times. First time, they announce their new technologies. Second time,
they exchange with their payoff offers. Third time, they sell each other patents for
new technologies (at this stage, one of the firms, or both of them, may decide not
to sell the patents). At the first and third stages there is no information exchange
between the firms. The most informative stage is offering payoffs. At this stage firm
j indicates to firm i the required part, ajir

k+
i δ, of the announced rk+

i δ technologies.
Thus, implicitly, the structural coefficient aji is communicated to firm i. Recall that
the payoff offer of firm j to firm i, qkji, is given by (2.7). Using this formula and
knowing qkji and aji, firm i is able to identify f ′j(ξ

k
j ), the derivative of the production

function of firm j (marginal productivity of firm j) at the currently accumulated
technology stock ξkj = aj1x

k
1 +. . .+ajnx

k
n. This, obviously, does not give to firm i any

information on the global shape of function fj , the size of the currently accumulated
technology stock ξkj , and the structural coefficients ajs for s 6= i. Similar signals go
from firm i to firm j. The exchange in information is, evidently, minimal.
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3 Analysis of market trajectories

3.1 Assumptions and definitions

In the previous section we showed that the firms’ boundedly rational decisions,
rk1 , . . . , r

k
n, are best with respect to the firms’ current interests in any period k. Our

main gaol in this section is to show that the boundedly rational decisions drive
the collection of the firms’ technology stocks, (xk1, . . . , x

k
n), to the state (x̂1, . . . , x̂n),

which is best for the firms’ community as a whole; namely, (x̂1, . . . , x̂n) is the Pareto
equilibrium, which maximizes the total profit of the firms’ community (see (1.5)).
A strict formulation of this key property will be given in Proposition 3.4 which
will close our analysis. The existence and uniqueness of (x̂1, . . . , x̂n) maximizing the
total profit will be stated in Proposition 3.3. The domain of attraction of boundedly
rational trajectories and their behavior in the area of low technology stocks (covered
in an initial interval of the evolution) will be characterized in Propositions 3.1 and
3.2.

In our analysis, we use several assumptions.
We assume that production of firm i, fi(ξi), grows with the technology stock

ξi, and its growth rate, f ′i(ξi), declines as ξi grows. So, the higher is the level of
the accumulated technology stock, the smaller is the production increment gained
through the implementation of a new technology unit.

We also assume that the cost of firm i for producing and maintaining xi tech-
nologies, ci(xi), grows with xi and its growth rate, c′i(xi), infinitely grows as ξi grows.
Thus, the higher is the level of the active firm’s technology stock, the higher is its
cost for producing and maintaining a new technology unit, moreover, the latter cost
approaches infinity at extremely high levels of the technology stock and vanishes at
the origin.

Let us give more accurate formulations of the assumptions. We assume that for
every i = 1, . . . , n function fi is defined and twice continuously differentiable on the
nonnegative half-interval [0,∞), strictly increasing, that is, f ′i(ξi) > 0 for all ξi ≥ 0,
and strictly concave, that is, f ′′i (ξi) < 0 for all ξi ≥ 0. Here and in what follows the
right derivative is considered at the origin.

We assume that for every i = 1, . . . , n function ci is defined and twice continu-
ously differentiable on the nonnegative half-interval [0,∞), strictly increasing, that
is, c′i(xi) > 0 for all ξi ≥ 0, strictly convex, that is, c′′i (ξi) ≥ 0 for all ξi ≥ 0, and,
finally, has the zero growth rate at the origin and infinite growth rate at infinity,
that is,

c′i(0) = 0, (3.15)

lim
xi→∞

c′i(xi) =∞. (3.16)

We assume 0 ≤ aij ≤ 1 for all i, j = 1, . . . , n and aii > 0 for all i = 1, . . . , n (the
latter assumption says that each firm utilizes a nonzero fraction of self-produced
technologies).

Now we introduce constraints on the maximum rates of the firms’ technology
inputs, rk+

i , and the rates of technology outflows, rk−i (see section 1). Namely, we
assume that for every collection of technology stocks in period k, (xk1 , . . . , x

k
n), where
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xk1, . . . , x
k
n > 0, and every i = 1, . . . , n we have

ρ++
i (xki ) ≥ rk+

i ≥ ρ+−
i (xki ), (3.17)

ρ−+
i (xki ) ≥ rk−i ≥ ρ−−i (xki ) > 0, (3.18)

ρ+−
i (xki ) > ρ−+

i (xki ), (3.19)

xki > ρ+−
i (xki ), (3.20)

where ρ++
i , ρ+−

i , ρ−+
i , ρ−−i are given nonnegative continuous functions defined on

the half-axis [0,∞).
In what follows, (x0

1, . . . , x
0
n) is an arbitrary initial combination of the firms’

technology stocks, x0
1, . . . , x

0
n > 0.

Note that assumption (3.20) implies that every sequence (xk1, . . . , x
k
n), k = 0, 1, . . .,

of firms’ technology stocks, which develops under the general transition formula (2.6)
with arbitrary rki ≥ 0 (i = 1, . . . n), satisfies the natural constraints xk1, . . . , x

k
n > 0,

or, in other words, never abandons the positive orthant O+; the latter is by definition
the collection of all (x1, . . . , xn) such that x1, . . . , xn > 0.

Let a sequence (xk1, . . . , x
k
n), k = 0, 1, . . ., of firms’ technology stocks be driven by

the boundedly rational decisions, that is, for each i = 1, . . . , n and each k = 0, 1, . . .
the next conditions hold:

(i) xki and xk+1
i , the technology stocks of firm i in periods k and k + 1, satisfy

the transition formula (2.6),
(ii) rki , the decision of firm i in period k, is determined by the bounded rationality

decisionmaking rule (2.10),
(iii) rk+

i and rk−i , the maximum rate of the technology input and the rate of the
technology outflow of firm i in period k, satisfy the constraints (3.17) and (3.18),

(iv) qki , the total payoff offer to firm i in period k, is given by (2.8), (2.7), and
(v) pki , the expenditure of firm i in period k, is given by (2.9).
We call the above sequence (xk1, . . . , x

k
n), k = 0, 1, 2, . . ., a boundedly rational

trajectory of the technology stocks on market of patents.
Note that a boundedly rational trajectory is, generally, not unique, although the

bonded rationality decisionmaking rule (2.10) is well determined. The reason is that
the maximum inflow rate rk+

i and the outflow rate rk−i are determined not uniquely;
they may take arbitrary values between ρ+−

i (xki ) and ρ++
i (xki ), and between ρ−−i (xki )

and ρ−+
i (xki ), respectively (see (3.17) and (3.18)).

3.2 Domain of attraction

All boundedly rational trajectories have a common domain of attraction, A, which
is bounded and strictly separated from the origin. The domain A can be defined as
the collection of all (x1, . . . , xn) such that κ ≤ xi ≤ K (i = 1, . . . , n) for some κ > 0
and K > κ. In standard mathematical notations,

A = {(x1, . . . , xn) : κ ≤ xi ≤ K (i = 1, . . . , n)}. (3.21)

The attraction property of A is interpreted as follows: every boundedly rational
trajectory enters A in some finite period and then circulates in A. Thus, if market
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of patents is boundedly rational, then the technology stock of each firm can neither
stay below κ forever, nor become lower than κ after visiting the region above κ;
similarly, it can neither stay above K forever, nor become higher than K after
visiting the region below K.

Let us give the accurate formulation.

Proposition 3.1 There exist κ > 0 and K > κ such that the set A given by (3.21)
is the domain of attraction for the boundedly rational trajectories of the technology
stocks in the following sense: if the time step δ is sufficiently small, then for every
boundedly rational trajectory of the technology stocks, (xk1, . . . , x

k
n), k = 0, 1, . . .,

there is period k∗ such that (xk1, . . . , x
k
n) lies in A for all k ≥ k∗.

The proposition is proved in Appendix.

3.3 Evolution in the area of low technology stocks

Our model shows that the area of low technology stocks (which is covered in an
initial period of the evolution) is very favourable for the technological development
and operations on market of patents. In this area all boundedly rational firms never
interrupt the production of new technologies, and all patents are sold on market.

Here is the exact formulation.

Proposition 3.2 There exists σ > 0 such that for every boundedly rational tra-
jectory of the technology stocks, (xk1, . . . , x

k
n), k = 0, 1, . . ., and every period k, for

which xk1, . . . , x
k
n ≤ σ, the boundedly rational decision rki (2.10) of any firm i is rk+

i

(firm i develops and sells patents for rk+
i δ new technologies).

A proof is given in Appendix.

3.4 Convergence to the best Pareto equilibrium

Now we consider the firms’ total profit function, u, given by (1.5).

Proposition 3.3 The total profit function u (1.5) has the unique maximizer, (x̂1, . . . , x̂n),
in the positive orthant O+.

As noted in section 1 (x̂1, . . . , x̂n) is a Pareto equilibrium.
Our main, and final, result says that if the time step δ is sufficiently small,

then every boundedly rational trajectory enters an arbitrarily small neighborhood of
(x̂1, . . . , x̂n) in a finite period and stays there forever. Thus, the boundedly rational
firms find the combination of technologies which is best for the firms’ community as
a whole and keep their technology stocks close to it.

Here is the accurate formulation.

Proposition 3.4 For every ε > 0 there is δ0 > 0 having the following property: if
the time step δ is smaller than δ0, then for every boundedly rational trajectory of the
technology stocks, (xk1, . . . , x

k
n), k = 0, 1, . . ., there exists period k0 such that for all

periods k ≥ k0 and all firms i = 1, . . . , n it holds that |xki − x̂i| < ε.

Propositions 3.3 and 3.4 are proved in Appendix.



– 14 –

4 Conclusions

We presented a dynamical model of a community of firms whose technology stocks
overlap. It was shown that market of patents allows the firms to organize flows
of knowledge in a globally optimal and locally rational manner. Namely, market-
driven combinations of firms’ technology stocks may in the long run approach a
point favourable for the firms’ community as a whole, whereas in every local market
operation the individual decision of every firm agrees with its current interest.

The presented model is to a considerable extend stylized. The basic simplifying
assumptions are the following:

(i) the accumulated technology stock of a firm stays in a strict correspondence
with labor, capital, materials, and energy use (subsection 1.1);

(ii) the structural coefficients, aji, are constant (subsection 1.2);
(iii) the whole production is sold and prices are constant (subsection 1.3);
(iv) the prior descriptions of the announced new technologies are complete and

payoff offers ideally “fair” (subsection 2.2);
(v) long-term R&D projects are neglected.
In this context one may think about extensions of the presented analysis under

reasonably weakened assumptions (i) – (v) as natural further steps in the analytical
treatment of market of patents.

5 Appendix

Here we prove Propositions 3.1 – 3.4.
We start with a technical lemma following from the assumptions on functions fi

and ci.

Lemma 5.1 There exist a positive K0 and a positive κ0 < K such that

c′i(xi) >
n∑
j=1

f ′j(aj1x1 + . . .+ ajnxn)aji (5.22)

for all i = 1, . . . , n, all xi ≥ K0, and all xj > 0, j 6= i, and

c′i(xi) <
n∑
j=1

f ′j(aj1x1 + . . .+ ajnxn)aji (5.23)

for all i = 1, . . . , n and all positive xi ≤ κ0 and xj ≤ K0, j 6= i.

Proof. Take i between 1 and n. Fix a positive η. By assumption f ′j is decreasing.
Then for all j, all xi ≥ η, and all xs > 0, s 6= i, we have

f ′j(aj1x1 + . . .+ ajixi + . . .+ ajnxn)aji ≤ f ′j(ajixi)aji ≤ f ′j(ajiη)aji.

Since c′i is infinitely increasing (see (3.16)), there is K0 ≥ η such that (5.22) holds
for all xi ≥ K0 and all xj > 0, j 6= i. Without loss of generality we set K0 to be the
same for all i.
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By assumption f ′i is positive, c′i(0) = 0 (see (3.15)) and aii > 0. Then there is a
positive κ0 < K0 such that

f ′i(a11K0 + . . .+ aiiκ0 + . . .+ annK0)aii > c′i(xi)

for all positive xi ≤ κ0 and xj ≤ K, j 6= i. Taking into account that f ′i is decreasing,
we get

n∑
j=1

f ′j(aj1x1 + . . .+ ajnxn)aji ≥ f ′i(a11x1 + . . .+ annxn)aii

≥ f ′i(a11K0 + . . .+ aiiκ0 + . . .+ annK0)aii

> c′i(xi)

for all positive xi ≤ κ0 and xj ≤ K, j 6= i. Hence, for all these x1, . . . , xn we have
(5.23). Without loss of generality we set κ0 to be the same for all i. The lemma is
proved.

Below, we fix constants κ0 and K0 introduced in Lemma 5.1. In what follows
(xk1, . . . , x

k
n), k = 0, 1, . . ., is an arbitrary boundedly rational trajectory of the tech-

nology stocks. Recall that by definition for all i = 1, . . . , n and all k = 0, 1, . . .
conditions (i) through (v) of subsection 3.1 are satisfied.

The next assertion follows easily from Lemma 5.1.

Lemma 5.2 For every k = 0, 1, . . . and every i = 1, . . . , n the next statements hold
true:

(i) if xki ≥ K0, then rki = 0,
(ii) if xk1, . . . , x

k
n ≤ K0 and xki ≤ κ0, then rki = rk+

i .

Proof. Let xki ≥ K0. Then by Lemma 5.1 (5.22) holds for (x1, . . . , xn) =
(xk1, . . . , x

k
n):

c′i(x
k
i ) >

n∑
j=1

f ′j(aj1x
k
1 + . . .+ ajnx

k
n)aji.

Multiplying by the positive factor (rk+ − rk−)δ and using the notations (2.7) and
(2.9), we represent the inequality as pki > qk1i + . . .+ qkni, or, recalling the notation
(2.8), as qki < pki . The decisionamig rule (2.10) yields rki = 0.

Let xk1, . . . , x
k
n ≤ K0 and xki ≤ κ0. Then by Lemma 5.1 (5.23) holds for

(x1, . . . , xn) = (xk1, . . . , x
k
n):

c′i(x
k
i ) <

n∑
j=1

f ′j(aj1x
k
1 + . . .+ ajnx

k
n)aji.

Multiplying by the positive factor (rk+ − rk−)δ and using the notations (2.7), (2.8),
(2.9), we represent the inequality as qki > pki . The decisionamig rule (2.10) yields
rki = rk+

i . The lemma is proved.

Proof of Proposition 3.1. Fix K > K0 and a positive κ < κ0 and define A
by (3.21). Choose R > 0 so that

R ≥ max{ρ++
i (xi) : 0 ≤ xi ≤ K}
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for all i = 1, . . . n. Let the time step δ satisfy

δ < min
{
K −K0

R
,
κ0 − κ
R

}
.

For the boundedly rational trajectory (xk1, . . . , x
k
n), k = 0, 1, . . ., the transition for-

mula (2.6) and estimates (3.17), (3.18) yield

|xk+1
i − xki | ≤ |rki − rk−i |δ ≤ Rδ < min{K −K0, κ0 − κ} (5.24)

if xki ≤ K. Take some i between 1 and n. Assume that x0
i > K. Choose r > 0 so

that
r ≤ min{ρ−−i (xi) : K0 ≤ xi ≤ x0

i};
r exists since ρ−− is continuous and takes positive values at positive arguments
(see (3.18)). By Lemma 5.2, (i), r0

i = 0. Hence, the transition formula (2.6) and
estimates (3.18) yield

x1
i = x0

i − r0−
i δ ≤ x0

i − ρ−−(x0
i )δ ≤ x0

i − rδ.

If x1
i > K, we replace in the previous argument k = 0 sequentially by k = 1, 2, . . .

and, finally, arrive at a finite period ki such that for all k = 0, 1, . . . , ki−1 we have
xk+1
i ≤ xki − rδ and xki > K, and xkii ≤ K. If x0

i ≤ K, we set ki = 0. Thus, we
stated that there is ki such that xkii ≤ K. Let us show that xki ≤ K for all k ≥ ki.
Assume that, to the contrary, xk+1

i > K for some k ≥ ki. With no loss of generality
assume xki ≤ K. Due to (5.24)

xki ≥ xk+1
i − (K −K0) ≥ K − (K −K0) = K0.

Then by Lemma 5.2, (i), rki = 0, hence, by (2.6)

xk+1
i = xki − rk−i δ ≤ xki ≤ K.

The contradicuion with the assumption xk+1
i > K proves that xki ≤ K for all k ≥ ki.

Let k∗ be the maximum of k1, . . . , kn. Obviously, we have xki ≤ K for all i = 1, . . . , n
and all k ≥ k∗.

Let us show that there is k∗ ≥ k∗ such that xki ≥ κ for all i = 1, . . . , n and all
k ≥ k∗. This will complete the proof. Take some i. Assume that xk

∗
i < κ. Choose

r > 0 so that
r ≤ min{ρ+−

i (xi)− ρ−+
i (xi) : xk

∗

i ≤ xi ≤ κ0};
r exists since ρ+− and ρ−+ are continuous and their difference is positive at positive
arguments (see (3.19)). By Lemma 5.2, (ii), rk

∗
i = rk

∗+
i . Hence, the transition

formula (2.6) and estimates (3.18) yield

xk
∗+1
i = xk

∗

i + (rk
∗+
i − rk∗−i )δ ≥ x0

i + (ρ−+(xk
∗

i )− ρ−+(xk
∗

i ))δ ≥ x0
i + rδ.

If xk
∗+1
i < κ, we replace in the previous argument k = k∗ sequentially by k = 1, 2, . . .

and, finally, arrive at a finite period si such that for all k = k∗, k∗+ 1, . . . , si− 1 we
have xk+1

i ≥ xki + rδ and xki < κ, and xsii ≥ κ. If xk
∗
i ≥ κ, we set si = k∗. Thus,

we stated that there is si such that xsii ≥ κ. Let us show that for each k ≥ si we
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have xki ≥ κ. Assume that, to the contrary, xk+1
i < κ for all i = 1, . . . , n and some

k ≥ si. With no loss of generality assume xki ≥ κ. Due to (5.24)

xki ≤ xk+1
i − (κ0 − κ) ≤ κ− (κ0 − κ) = κ0.

Then by Lemma 5.2, (ii), rki = rk+
i , hence, by (2.6)

xk+1
i = xki + (rk+

i − rk−i )δ ≥ xki ≥ κ.

The contradiction with the assumption xk+1
i < κ proves that xki ≥ κ for all k ≥ si.

Let k∗ be the maximum of s1, . . . , sn. Obviously, we have xki ≥ κ for all i = 1, . . . , n
and all k ≥ k∗. The proposition is proved.

Proof of Proposition 3.2. Set σ = κ0. Now the proposition follows from
Lemma 5.2, (ii).

Proof of Proposition 3.3. By (1.5) and (1.4)

∂u(x1, . . . , xn)

∂xi
=

n∑
j=1

f ′j(aj1x1 + . . .+ ajnxn)aji − c′i(xi). (5.25)

By Lemma 5.1 for all x1, . . . , xn ≥ K0 and all i = 1, . . . , n the inequality (5.22)
holds. Hence, ∂u(x1, . . . , xn)/∂xi < 0 for all x1, . . . , xn ≥ K0 and all i = 1, . . . , n.
Consequently, for every x1, . . . , xn > K0 there are nonnegative x̄1, . . . , x̄n ≤ K0 such
that u(x̄1, . . . , x̄n) > u(x1, . . . , xn). Therefore, u has a maximizer, (x̂1, . . . , x̂n), in
the set of all x1, . . . , xn ≥ 0, and, moreover x̂1, . . . , x̂n ≤ K0. Since u is strictly
concave, the maximizer is unique. It remains to show that x̂1, . . . , x̂n > 0. Assume
that, to the contrary, x̂i = 0 for some i. Then by (3.15) and (5.25)

∂u(x̂1, . . . , x̂n)

∂xi
= f ′1(a11x̂1 + . . .+ a1nx̂n)a1i + . . .+

f ′n(an1x̂1 + . . .+ annx̂n)ani > 0.

Hence, for a sufficiently small ε > 0

u(x̂1, . . . , x̂i + ε, . . . , x̂n) = u(x̂1, . . . , x̂i, . . . , x̂n) +
∂u(x̂1, . . . , x̂n)

∂xi
ε+ o(ε)

> u(x̂1, . . . , x̂n),

which is not possible since (x̂1, . . . , x̂n) is the maximizer for u. The proposition is
proved.

Proof of Proposition 3.4. Below we consider only k ≥ k∗, for which (xk1, . . . , x
k
n)

lies in the domain A (see Proposition 3.1). Let us show that u(xk1, . . . , x
k
n) (1.5) in-

creases as k ≥ k∗ grows. Using (2.6), we get

u(xk+1
1 , . . . , xk+1

n )− u(xk1, . . . , xkn)

=
n∑
i=1

∂u(xk1, . . . , x
k
n)

∂xi
(xk+1 − xki ) + ok(δ)

=
n∑
i=1

∂u(xk1, . . . , x
k
n)

∂xi
(rki − rk−i )δ + ok(δ); (5.26)
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the fact that (xk1, . . . , x
k
n) lies in the bounded domain A together with the continuous

differentiability of u, imply that ok(δ) is second order in δ uniformly with respect to
k; namely, for arbitrary µ > 0 we have

max
k≥k∗
|ok(δ)| ≤ µδ (5.27)

provided δ is sufficiently small. According to (5.25) and the notations (2.7), (2.8),
(2.9),

∂u(xk1, . . . , x
k
n)

∂xi
(rki − rk−i )δ = qki − pki .

Since (rki −rk−i )δ > 0, the sign of ∂u(xk1, . . . , x
k
n)/∂xi concides with the sign of qki −pki .

Hence, the decisionmaking rule (2.10) prescribes

rki =


rk+
i if

∂u(xk1, . . . , x
k
n)

∂xi
≥ 0,

0 if
∂u(xk1, . . . , x

k
n)

∂xi
< 0,

and we get

∂u(xk1, . . . , x
k
n)

∂xi
(rki−rk−i )δ =



∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣ |rk+
i − rk−i |δ if

∂u(xk1, . . . , x
k
n)

∂xi
≥ 0,∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣ |rk−i |δ if
∂u(xk1, . . . , x

k
n)

∂xi
< 0,

Substituting in (5.26), we find:

u(xk+1
1 , . . . , xk+1

n )− u(xk1, . . . , xkn) ≥
n∑
i=1

|∂u(x
k
1, . . . , x

k
n)

∂xi
|ζki δ + ok(δ)

where
ζki = min{|rk+

i − rk−i |, |rk−i |}.
Choose r1 > 0 and r2 > 0 so that

r1 ≤ min{ρ+−
i (xi)− ρ−+

i (xi) : κ ≤ xi ≤ K},

r2 ≤ min{ρ−−i (xi) : κ ≤ xi ≤ K}
for all i = 1, . . . , n; r1 and r2 exist since ρ−− and (ρ+− − ρ−+) are continuous and
take positive values at positive arguments (see (3.18) and (3.19)). Then ζki ≥ r =
min{r1, r2}, and we have

u(xk+1
1 , . . . , xk+1

n )− u(xk1, . . . , xkn) ≥
n∑
i=1

∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣ rδ + ok(δ). (5.28)

This estimate shows that if δ is sufficientl small, then, in a region where not all
partial derivatives of u are close to zero, the growth rate of u(xk1, . . . , x

k
n) is bounded

from below by a positive constant. The region, in which all partial derivatives of u
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are close to zero, is located in a neighborhood of (x̂1, . . . , x̂n), the maximizer of u.
Since u(xk1, . . . , x

k
n) cannot grow to infinity, it must approach (x̂1, . . . , x̂n).

This is the logical pattern of the rest of our proof. Now we argue accurately.
The continuous function u is bounded on the bounded domain A. Therefore,

there is M > 0 such that
|u(xk1, . . . , xkn)| ≤M (5.29)

for all k ≥ k∗. For any γ > 0 let A+
γ denote the set of all (xk1, . . . , x

k
n) from A such

that
n∑
i=1

∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣ > γ

and A−γ denote its complement in A, that is, the set of all (xk1, . . . , x
k
n) from A such

that
n∑
i=1

∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣ ≤ γ.
Take an arbitrarily small γ > 0. Let us show that if δ is small enough, then there is
k− ≥ k∗ such that (xk

−
1 , . . . , xk

−
n ) lies in A−γ . We choose δ so small that (5.27) holds

with µ = r/2. If (xk∗1 , . . . , x
k∗
n ) lies in A−γ , we set k− = k∗. Assume that (xk∗1 , . . . , x

k∗
n )

does not lie in A−γ , that is, belongs to A+
γ . Suppose that the desired k− does not

exist. Then (xk1, . . . , x
k
n) lies in A+

γ for all k ≥ k∗. Hence, by (5.28)

u(xk+1
1 , . . . , xk+1

n )− u(xk1, . . . , xkn) ≥ rδγ + o(δ) ≥ rγ

2

for all k ≥ k∗. Then
lim
k→∞

u(xk+1
1 , . . . , xk+1

n ) =∞

which contradicts (5.29). The contradiction shows that there is k− ≥ k∗ such that
(xk1, . . . , x

k
n) lies in A−γ . By Proposition 3.3 (x̂1, . . . , x̂n) is the unique maximizer of

u in the positive orthant O+. This fact and the strict concavity of u imply that
the point (x̂1, . . . , x̂n) is uniquely determined by the condition that at this point
all partial derivatives of u vanish. Hence, choosing arbitrary ν > 0, we find that if
γ > 0 is small enough, the set A−γ is contained in the ν-neighborhood of (x̂1, . . . , x̂n).
We assume that γ is chosen this way in advance. The choice of ν will be specified
in the next paragraph.

Denote û = (x̂1, . . . , x̂n). Take arbitrary ε > 0. The strict concavity of u implies
that there exists α > 0 such that all (x1, . . . , xn), for which u(x1, . . . , xn) ≥ û− α,
lie in the ε-neighborhood of (x̂1, . . . , x̂n). We assume that ν is so small that for all
(x1, . . . , xn) from the ν-neighborhood of (x̂1, . . . , x̂n) the inequality u(x1, . . . , xn) ≥
û− α/2 holds. In particular, we have u(xk

−
1 , . . . , xk

−
n ) ≥ û− α/2.

Now we will show that δ can be chosen so small that

u(xk1, . . . , x
k
n) ≥ û− α (5.30)

for all k ≥ k−. Then by the definition of α we will have (xk1, . . . , x
k
n) in the ε-

heighborhood of (x̂1, . . . , x̂n) for all k ≥ k−, which will complete the proof.
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Since the partial derivatives of u are uniformly continuous on A, for sufficienty
small δ we have

n∑
i=1

(∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣−
∣∣∣∣∣∂u(xk1, . . . , xkn)∂xi

∣∣∣∣∣
)
<
ω

2
(5.31)

for all k ≥ k∗. Let δ satisfy this constraint. Since (x̂1, . . . , x̂n) is the unique maxi-
mizer of u, there is ω > 0 such that all (x1, . . . , xn) satisfying u(x1, . . . , xn) < û− α
lie in A+

ω , that is,
n∑
i=1

∣∣∣∣∣∂u(x1, . . . , xn)

∂xi

∣∣∣∣∣ > ω.

We assume that δ is so small that (5.27) holds with µ = ω/4, that is,

ok(δ) ≤ ωδ

4
. (5.32)

Now suppose that (5.30) does not hold for all k ≥ k−, and, therefore,

u(xm+1
1 , . . . , xm+1

n ) < û− α (5.33)

for some m ≥ k−. Without loss of generality we assume

u(xm1 , . . . , x
m
n ) ≥ û− α. (5.34)

The assumption (5.33) implies

n∑
i=1

∣∣∣∣∣∂u(x
m+1
1 , . . . , xm+1

n )

∂xi

∣∣∣∣∣ > ω.

Then by (5.31)
n∑
i=1

∣∣∣∣∣∂u(xm1 , . . . , xmn )

∂xi

∣∣∣∣∣ > ω

2
.

In other words, (xm1 , . . . , x
m
n ) lies in A+

ω/2. Now, arguing as in the proof of (5.28)
(repacing k by m and r by ω/2) and using (5.32) and (5.34), we find that

u(xm+1
1 , . . . , xm+1

n ) ≥ u(xm1 , . . . , x
m
n ) +

n∑
i=1

∣∣∣∣∣∂u(xm1 , . . . , xmn )

∂xi

∣∣∣∣∣ δ + o(δ)

≥ u(xm1 , . . . , x
m
n ) +

ωδ

2
− ωδ

4
> u(xm1 , . . . , x

m
n )

≥ û− α,

which contradicts (5.33). The proof is completed.
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